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Abstract

Time-of-flight depth imaging and transient imaging are

two imaging modalities that have recently received a lot of

interest. Despite much research, existing hardware systems

are limited either in terms of temporal resolution or are

prohibitively expensive. Arrays of Single Photon Avalanche

Diodes (SPADs) promise to fill this gap by providing higher

temporal resolution at an affordable cost. Unfortunately

SPAD arrays are to date only available in relatively small

resolutions.

In this work we aim to overcome the spatial resolution

limit of SPAD arrays by employing a compressive sens-

ing camera design. Using a DMD and custom optics, we

achieve an image resolution of up to 800×400 on SPAD Ar-

rays of resolution 64×32. Using our new data fitting model

for the time histograms, we suppress the noise while ab-

stracting the phase and amplitude information, so as to re-

alize a temporal resolution of a few tens of picoseconds.

1. Introduction

Time-resolved imaging of light propagation effects has

in recent years become a major research direction. From

the now ubiquitous continuous wave ToF and RGB-D cam-

eras, to more complex analysis of transient effects such as

light-in-flight imaging [1, 47, 23], looking around the cor-

ner [21, 46, 24], or imaging in scattering media [14, 34, 25]

the applications of high speed light transport analysis are

vast.

Unfortunately, work on these problems has been ham-

pered by hardware limitations. On the consumer end, in-

expensive time of flight cameras are available for a few

hundred dollars, but they provide a limited temporal resolu-

tion owing to modulation frequencies of only 10-130 MHz.

On the high end, the combination of fast lasers and streak

cameras provides temporal resolutions in the single digit pi-

cosecond range, but at a cost that is 2-3 orders of magni-

tude higher. Recently, single photon avalanche diodes have

started to emerge as an alternative hardware solution that

fills the gap both in terms of resolution and cost. SPADs

are also attractive for their ability to detect very small sig-

nals, i.e. single photons. Unfortunately, image sensors built

around SPAD technologies currently still suffer from low

spatial resolution (e.g. 64× 32 pixels).

In our work we aim to overcome the spatial resolution

limit of SPAD arrays while preserving and even enhanc-

ing the time resolution by developing a compressive sensing

SPAD camera. Since SPADs work with small signals that

are inherently noisy, and compressive sensing is well known

to amplify noise, devising such a compressive SPAD cam-

era not only requires significant innovation on the camera

hardware, but also a number of algorithmic contributions.

Specifically, our contributions include

• the design and prototyping of a compact optical system

containing imaging and re-imaging optics, as well as a

DMD-based active modulation component.

• fill factor improvements of conventional SPAD sensors

to enable the compressive sensing scenario by embed-

ding a diffractive micro lens array (DMLA) in front of

the bare sensors.

• inverse problem formulation to reconstruct high reso-

lution 3D volumes from captured SPAD data.

• proposing a temporal PSF model based on the RC gate

switching behavior of the electronics, and using it to

deconvolve and sharpen the time profile of the tran-

sient image, achieving a temporal resolution in the

range of tens of picoseconds.

• analysis and correction for phase distortions on the

SPAD array caused by on-chip signal propagation dif-

ferences.

2. Related Work

Time-of-Flight Cameras Continuous wave ToF cameras

use the correlation between a sinusoidally modulated illu-

mination source and a reference signal to measure the time

delay due to light propagation [41, 38]. These types of cam-

eras have been widely adapted in computer vision in the

form of depth and RGB-D cameras. Recently, researchers

have found new and exciting uses of this type of hardware

beyond simple depth imaging, including transient imaging
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Figure 1. Schematic of our compressive transient imaging system. The scene is illuminated by a picosecond laser with a wavelength

of 655 nm (a). Light reflected from the scene is imaged onto a digital micromirror array (c) using an imaging lens (b) with a focal length

of 85 mm. A TIR prism (d) spatially separates the reflected light from the incident light, and an inverted 0.9x telecentric lens (e) is used

to re-image the DMD onto a 64×32 SPAD array (f). An additional diffractive microlens array is employed in front of the SPAD array to

overcome its limited pixel fill ratio. The focal length of the microlens array is designed as 1.035 mm for the illumination wavelength.

