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Abstract

We present a network architecture for processing point

clouds that directly operates on a collection of points rep-

resented as a sparse set of samples in a high-dimensional

lattice. Naı̈vely applying convolutions on this lattice scales

poorly, both in terms of memory and computational cost, as

the size of the lattice increases. Instead, our network uses

sparse bilateral convolutional layers as building blocks.

These layers maintain efficiency by using indexing struc-

tures to apply convolutions only on occupied parts of the lat-

tice, and allow flexible specifications of the lattice structure

enabling hierarchical and spatially-aware feature learning,

as well as joint 2D-3D reasoning. Both point-based and

image-based representations can be easily incorporated in

a network with such layers and the resulting model can be

trained in an end-to-end manner. We present results on 3D

segmentation tasks where our approach outperforms exist-

ing state-of-the-art techniques.

1. Introduction

Data obtained with modern 3D sensors such as laser

scanners is predominantly in the irregular format of point

clouds or meshes. Analysis of point clouds has several use-

ful applications such as robot manipulation and autonomous

driving. In this work, we aim to develop a new neural net-

work architecture for point cloud processing.

A point cloud consists of a sparse and unordered set of

3D points. These properties of point clouds make it difficult

to use traditional convolutional neural network (CNN) ar-

chitectures for point cloud processing. As a result, existing

approaches that directly operate on point clouds are domi-

nated by hand-crafted features. One way to use CNNs for

point clouds is by first pre-processing a given point cloud

in a form that is amenable to standard spatial convolutions.

Following this route, most deep architectures for 3D point

cloud analysis require pre-processing of irregular point

clouds into either voxel representations (e.g., [43, 35, 42])

or 2D images by view projection (e.g., [39, 32, 24, 9]).

SPLATNet3D
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2D & 3D predictions

...

Figure 1: From point clouds and images to semantics.

SPLATNet3D directly takes point cloud as input and pre-

dicts labels for each point. SPLATNet2D-3D, on the other

hand, jointly processes both point cloud and the correspond-

ing multi-view images for better 2D and 3D predictions.

This is due to the ease of implementing convolution oper-

ations on regular 2D or 3D grids. However, transforming

point cloud representation to either 2D images or 3D voxels

would often result in artifacts and more importantly, a loss

in some natural invariances present in point clouds.

Recently, a few network architectures [31, 33, 46] have

been developed to directly work on point clouds. One of

the main drawbacks of these architectures is that they do

not allow a flexible specification of the extent of spatial

connectivity across points (filter neighborhood). Both [31]

and [33] use max-pooling to aggregate information across

points either globally [31] or in a hierarchical manner [33].

This pooling aggregation may lose surface information be-

cause the spatial layouts of points are not explicitly consid-

ered. It is desirable to capture spatial relationships in point

clouds through more general convolution operations while

being able to specify filter extents in a flexible manner.

In this work, we propose a generic and flexible neural

network architecture for processing point clouds that allevi-

ates some of the aforementioned issues with existing deep

architectures. Our key observation is that the bilateral con-

volution layers (BCLs) proposed in [22] have several favor-

able properties for point cloud processing. BCL provides a

systematic way of filtering unordered points while enabling
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flexible specifications of the underlying lattice structure on

which the convolution operates. BCL smoothly maps in-

put points onto a sparse lattice, performs convolutions on

the sparse lattice and then smoothly interpolates the filtered

signal back onto the original input points. With BCLs as

building blocks, we propose a new neural network archi-

tecture, which we refer to as SPLATNet (SParse LATtice

Networks), that does hierarchical and spatially-aware fea-

ture learning for unordered points. SPLATNet has several

advantages for point cloud processing:

• SPLATNet takes the point cloud as input and does not

require any pre-processing to voxels or images.

• SPLATNet allows an easy specification of filter neigh-

borhood as in standard CNN architectures.

• With the use of hash table, our network can efficiently

deal with sparsity in the input point cloud by convolv-

ing only at locations where data is present.

• SPLATNet computes hierarchical and spatially-aware

features of an input point cloud with sparse and effi-

cient lattice filters.

• In addition, our network architecture allows an easy

mapping of 2D points into 3D space and vice-versa.

Following this, we propose a joint 2D-3D deep archi-

tecture that processes both the multi-view 2D images

and the corresponding 3D point cloud in a single for-

ward pass while being end-to-end learnable.