(e.g. [28, 23, 33]) and other uses (e.g. [44, 22, 43, 32]). As

the modulation frequencies are usually in the range of 10-

130 MHz, time resolutions and depth resolution are limited

to the range of nanoseconds and centimeters, respectively.

Transient and Light-in-Flight Imaging Transient imag-

ing started with the work by Abramson [1, 3], who utilized

holographic technique to optically record and reconstruct

the wavefront of a picosecond pulse. Due to the essential

limitation of a holographic setup, only simple wavefronts

were captured, but the methods were able to visualize ef-

fects such as reflection, interference, and focusing [2, 3] in

2D planes.

In recent years, ultra-fast cameras (e.g. streak cam-

era) have been applied in the field of transient imaging

for the investigations of looking around corners [21, 46]

and the femto-photography [47]. Unfortunately, this setup

suffers from very high cost, bulky hardware, and very

long acquisition times. Low-budget transient imaging so-

lutions [23, 33], using the continuous wave ToF cameras

mentioned above, operate at the opposite end of the spec-

trum with significantly lower time resolution and cost.

SPAD Arrays Since ultrafast processes usually suffer

from low photon counts, highly light sensitive, very fast

camera equipment is needed for imaging such phenomena.

In recent years, single-photon avalanche diodes (SPADs)

have emerged as a viable technology. Although more ex-

pensive than ToF cameras, they are still an order of mag-

nitude less expensive than streak cameras. To enable a

SPAD array to record an ultrafast process, time-correlated

single photon counting (TCSPC) [35, 39, 31] is intro-

duced [17, 18, 42, 37], and has been widely applied in the

area of fluorescence lifetime imaging. The idea behind this

technique is similar to the equivalent-time sampling prin-

ciple used in oscilloscopes. By repetitively measuring the

time duration between a laser excitation pulse and the cor-

responding transient photon arrival, it is able to achieve typ-

ically sub-nanosecond resolution.

One limitation of current SPAD arrays is the low spatial

resolution; the best available cameras today are in the low

kilopixel range. To overcome this limitation, researchers

have proposed to use a 2D translation setup to shift a 2D

SPAD array with a fixed lens [42], or use a galvo mirror

scenario to scan a 1D line SPAD camera [37]. Although

these state-of-the-art methods yield a reasonable spatial res-

olution, their systems are bulky and the processes are time

consuming. Thus, we seek to investigate in a computational

imaging solution that not only maintains the advantages of

SPAD sensor — the ultra high temporal resolution and the

single photon level sensitivity, but also enhances its spatial

resolution.

Compressive Sensing and Imaging After being first pro-

posed in the 1970s [8], compressive sensing (CS) theory

was gradually developed over the next few decades [29, 19,

40]. The mathematical foundation of CS was first laid out

by Donoho [10] and Candes et al. [6] and can be traced fur-
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ther back to sparse recovery works [13, 12, 11]. After the

single pixel camera [15] had been invented, it became possi-

ble to replace conventional sampling and reconstruction op-

erations with a more general linear measurement schemes

coupled with optimization methods [9, 16, 36]. CS ap-

proaches are particularly beneficial in scenarios where high

resolution sensor arrays are either technologically infeasible

or prohibitively expensive, as is the case for SPAD sensors.

For instance, a mask shifting camera [48] and a CS-based

infra-red camera [7] have been realized. These works in-

spire us to apply CS approach into transient or depth imag-

ing to acquire high frequency spatial information.

3. System Overview

Our imaging system is an integration of optics, mechan-

ics, electronics, and computation, as illustrated in Figure 1.

The key components of the the hardware setup are a SPAD

array with a resolution of (n=64)×(m=32) pixels that pro-

vides a high temporal resolution in combination with illu-

mination from a picosecond laser, as well as a Digital Mi-

cromirror Device (DMD) in combination with re-imaging

optics that achieve improved spatial resolution through a

compressive sensing approach. In the following we explain

the high level operation of the system by examining the spa-

tial and temporal resolution characteristics.