The inputs and outputs of two versions of the proposed

network, SPLATNet3D and SPLATNet2D-3D, are depicted in

Figure 1. We demonstrate the above advantages with exper-

iments on point cloud segmentation. Experiments on both

RueMonge2014 facade segmentation [36] and ShapeNet

part segmentation [44] demonstrate the superior perfor-

mance of our technique compared to state-of-the-art tech-

niques, while being computationally efficient.

2. Related Work

Below we briefly review existing deep learning ap-

proaches for 3D shape processing and explain differences

with our work.

Multi-view and voxel networks. Multi-view networks

pre-process shapes into a set of 2D rendered images en-

coding surface depth and normals under various 2D projec-

tions [39, 32, 3, 24, 9, 20]. These networks take advantage

of high resolution in the input rendered images and transfer

learning through fine-tuning of 2D pre-trained image-based

architectures. On the other hand, 2D projections can cause

surface information loss due to self-occlusions, while view-

point selection is often performed through heuristics that are

not necessarily optimal for a given task.

Voxel-based methods convert the input 3D shape rep-

resentation into a 3D volumetric grid. Early voxel-based

architectures executed convolution in regular, fixed voxel

grids, and were limited to low shape resolutions due to

high memory and computation costs [43, 28, 32, 6, 15, 37].

Instead of using fixed grids, more recent approaches pre-

process the input shapes into adaptively subdivided, hi-

erarchical grids with denser cells placed near the surface

[35, 34, 25, 42, 40]. As a result, they have much lower

computational and memory overhead. On the other hand,

convolutions are often still executed away from the surface,

where most of the shape information resides. An alternative

approach is to constrain the execution of volumetric convo-

lutions only along the input sparse set of active voxels of

the grid [16]. Our approach generalizes this idea to high-

dimensional permutohedral lattice convolutions. In contrast

to previous work, we do not require pre-processing points

into voxels that may cause discretization artifacts and sur-

face information loss. We smoothly map the input surface

signal to our sparse lattice, perform convolutions over this

lattice, and smoothly interpolate the filter responses back to

the input surface. In addition, our architecture can easily in-

corporate feature representations originating from both 3D

point clouds and rendered images within the same lattice,

getting the best of both worlds.

Point cloud networks. Qi et al. [31] pioneered another

type of deep networks having the advantage of directly op-

erating on point clouds. The networks learn spatial feature

representations for each input point, then the point features

are aggregated across the whole point set [31], or hierarchi-

cal surface regions [33] through max-pooling. This aggre-

gation may lose surface information since the spatial layout

of points is not explicitly considered. In our case, the input

points are mapped to a sparse lattice where convolution can

be efficiently formulated and spatial relationships in the in-

put data can be effectively captured through flexible filters.

Non-Euclidean networks. An alternative approach is to

represent the input surface as a graph (e.g., a polygon mesh

or point-based connectivity graph), convert the graph into

its spectral representation, then perform convolution in the

spectral domain [8, 19, 11, 4]. However, structurally dif-

ferent shapes tend to have largely different spectral bases,

and thus lead to poor generalization. Yi et al. [45] pro-

posed aligning shape basis functions through a spectral

transformer, which, however, requires a robust initialization

scheme. Another class of methods embeds the input shapes

into 2D parametric domains and then execute convolutions

within these domains [38, 26, 13]. However, these embed-

dings can suffer from spatial distortions or require topolog-

ically consistent input shapes. Other methods parameter-

ize the surface into local patches and execute surface-based

convolution within these patches [27, 5, 29]. Such non-

Euclidean networks have the advantage of being invariant

to surface deformations, yet this invariance might not al-
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Figure 2: Bilateral Convolution Layer. Splat: BCL first

interpolates input features F onto a dl-dimensional permu-

tohedral lattice defined by the lattice features L at input

points. Convolve: BCL then does dl-dimensional convolu-

tion over this sparsely populated lattice. Slice: The filtered

signal is then interpolated back onto the input signal. For

illustration, input and output are shown as point cloud and

the corresponding segmentation labels.

ways be desirable in man-made object segmentation and

classification tasks where large deformations may change

the underlying shape or part functionalities and semantics.

We refer to Bronstein et al. [7] for an excellent review of

spectral, patch- and graph-based methods.

Joint 2D-3D networks. FusionNet [18] combines shape

classification scores from a volumetric and a multi-view

network, yet this fusion happens at a late stage, after the

final fully connected layer of these networks, and does not

jointly consider their intermediate local and global feature

representations. In our case, the 2D and 3D feature repre-

sentations are mapped onto the same lattice, enabling end-

to-end learning from both types of input representations.

3. Bilateral Convolution Layer

In this section, we briefly review the Bilateral Convo-

lution Layer (BCL) that forms the basic building block of

our SPLATNet architecture for point clouds. BCL, pro-

posed in [22], provides a way to incorporate sparse high-

dimensional filtering inside neural networks. In [22], BCL

was used as a learnable generalization of bilateral filter-

ing [41, 2], hence the name ‘Bilateral Convolution Layer’.

Bilateral filtering involves a projection of a given 2D image

into a higher-dimensional space (e.g., space defined by posi-

tion and color) and is traditionally limited to hand-designed

filter kernels. BCL provides a way to learn filter kernels

in high-dimensional spaces for bilateral filtering. BCL is

also shown to be useful for information propagation across

video frames [21]. We observe that BCL has several fa-

vorable properties to filter data that is inherently sparse and

high-dimensional, like point clouds. Here, we briefly de-

scribe how a BCL works and then discuss its properties.

3.1. Inputs to BCL

Let F ∈ R
n×df be the given input features to a BCL,

where n denotes the number of input points and df denotes

the dimensionality of input features at each point. For 3D

point clouds, input features can be low-level features such

as color, position, etc., and can also be high-level features

such as features generated by a neural network.

One of the interesting characteristics of BCL is that it

allows a flexible specification of the lattice space in which

the convolution operates. This is specified as lattice fea-

tures at each input point. Let L ∈ R
n×dl denote lattice

features at input points with dl denoting the dimensionality

of the feature space in which convolution operates. For in-

stance, the lattice features can be point position and color

(XY ZRGB) that define a 6-dimensional filtering space for

BCL. For standard 3D spatial filtering of point clouds, L is

given as the position (XY Z) of each point. Thus BCL takes

input features F and lattice features L of input points and

performs dl-dimensional filtering of the points.

3.2. Processing steps in BCL

As illustrated in Figure 2, BCL has three processing

steps, splat, convolve and slice, that work as follows.

Splat. BCL first projects the input features F onto the dl-
dimensional lattice defined by the lattice features L, via

barycentric interpolation. Following [1], BCL uses a per-

mutohedral lattice instead of a standard Euclidean grid for

efficiency purposes. The size of lattice simplices or space

between the grid points is controlled by scaling the lattice

features ΛL, where Λ is a diagonal dl × dl scaling matrix.

Convolve. Once the input points are projected onto the dl-
dimensional lattice, BCL performs dl-dimensional convolu-

tion on the splatted signal with learnable filter kernels. Just

like in standard spatial CNNs, BCL allows an easy specifi-

cation of filter neighborhood in the dl-dimensional space.

Slice. The filtered signal is then mapped back to the input

points via barycentric interpolation. The resulting signal

can be passed on to other BCLs for further processing. This

step is called ‘slicing’. BCL allows slicing the filtered sig-

nal onto a different set of points other than the input points.

This is achieved by specifying a different set of lattice fea-

tures Lout ∈ R
m×dl at m output points of interest.

All the above three processing steps in BCL can be writ-

ten as matrix multiplications:

F̂c = SsliceBconvSsplatFc, (1)

where Fc denotes the cth column/channel of the input fea-

ture F and F̂c denotes the corresponding filtered signal.

3.3. Properties of BCL

There are several properties of BCL that makes it par-

ticularly convenient for point cloud processing. Here, we

mention some of those properties:

• The input points to BCL need not be ordered or lie on

a grid as they are projected onto a dl-dimensional grid

defined by lattice features Lin.
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Figure 3: SPLATNet. Illustration of inputs, outputs and network architectures for SPLATNet3D and SPLATNet2D-3D.

• The input and output points can be different for BCL

with the specification of different input and output lat-

tice features Lin and Lout.

• Since BCL allows separate specifications of input and

lattice features, input signals can be projected into a

different dimensional space for filtering. For instance,

a 2D image can be projected into 3D space for filtering.