The Temporal Resolution of the system is determined

by the ability to measure time delays between the emission

of a pulse by the the picosecond laser, and the time the re-

flected light is received at the SPAD array. For a given ex-

posure interval, called the gate width, which can be as short

as 200ps, each SPAD pixel reports whether or not a photon

was received during this time interval. Moreover, the start

time of the exposure interval can be shifted with a preci-

sion of 20ps. By repeatedly emitting pulses from the laser

while adjusting this time offset, we can sample the transient

propagation of light in the scene. In our case, the SPAD

array was operated in TCSPC mode with 20ps shift per cir-

cle and 830ps gate width to improve the light efficiency of

the system compared to the shortest gate width of 200ps.

Although this gate width should normally limit the tempo-

ral resolution of the system, we show in Section 4.3 how to

suppress the low-pass effect of the gate signal and recover

a temporal resolution in the 10s of picoseconds. We note

that, since each measurement is a binary event, measure-

ments need to be repeated multiple times to reduce noise

and obtain estimates of intensity for each phase delay.

The Spatial Resolution of the system is primarily deter-

mined by the resolution of the DMD instead of the much

lower resolution of the SPAD array. Due to the re-imaging

optics shown in Figure 1, the DMD is in a conjugate plane

with the image sensor, so that a block of neighboring DMD

pixels is mapped onto a single SPAD pixel. By cycling

through random binary patterns on the DMD, we can imple-

ment a compressive sensing super-resolution scheme where

each SPAD pixel can be interpreted as a single pixel cam-

era [5] responsible for a narrow part of the total field of

view. Due to some perspective foreshortening, as well as

incomplete utilization of the DMD area, the final spatial res-

olution of our system is N = 800×M = 400.

Note that in the above description, we assume that each

SPAD pixel integrates over a large block DMD pixels. This

only holds if the fill factor of the SPAD array approaches

one, i.e. if the light sensitive area of each pixel is as big as

the pixel spacing. Unfortunately, this does not hold true for

commercially available SPAD arrays today. Our SPAD ar-

ray has a pixel spacing of 150µm, but the active area is only

30µm squared. To overcome this challenge, we designed

a diffractive microlens array that focuses the light from a

block of DMD pixels onto the active area of a SPAD pixel.

4. Model and Optimization

4.1. Observation Model

As mentioned in the previous section, we assume a

SPAD array with n×m pixels and seek to reconstruct spa-

tially super-resolved transient or depth images with a reso-

lution of N × M with N = pn,M = pm. At each pixel,

the measurement procedure cycles through T phase offsets,

and for each offset K measurements are taken. With this

setup, each SPAD pixel is essentially a p × p single pixel

camera similar to the work by Duarte et al. [15]. As such,

the measurements from each SPAD pixel could in principle

be reconstructed independently into a transient superpixel,

although tiling artifacts must then be addressed.

Thus, we can represent the captured data of a high reso-

lution depth image or a transient frame as follows:

Y = Ψ(X), (1)

where Y ∈ RK×T×n×m is the observed 4D data after mod-

ulation, X ∈ RT×N×M is the 3D signal under evaluation,

and Ψ is an operator that maps the random patterns to indi-

vidual pixels at each layer.

Instead of assuming sparsity in the transient image it-

self, we reasonably assume the gradient distributions to be

sparse. This leads to a 3D total variation (TV) regularizer,

with different weights λ1,2 and λ3 for the two spatial di-

mensions and the temporal dimension, respectively:

X̂ =argmin
X

1

2
‖Ψ(X)− Y ‖22 +

∑

i

λiDi(X), (2)
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with
{

D1,2(X) = ‖∇sX‖1

D3(X) = ‖∇τX‖1
. (3)

Here, D1,2 and D3 represent the total variation in the

spatial domain and temporal domain, respectively. Al-

though the TV regularizer ties together all the N ×M pix-

els in the output image, we choose to split the problem

such that each transient superpixel is reconstructed inde-

pendently with a TV prior, and then the TV regularization

across the superpixels is enforced separately. This choice

allows for a highly parallelized implementation of the re-

construction algorithm.

4.2. Reconstruction Algorithm

We apply a modified version of TVAL3 [30] to recon-

struct a spatially super-resolved depth or transient image

from the captured data. Note that the same method can also

be used to simply reconstruct a stationary intensity image

by integrating along the time axis and setting λ3 = 0.