• Just like in standard spatial convolutions, BCL allows

an easy specification of filter neighborhood.

• Since a signal is usually sparse in high-dimension,

BCL uses hash tables to index the populated vertices

and does convolutions only at those locations. This

helps in efficient processing of sparse inputs.

Refer to [1] for more information about sparse high-

dimensional Gaussian filtering on a permutohedral lattice

and refer to [22] for more details on BCL.

4. SPLATNet3D for Point Cloud Processing

We first introduce SPLATNet3D, an instantiation of our

proposed network architecture which operates directly on

3D point clouds and is readily applicable to many impor-

tant 3D tasks. The input to SPLATNet3D is a 3D point

cloud P ∈ R
n×d, where n denotes the number of points

and d ≥ 3 denotes the number of feature dimensions in-

cluding point locations XY Z. Additional features are often

available either directly from 3D sensors or through pre-

processing. These can be RGB color, surface normal, cur-

vature, etc. at the input points. Note that input features F of

the first BCL and lattice features L in the network each com-

prises a subset of the d feature dimensions: df ≤ d, dl ≤ d.

As output, SPLATNet3D produces per-point predictions.

Tasks like 3D semantic segmentation and 3D object part

labeling fit naturally under this framework. With simple

techniques such as global pooling [31], SPLATNet3D can

be modified to produce a single output vector and thus can

be extended to other tasks such as classification.

Network architecture. The architecture of SPLATNet3D

is depicted in Figure 3. The network starts with a single

1 × 1 CONV layer followed by a series of BCLs. The

1 × 1 CONV layer processes each input point separately

without any data aggregation. The functionality of BCLs

is already explained in Section 3. For SPLATNet3D, we

use T BCLs each operating on a 3D lattice (dl = 3) con-

structed using 3D point locations XY Z as lattice features,

Lin = Lout ∈ R
n×3. We note that different BCLs can

use different lattice scales Λ. Recall from Section 3 that Λ
is a diagonal matrix that controls the spacing between the

grid points in the lattice. For BCLs in SPLATNet3D, we use

the same lattice scales along each of the X , Y and Z direc-

tions, i.e., Λ = λI3, where λ is a scalar and I3 denotes a

3 × 3 identity matrix. We start with an initial lattice scale

λ0 for the first BCL and subsequently divide the lattice scale

by a factor of 2 (λt = λt−1/2) for the next T − 1 BCLs.

In other words, SPLATNet3D with T BCLs use the follow-

ing lattice scales: (Λ0,Λ0/2, . . . ,Λ0/2
T−1). Lower lattice

scales imply coarser lattices and larger receptive fields for

the filters. Thus, in SPLATNet3D, deeper BCLs have longer-

range connectivity between input points compared to earlier

layers. We will discuss more about the effects of different

lattice spaces and their scales later. Like in standard CNNs,

SPLATNet allows an easy specification of filter neighbor-

hoods. For all the BCLs, we use filters operating on one-

ring neighborhoods and refer to the supp. material for de-

tails on the number of filters per layer.

The responses of the T BCLs are concatenated and then

passed through two additional 1× 1 CONV layers. Finally,

a softmax layer produces point-wise class label probabili-

ties. The concatenation operation aggregates information

from BCLs operating at different lattice scales. Similar

techniques of concatenating outputs from network layers at
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different depths have been useful in 2D CNNs [17]. All

parameterized layers, except for the last CONV layer, are

followed by ReLU and BatchNorm. More details about the

network architecture are given in the supp. material.

Lattice spaces and their scales. The use of BCLs in

SPLATNet allows easy specifications of lattice spaces via

lattice features and also lattice scales via a scaling matrix.

Changing the lattice scales Λ directly affects the resolu-

tion of the signal on which the convolution operates. This

gives us direct control over the receptive fields of network

layers. Figure 4 shows lattice cell visualizations for dif-

ferent lattice spaces and scales. Using coarser lattice can

increase the effective receptive field of a filter. Another way

to increase the receptive field of a filter is by increasing its

neighborhood size. But, in high-dimensions, this will sig-

nificantly increase the number of filter parameters. For in-

stance, 3D filters of size 3, 5, 7 on a regular Euclidean grid

have 33 = 27, 53 = 125, 73 = 343 parameters respec-

tively. On the other hand, making the lattice coarser would

not increase the number of filter parameters leading to more

computationally efficient network architectures.

We observe that it is beneficial to use finer lattices (larger

lattice scales) earlier in the network, and then coarser lat-

tices (smaller lattice scales) going deeper. This is consistent

with the common knowledge in 2D CNNs: increasing re-

ceptive field gradually through the network can help build

hierarchical representations with varying spatial extents and

abstraction levels.

Although we mainly experiment with XY Z lattices in

this work, BCL allows for other lattice spaces such as po-

sition and color space (XY ZRGB) or normal space. Us-

ing different lattice spaces enforces different connectivity

across input points that may be beneficial to the task. In

one of the experiments, we experimented with a variant of

SPLATNet3D, where we add an extra BCL with position and

normal lattice features (XY Znxnynz) and observed minor

performance improvements.

(x, y, z), I3 (x, y, z), 8I3 (nx, ny, nz), I3

Figure 4: Effect of different lattice spaces and scales.

Visualizations for different lattice feature spaces L =
(x, y, z), (x, y, z), (nx, ny, nz) along with lattice scales

Λ = I3, 8I3, I3. (nx, ny, nz) refers to point normals. All

points falling in the same lattice cell are colored the same.

5. Joint 2D-3D Processing with SPLATNet2D-3D

Oftentimes, 3D point clouds are accompanied by 2D im-

ages of the same target. For instance, many modern 3D sen-

sors capture RGBD streams and perform 3D reconstruction

to obtain 3D point clouds, resulting in both 2D images and

point clouds of a scene together with point correspondences

between 2D and 3D. One could also easily sample point

clouds along with 2D renderings from a given 3D mesh.

When such aligned 2D-3D data is present, SPLATNet pro-

vides an extremely flexible framework for joint processing.

We propose SPLATNet2D-3D, another SPLATNet instantia-

tion designed for such joint processing.

The network architecture of the SPLATNet2D-3D is de-

picted in the green box of Figure 3. SPLATNet2D-3D

encompasses SPLATNet3D as one of its components and

adds extra computational modules for joint 2D-3D process-

ing. Next, we explain each of these extra components of

SPLATNet2D-3D, in the order of their computations.

CNN1. First, we process the given multi-view 2D images

using a 2D segmentation CNN, which we refer to as CNN1.

In our experiments, we use the DeepLab [10] architecture

for CNN1 and initialize the network weights with those pre-

trained on PASCAL VOC segmentation [12].

BCL2D→3D. CNN1 outputs features of the image pixels,

whose 3D locations often do not exactly correspond to

points in the 3D point cloud. We project information from

the pixels onto the point cloud using a BCL with only splat

and slice operations. As mentioned in Section 3, one of

the interesting properties of BCL is that it allows for dif-

ferent input and output points by separate specifications of

input and output lattice features, Lin and Lout. Using this

property, we use BCL to splat 2D features onto the 3D lat-

tice space and then slice the 3D splatted signal on the point

cloud. We refer to this BCL, without a convolution opera-

tion, as BCL2D→3D as illustrated in Figure 5. Specifically,

we use 3D locations of the image pixels as input lattice fea-

tures, Lin = L2D ∈ R
m×3, where m denotes the num-

ber of input image pixels. In addition, we use 3D loca-

tions of points in the point cloud as output lattice features,

Lout = L3D ∈ R
n×3, which are the same lattice features

used in SPLATNet3D. The lattice scale, Λa, controls the

smoothness of the projection and can be adjusted according

to the sparsity of the point cloud.

2D-3D Fusion. At this point, we have the result of CNN1

projected onto 3D points and also the intermediate features

from SPLATNet3D that exclusively operates on the input

point cloud. Since both of these signals are embedded in

the same 3D space, we concatenate these two signals and

then use a series of 1× 1 CONV layers for further process-

ing. The output of the ‘2D-3D Fusion’ module is passed

on to a softmax layer to compute class probabilities at each

input point of the point cloud.
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2D Segmentations 3D Segmentation

Slice

Figure 5: 2D to 3D projection. Illustration of 2D to 3D pro-

jection using splat and sliceusingsplatandsliceoperations.