Solving the optimization problem, we can rewrite (2) as

X̂ = argmin
X,w

Σi‖wi‖1

s.t.

{

Di(X) = ‖wi‖1
1

2
‖Ψ(X)− Y ‖22 < ǫ,

(4)

which results in the following Augmented Lagrangian:

L{w,X,σ, δ} = Σi‖wi‖1

− σT (D(X)−w)− δT (Ψ((X)− Y ))

+
β

2
‖D(X)−w‖22 +

ζ

2
‖Ψ((X)− Y )‖22.

(5)

We seek to minimize the above objective using an alter-

nating TVAL3 solver. We alternate between updating Xk,

wk, and the Lagrangian multipliers σ and δ.

As is illustrated in Algorithm 1, we firstly fix wk to up-

date Xk+1 by doing a gradient decent to L{w,X,σ, δ}.

Hence, Xk+1 is updated as:

Xk+1 = Xk − α∂XL{w,σ, δ,β, ζ}. (6)

Where α is obtained by Amijo’s line search[20]. We then

further derive wk+1 by a shrinkage process with Xk+1.

The Lagrangian multipliers σ and δ are updated by:

{
σk+1 = σk − β(D(Xk+1)−wk+1)

δk+1 = δk − ζ(Ψ(Xk+1)− Y ).
(7)

This process is iterated until convergence.

For details of minimizing the Augment Lagrangian ob-

jective using our modified TVAL3 algorithm, refer to the

supplementary document. We further use a VST-based de-

noising method [4] to denoise the results and correct the

Algorithm 1: Reconstruction Algorithm

Input: Ψ, Y , opts

Result: X̂

1 while ‖Xp −X‖2 > tol do

2 Step 1. Xp = Xk

3 Step 2. Fix wk, do Gradient Descent

4 to L{wk,X,σ, δ}
5 a) compute step length τ > 0 by BB rules

6 b) determine Xk+1 by

7 Xk+1 = Xk − ατ∂XL{wk,Xk,σk, δk}

8 Step 3. compute wk+1 by shrinkage

9 wk+1 = shrink(D(Xk+1)− σ/β, 1/β)

10 Step 4. update Lagrangian Multipliers by

11 σk+1 = σk − β(D(Xk+1)−wk+1)

12 δk+1 = δk − ζ(Ψ(Xk+1)− Y )

final depth image or transient frames. On average, the re-

construction takes around 10 minutes. Notice that this cor-

rection uses a calibrated phase delay map which is to be

discussed in next section.

4.3. Data Preprocessing

Calibrating Hot pixels and Background Noise Com-

pressive sensing is well-known to act as a noise amplifier,

since it exhibits more sensitivity to signal changes com-

pared to direct scanning approaches. Although the captured

3D datasets allow for efficient processing in both spatial and

temporal dimensions [18], the dark counts and the back-

ground noise will heavily affect the reconstruction quality.

A part of the raw data captured with one random pattern is

shown in Figure 2a. We observe that it is heavily corrupted

by dark counts and ambient light, which result from the hot

pixels of the sensor and the low contrast ratio of the DMD,

respectively.

To solve this problem, we first obtain the average am-

bient light plus dark-counts rates (denoted as HB) for all

pixels as shown in Figure 2b, similar to the work done by

Shin [42]. Figure 2c indicates that the level of dark counts

can reach around 1/3 of the signal at a few positions of hot

pixels. After subtracting HB, the noise in temporal domain

can be drastically suppressed.

Sharpening with Temporal PSF Model To improve the

temporal resolution[45] of our reconstructions we next

model the temporal PSF of the acquisition system, and use

it to fit/deconvolve the sensor data before solving the com-

pressed sensing problem from Section 4.2.

The laser source generates pulses with a specific time

profile that is well approximated as a Gaussian function.