Given input features of 2D images, pixels are projected onto

a 3D permutohedral lattice defined by 3D positional lattice

features. The splatted signal is then sliced onto the points

of interest in a 3D point cloud.

BCL3D→2D. Sometimes, we are also interested in seg-

menting 2D images and want to leverage relevant 3D in-

formation for better 2D segmentation. For this purpose, we

back-project the 3D features computed by the ‘2D-3D Fu-

sion’ module onto the 2D images by a BCL2D→3D module.

This is the reverse operation of BCL2D→3D, where the input

and output lattice features are swapped. Similarly, a hyper-

parameter Λb controls the smoothness of the projection.

CNN2. We then concatenate the output from CNN1, input

images and the output of BCL3D→2D, and pass them through

another 2D CNN, CNN2, to obtain refined 2D semantic pre-

dictions. In our experiments, we find that a simple 2-layered

network is good enough for this purpose.

All components in this 2D-3D joint processing frame-

work are differentiable, and can be trained end-to-end. De-

pending on the availability of 2D or 3D ground-truth la-

bels, loss functions can be defined on either one of the two

domains, or on both domains in a multi-task learning set-

ting. More details of the network architecture are provided

in the supp. material. We believe that this joint process-

ing capability offered by SPLATNet2D-3D can result in bet-

ter predictions for both 2D images and 3D point clouds. For

2D images, leveraging 3D features helps in view-consistent

predictions across multiple viewpoints. For point clouds,

incorporating 2D CNNs help leverage powerful 2D deep

CNN features computed on high-resolution images.

6. Experiments

We evaluate SPLATNet on tasks on two different bench-

mark datasets of RueMonge2014 [36] and ShapeNet [44].

On RueMonge2014, we conducted experiments on the tasks

of 3D point cloud labeling and multi-view image labeling.

On ShapeNet, we evaluated SPLATNet on 3D part segmen-

tation. We use Caffe [23] neural network framework for all

the experiments. Full code and trained models are publicly

available on our project website1.

1http://vis-www.cs.umass.edu/splatnet

Table 1: Results on facade segmentation. Average IoU

scores and approximate runtimes for point cloud labeling

and 2D image labeling using different techniques. Runtimes

indicate the time taken to segment the entire test data (202

images sequentially for 2D and a point cloud for 3D).

Method Average IoU Runtime (min)

With only 3D data

OctNet [35] 59.2 -

Autocontext3D [14] 54.4 16

SPLATNet3D (Ours) 65.4 0.06

With both 2D and 3D data

Autocontext2D-3D [14] 62.9 87

SPLATNet2D-3D (Ours) 69.8 1.20

(a) Point cloud labeling

Method Average IoU Runtime (min)

Autocontext2D [14] 60.5 117

Autocontext2D-3D [14] 62.7 146

DeepLab2D [10] 69.3 0.84

SPLATNet2D-3D (Ours) 70.6 4.34

(b) Multi-view image labeling

6.1. RueMonge2014 facade segmentation

Here, the task is to assign semantic label to every point in

a point cloud and/or corresponding multi-view 2D images.

Dataset. RueMonge2014 [36] provides a standard bench-

mark for 2D and 3D facade segmentation and also inverse

procedural modeling. The dataset consists of 428 high-

resolution and multi-view images obtained from a street in

Paris. A point cloud with approximately 1M points is re-

constructed using the multi-view images. A ground-truth

labeling with seven semantic classes of door, shop, balcony,

window, wall, sky and roof are provided for both 2D images

and the point cloud. Sample point cloud sections and 2D

images with their corresponding ground truths are shown

in Figure 6 and 7 respectively. For evaluation, Intersection

over Union (IoU) score is computed for each of the seven

classes and then averaged to get a single overall IoU.

Point cloud labeling. We use our SPLATNet3D architec-

ture for the task of point cloud labeling on this dataset. We

use 5 BCLs followed by a couple of 1 × 1 CONV layers.

Input features to the network comprise of a 7-dimensional

vector at each point representing RGB color, normal and

height above the ground. For all the BCLs, we use XY Z
lattice space (L3D) with Λ0 = 64I3. Experimental results

with average IoU and runtime are shown in Table 1a. Re-

sults show that, with only 3D data, our method achieves an

IoU of 65.4 which is a considerable improvement (6.2 IoU

↑) over the state-of-the-art deep network, OctNet [35].

Since this dataset comes with multi-view 2D images, one

2535
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Input Point Cloud Ground truth SPLATNet3D SPLATNet2D-3D

Figure 6: Facade point cloud labeling. Sample visual results of SPLATNet3D and SPLATNet2D-3D.

could leverage the information present in 2D data for better

point cloud labeling. We use SPLATNet2D-3D to leverage

2D information and obtain better 3D segmentations. Ta-

ble 1a shows the experimental results when using both the

2D and 3D data as input. SPLATNet2D-3D obtains an aver-

age IoU of 69.8 outperforming the previous state-of-the-art

by a large margin (6.9 IoU ↑), thereby setting up a new state-

of-the-art on this dataset. This is also a significant improve-

ment from the IoU obtained with SPLATNet3D demonstrat-

ing the benefit of leveraging 2D and 3D information in a

joint framework. Runtimes in Table 1a also indicate that

our SPLATNet approach is much faster compared to tradi-

tional Autocontext techniques. Sample visual results for 3D

facade labeling are shown in Figure 6.

Multi-view image labeling. As illustrated in Section 5,

we extend 2D CNNs with SPLATNet2D-3D to obtain better

multi-view image segmentation. Table 1b shows the results

of multi-view image labeling on this dataset using different

techniques. Using DeepLab (CNN1) already outperforms

existing state-of-the-art by a large margin. Leveraging 3D

information via SPLATNet2D-3D boosts the performance to

70.6 IoU. An increase of 1.3 IoU from only using CNN1

demonstrates the potential of our joint 2D-3D framework in

leveraging 3D information for better 2D segmentation.

6.2. ShapeNet part segmentation

The task of part segmentation is to assign a part category

label to each point in a point cloud representing a 3D object.

Dataset. The ShapeNet Part dataset [44] is a subset of

ShapeNet, which contains 16681 objects from 16 cate-

gories, each with 2-6 part labels. The objects are consis-

tently aligned and scaled to fit into a unit cube, and the

ground-truth annotations are provided on sampled points on

the shape surfaces. It is common to assume that the category

of the input 3D object is known, narrowing the possible part

labels to the ones specific to the given object category. We

report standard IoU scores for evaluation of part segmenta-

tion. An IoU score is computed for each object and then

averaged within the objects in a category to compute mean

Input Ground truth SPLATNet2D-3D

Figure 7: 2D facade segmentation. Sample visual results

of SPLATNet2D-3D.

IoU (mIoU) for each object category. In addition to re-

porting mIoU score for each object category, we also report

‘class average mIoU’ which is the average mIoU across all

object categories, and also ‘instance average mIoU’, which

is the average mIoU across all objects.

3D part segmentation. We evaluate both SPLATNet3D

and SPLATNet2D-3D for this task. First, we discuss the ar-

chitecture and results with SPLATNet3D that uses only 3D

point clouds as input. Since the category of the input object

is assumed to be known, we train separate networks for each

object category. SPLATNet3D network architecture for this

taks is also composed of 5 BCLs. Point locations XY Z
are used as input features as well as lattice features L for

all the BCLs and the lattice scale for the first BCL layer

is Λ0 = 64I3. Experimental results are shown in Table 2.

SPLATNet3D obtains a class average mIoU of 82.0 and an

instance average mIoU of 84.6, which is on-par with the

best networks that only take point clouds as input (Point-
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Table 2: Results on ShapeNet part segmentation. Class average mIoU, instance average mIoU and mIoU scores for all the

categories on the task of point cloud labeling using different techniques.

#instances 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271

class instance air- bag cap car chair ear- guitar knife lamp laptop motor- mug pistol rocket skate- table

avg. avg. plane phone bike board

Yi et al. [44] 79.0 81.4 81.0 78.4 77.7 75.7 87.6 61.9 92.0 85.4 82.5 95.7 70.6 91.9 85.9 53.1 69.8 75.3

3DCNN [31] 74.9 79.4 75.1 72.8 73.3 70.0 87.2 63.5 88.4 79.6 74.4 93.9 58.7 91.8 76.4 51.2 65.3 77.1

Kd-network [25] 77.4 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3

PointNet [31] 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

PointNet++ [33] 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

SyncSpecCNN [45] 82.0 84.7 81.6 81.7 81.9 75.2 90.2 74.9 93.0 86.1 84.7 95.6 66.7 92.7 81.6 60.6 82.9 82.1