Notice that the laser pulse duration setting (i.e. 80ps in our
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Figure 2. Raw data and the pre-processing. (a) Part of the raw

data under the first random pattern. (b) Calibrated hot pixels plus

background noise for each frame. (c) Processing of abstracting

phase and amplitude information through our fitting model. (d)

Time histogram of one pixel of (a) and its dark counts and back-

ground noise. After pre-processing, the clean time histogram(red

curvature) is shown. Scale bars in (a) and (b): 10mm

experiments) is significantly shorter than the time bin du-

ration ∆ = 830ps of the SPAD camera. Considering the

distortion of the SPAD’s gate signal, the time jitter of the

synchronizing signal, and the convolution of the gate signal

and the laser pulse, the received time histogram of the sig-

nals has a FWHM of around 1ns. Due to the high frequency

of the gate signal, the response of the signal should be dis-

torted close to a resistorcapacitor circuit (RC) response, as

shown in Figure 2c. Partial high frequency components of

the gate signal are cut off with a Gaussian low pass filter

(σf = 5, kernel size=30, unit: 20ps). The parameters of

R, C and the Gaussian filter are global and manually set to

obtain Π(for more details, refer to the supplementary docu-

ment). The final model for the temporal PSF of the system

is shown in Figure 2d.

With this temporal PSF model we can remove the low-

pass filtering effect of the gate signal from the raw data be-

fore solving the compressive sensing problem.

Specifically, we represent the sharpened sensor data Yi

for each pixel i as a Gaussian G(t;A, µ) = Ae−
(t−µ)2

2σ2 ,

where the parameters A, µ are determined by solving the

parametric deconvolution problem

min
A,µ

‖G(t;A, µ) ⋆Π(t)− Ŷ ‖22, (8)

and Ŷ is the raw sensor data. As we demonstrate in the ex-

periments, this parametric deconvolution is robust despite

the large size of the large duration of the gate signal com-

pared to the pulse width of the laser, so that we can achieve

temporal resolutions in the tens of picoseconds.

5. Hardware Details

Figure 1 illustrates the schematic of our imaging tech-

nique that mainly entails a picosecond laser source for il-

lumination, a programmable optical device for the modula-

tion of high frequency spatial information, multiple auxil-

iary lenses for imaging and re-imaging, and a SPAD sensor

array for detection.

Illumination and Detection We used an MPD-SPC3

SPAD array as the detector. The picosecond laser source

(PicoQuant LDH P-650), with the center wavelength of

655nm and a peak power of 360mW (pulse energy 40pJ),

was operated at around 80ps pulse duration with 50MHz

repetition rate (triggered by the SPAD camera). The SPAD

array was operated in TCSPC mode with 20ps shift per cyr-

cle and 830ps gate width. We set the integration time as

52µs and summed up 1280 frames before read out. We in

total sent around 3.3 million pulses per frame under one

pattern and received a maximum of ∼40-60 photons per

pixel. The laser beam was scattered by a diffuser and re-

concentrated by a 30mm biconvex lens to illuminate the

scene. The capture process including background calibra-

tion together lasted around 9 minutes.

We note that if we use a laser source with 40nJ or higher

pulse energy and with 450nm center wavelength, the cap-

ture process can theoretically be completed within 1s. Al-

though such a high powered laser could be dangerous when

collimated, the laser in our setup is diffused into a spotlight,

such that with proper engineering it can be safe.

Auxiliary Optics We used a Canon 85mm lens as the

imaging lens. At its focal plane, the images were modulated

by a digital micro mirror device (DMD, TI DLP4500). We

used telecentric architectures [26] and placed a TIR-prism

(Young Optics) in front of the DMD. An inversed Edmund

Platinum 0.9X double-side telecentric lens was applied as

the reimaging lens. Eventually, we achieve a spatial reso-

lution improvement by a factor of 12.5. For more details,

please refer to supplementary document.

Diffractive Microlens Array Our designed DMLA has

a focal length of 1.035mm and works in a finite conjugate
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Figure 3. Calibrated spatial variant phase delay map.

configuration [27]. It was carefully aligned with the SPAD

sensor using FINEPLACER femto. With this process, we

managed to improve the fill factor from 3.14% to 52.87%.

For more details, please refer to supplemental document.