SPLATNet3D 82.0 84.6 81.9 83.9 88.6 79.5 90.1 73.5 91.3 84.7 84.5 96.3 69.7 95.0 81.7 59.2 70.4 81.3

SPLATNet2D-3D 83.7 85.4 83.2 84.3 89.1 80.3 90.7 75.5 92.1 87.1 83.9 96.3 75.6 95.8 83.8 64.0 75.5 81.8

SP
LA

TN
et

2D
-3

D
   

 S
PL

A
TN

et
3D

   
   

   
   

   
G

T

Figure 8: ShapeNet part segmentation. Sample visual re-

sults of SPLATNet3D and SPLATNet2D-3D.

Net++ [33] uses surface normals as additional inputs).

We also adopt our SPLATNet2D-3D network, which op-

erates on both 2D and 3D data, for this task. For the joint

framework to work, we need rendered 2D views and corre-

sponding 3D locations for each pixel in the renderings. We

first render 3-channel images: Phong shading [30], depth,

and height from ground. Cameras are placed on the 20 ver-

tices of a dodecahedron from a fixed distance, pointing to-

wards the object’s center. The 2D-3D correspondences can

be generated by carrying the XY Z coordinates of 3D points

into the rendering rasterization pipeline so that each pixel

also acquires coordinate values from the surface point pro-

jected onto it. Results in Table 2 show that incorporating 2D

information allows SPLATNet2D-3D to improve noticeably

from SPLATNet3D with 1.7 and 0.8 increase in class and in-

stance average mIoU respectively. SPLATNet2D-3D obtains

a class average IoU of 83.7 and an instance average IoU of

85.4, outperforming existing state-of-the-art approaches.

On one Nvidia GeForce GTX 1080 Ti, SPLATNet3D

runs at 9.4 shapes/sec, while SPLATNet2D-3D is slower at

0.4 shapes/sec due to a relatively large 2D network operat-

ing on 20 high-resolution (512 × 512) views, which takes

up more than 95% of the computation time. In comparison,

PointNet++ runs at 2.7 shapes/sec on the same hardware2.

Six-dimensional filtering. We experiment with a

variant of SPLATNet3D where an additional BCL with

6-dimensional position and normal lattice features

(XY Znxnynz) is added between the last two 1 × 1
CONV layers. This modification gave only a marginal

improvement of 0.2 IoU over standard SPLATNet3D in

terms of both class and instance average mIoU scores.

7. Conclusion

In this work, we propose the SPLATNet architecture

for point cloud processing. SPLATNet directly takes point

clouds as input and computes hierarchical and spatially-

aware features with sparse and efficient lattice filters. In

addition, SPLATNet allows an easy mapping of 2D infor-

mation into 3D and vice-versa, resulting in a novel net-

work architecture for joint processing of point clouds and

multi-view images. Experiments on two different bench-

mark datasets show that the proposed networks compare

favorably against state-of-the-art approaches for segmenta-

tion tasks. In the future, we would like to explore the use of

additional input features (e.g., texture) and also the use of

other high-dimensional lattice spaces in our networks.
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3000 (in consistence with our experiments).

2537

https://github.com/charlesq34/pointnet2
https://github.com/charlesq34/pointnet2


References

[1] A. Adams, J. Baek, and M. A. Davis. Fast high-dimensional

filtering using the permutohedral lattice. Computer Graphics

Forum, 29(2):753–762, 2010. 3, 4

[2] V. Aurich and J. Weule. Non-linear Gaussian filters perform-

ing edge preserving diffusion. In DAGM, pages 538–545.

Springer, 1995. 3

[3] S. Bai, X. Bai, Z. Zhou, Z. Zhang, and L. J. Latecki. GIFT:

a real-time and scalable 3D shape search engine. In Proc.

CVPR, 2016. 2

[4] D. Boscaini, J. Masci, S. Melzi, M. M. Bronstein, U. Castel-

lani, and P. Vandergheynst. Learning class-specific descrip-

tors for deformable shapes using localized spectral convolu-

tional networks. In Proc. SGP, 2015. 2

[5] D. Boscaini, J. Masci, E. Rodolà, and M. M. Bronstein.
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