Calibrating Spatially Variant Behavior of SPAD array

We discovered that our SPAD array suffers from a spatial

variant phase delay of the captured data. In other words,

there exist different time delays for the gate signals corre-

sponding to each pixel, presumably due to differences in on-

chip signal travel times. One possible reason is that when

the SPAD array is operated at TCSPC mode, the picosec-

ond level phase shift per cycle results in a more sensitive

behavior of the trace length in electronics(either SPAD sen-

sor chip or peripheral circuit). We use a whiteboard that

is placed ∼1m away to calibrate the spatial variant phase

delay of the SPAD sensor. Figure 3 visualizes of the recon-

structed high resolution spatial variant phase delay. Fortu-

nately, the fixed spatial variant behavior will not influence

the reconstruction quality and will only cause a fixed phase

offset that can be subtracted from the final reconstructions.

System Workflow During the capture process, first a ran-

dom pattern frame is sent to DLP4500, followed by a trigger

signal to display the pattern on the DMD. Once the DMD

shows the pattern, the SPAD array is used to capture a se-

quence of data frames. The SPAD array triggers the emis-

sion of laser pulses and then starts its own photon integra-

tion with a fixed time offset. After sufficient frames have

been captured for a given phase offset, the SPAD camera

shifts the gate window (i.e. 20ps delay regarding the rising

edge of the clock signal) and captures another sequence of

frames until covering all the phases. After all the data has

been captured, it is transferred back to the controlling sys-

tem. The same process then continues with a new DMD

pattern, until all patterns have been covered (i.e. 100 pat-

terns in our setting, CS ratio 0.64). A work flow diagram

and detailed explanation are provided in the supplementary

document.

6. Results and Analysis

Spatial Resolution Analysis In order to visualize the im-

provement of spatial resolution, we capture a stand UASF

1951 passive resolution chart that is placed ∼1m away from

the imaging lens.

(a) Recovered data

(b) Raw data

Figure 4. Visualization of spatial resolution improvement

tested on a standard resolution chart. (a) Reconstructed inten-

sity image. (b) The directly up-sampled summation of raw data

under the first random pattern over time axis. Scale bars:10mm

Figure 4b shows that the direct up-sampled summation

of raw data not only suffers from low resolution but also

from heavy noise. The area marked by the green rectangle

cannot be resolved. In comparison, our reconstructed in-

tensity image indicates a significant improvement in spatial

resolution at least 8 times as shown in Figure 4a, even the

fine lines marked by the red rectangle can be distinguished.

50
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mma
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c

d

Figure 5. Experimental reconstructed depth image and inten-

sity image. (a) Reconstructed depth image. (b) Reconstructed

intensity image. (c) The direct up-sampled summation of raw data

under the first random pattern over time axis. (d) Photograph of

the setup while capturing the teapot scene. Scale bars: 10mm

Depth Imaging and Intensity Imaging We start from a

simple example of capturing a teapot, with the results pre-

sented in Figure 5. The 3D printed tea pot is placed ∼1m
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Figure 6. Experimental reconstructed depth image and intensity image. (a) Reconstructed depth image. (b) Vertical cross section plot

of reconstructed depth image, marked with a red dash line in (a). (c) Reconstructed intensity image. (d) The direct up-sampled summation

of raw data under the first random pattern over time axis and scene (e) Similar data for a different face model. Scale bars: 10mm

away and has a height of approximately 6cm, as shown in

Figure 5d. As can be seen, the reconstructed depth image

and intensity image exhibit details that are indistinguish-

able in raw data, for instance the edges of the teapot handle

and the teapot body. Note that the dark area on the depth

image is due to a fact that the phase of reflected light by

the stand under the teapot is below the front depth thresh-

old. Figure 6 presents the experimental results of capturing

a 3D printed human face model. The visualization of the

direct up-sampled summation of raw data is quite noisy and

highly corrupted by dark counts. With the sharpening pro-

cess from Section 4.1, we mostly suppress the noise espe-

cially the dark counts in both spatial and temporal domain.

In the experiment, we show the ability to distinguish the

details of a 3D printed human face model whose total width

is 6cm only. In this configuration, we have achieved a depth

resolution of millimetres scale. To further explore the ca-

pability of distinguishing fine details, we use a more com-

plex model (Einstein by Artur Loewenthal from 1930). The

printed model has a total width of 12cm. The depth image

and intensity image (Figure 6e) validate that after our re-

construction the details even the mustache under the nose

can be visually distinguished. Note that the physical height

difference between the mustache and the lip is only a few

millimetres.

Figure 7 presents the results of capturing light-in-flight.

As can be seen in the last image of Figure 7, milky water

fills up the bottom two thirds of the glass pipe, while the top

third is filled with air. We can observe an interface between

the two illuminated parts. Light propagates from the left in

this scattering medium and reflects both at the side walls of

the pipe and in a mirror at the end of the pipe.

Throughout the sequence of time steps, we can see a

main pulse propagating with a width of about 20mm. Given

the speed of light in water, this corresponds to a pulse dura-

tion of ca. 80ps, which matches well with the physical pa-

rameters of the used laser source. This result shows that the

sharpening process from Section 4.3, which acts only on the

time axis of the transient image, also produces results that

are meaningful and consistent along the spatial dimensions.

From 0ps to 200ps, the scattering effect turns more sig-

nificant and the ’tail’ gradually expands away from the main

light beam. At the same time, the main light beam contin-

ues to decay. At 400ps, the scattered ’tail’ starts reaching

the interface of the milky water and the photons travel out

of the milky water. The photons escaping from the milky

water become invisible because the scattering of air is very

small and so no photons are scattered towards the camera.

At 700ps, the photons traveling out of the milky water are

reflected back by the internal surface of the glass pipe. Part

of the reflected light reaches the interface of milky water

again and emits a bright line at 800ps. Note that the light

propagates 1.33 times faster in the air than in the milky wa-

ter, resulting in fact from 700ps to 800ps the light disap-

pears faster in the air. Refer to the supplementary video and

digital versions of the images for better visualization.

Transient or Light-in-flight Imaging Figure 8 presents

another result for capturing a transient scene. A cube and a

triangular pyramid are placed ∼1m away from the imaging

system. Both of them have an edge length of 3cm. We also

put two mirrors in the scene, shown in Figure 8.

From 0ps to 240ps, a wavefront passes over the objects,

resulting first in a gradual increase and then a gradual de-
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800ps
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Figure 7. Compressive light-in-flight imaging. From left to right

and from top to bottom are the selected frames of our reconstructed

light-in-flight video stream. We here present one frame of every 5

frames. The light travels via a glass pipe filled with 2/3 of milky

water as shown in the top view of the scene. Scale bars: 10mm

crease of their illumination. Later, the light propagates from

the objects to the right mirror and then is reflected to be cap-

tured by the sensor. At 320ps, the light reflected by the left

mirror starts reaching the sensor. As the light keeps on prop-

agating, more light is reflected from the left mirror and the

right side starts decaying. After 400ps, the light has prop-

agated away from the right mirror and continues to hit the

left mirror. From 320ps to 400ps, we can tell the distance of

the object from the left mirrors is a little bit larger than the

right side, which is in agreement with the scene. Overall,

we have successfully captured and reconstructed the high

resolution light propagation indicating the light hitting the

objects and bouncing back by the mirrors at two sides. Re-

fer to the supplementary video for better visualization.

7. Conclusion

In conclusion, we have demonstrated the use of SPAD

arrays in a compressive sensing system for transient imag-

ing and depth images. Our approach for the first time over-

comes the spatial resolution limit of SPAD arrays with a

fast capturing process without mechanical scanning. The

0ps

80ps

400ps

480ps

560ps160ps

240ps 640ps

320ps Scene

Figure 8. Compressive transient imaging. From left to right and

from top to bottom are the selected frames of our reconstructed

light-in-flight video stream. We here present one frame of every 4

frames. The light illuminates the scene and reflected by 2 mirrors

as shown in the scene. Scale bars: 10mm

achieved temporal resolution lies in the range of tens of pi-

coseconds and thus surpasses that achieved with common

time-of-flight cameras.

In terms of optical design, we have increased the fill fac-

tor of the SPAD array by prototyping a DMLA in front of

it. In addition, the DMD’s telecentric architecture is applied

in our imaging path to enable a great degree of freedom to

modulate the light. On the computational side, we devise

a combination of compressed sensing reconstruction with

model-based temporal sharpening to counteract the low-

pass nature of the SPAD gate signal. We further formu-

late an optimization that takes account of the edge effect of

volumes. The combination of these approaches yields high

quality intensity image, depth image and transient frames

with time resolutions of tens of picoseconds.
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