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Abstract

As more and more personal photos are shared online,

being able to obfuscate identities in such photos is becom-

ing a necessity for privacy protection. People have largely

resorted to blacking out or blurring head regions, but they

result in poor user experience while being surprisingly in-

effective against state of the art person recognizers [17]. In

this work, we propose a novel head inpainting obfuscation

technique. Generating a realistic head inpainting in social

media photos is challenging because subjects appear in di-

verse activities and head orientations. We thus split the task

into two sub-tasks: (1) facial landmark generation from im-

age context (e.g. body pose) for seamless hypothesis of sen-

sible head pose, and (2) facial landmark conditioned head

inpainting. We verify that our inpainting method generates

realistic person images, while achieving superior obfusca-

tion performance against automatic person recognizers.

1. Introduction

Social media have brought about large-scale sharing of

personal photos. While providing great user convenience,

such a dissemination can pose privacy threats on users. It

is essential to grant users an option to obfuscate themselves

out of these photos. A good obfuscation method for social

media photos should satisfy two criteria: naturalness and

effectiveness. For example, putting a large black box over a

person may be an effective obfuscation method, but would

not be pleasant enough to share with friends.

Previous work on visual content obfuscation can be

grouped into two categories: (1) target-specific and (2)

target-generic. Some papers have proposed target-specific

obfuscations, ones that are specialized against specific tar-

get machine systems, typically relying on adversarial exam-

∗Equal contribution.

✔ ✔ ✘
Figure 1: Our obfuscation method based on head inpainting

generates much more natural patterns than common tech-

niques like blurring, but still results in a more effective iden-

tity obfuscation against a recognizer.

ples [18, 23]. They yield nearly perfect identity protection

with imperceptible changes on the input, but such a perfor-

mance is guaranteed only against the targetted ones.

On the other hand, target-generic obfuscations change

the actual appearance of the person such that generic clas-

sifiers or even humans misjudge the identity. Commonly

used obfuscation methods like black eye bar, face blurring,

and blacking out head are examples of this type. These pat-

terns, unfortunately, are neither visually pleasant nor effec-

tive against machine systems [17]. This paper proposes a

head inpainting based approach to the target-generic iden-

tity obfuscation problem.

Generating realistic and seamless head inpainting on so-

cial media photos is hard. Subjects appear in diverse events

and activities, resulting in varied backgrounds and head

poses. Meanwhile, current generative face models are lim-

ited to frontal [3] or strictly aligned [12] faces.

We tackle the problem by factoring it into two stages.

First, depending on the access to original face pixels, we

either detect or generate facial landmarks. We detect them

when we have access to the original face image, but when

face has already been obfuscated, we generate (hypothe-
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size) them. The second scenario makes our approach ver-

satile, by letting us e.g. upgrade existing weak obfusca-

tions on the web including blacked out or blurred out heads

(called blackhead and blurhead in the remainder of the pa-

per) into our novel privacy-enhanced versions. Then, condi-

tioned on the face landmarks, we inpaint a realistic head that

blends naturally into the context. We show that the resulting

head-inpainted images mislead machine recognizers.

Our key contributions are: (1) Novel natural, effective

obfuscation methods based on head inpainting; (2) Novel

landmark guided image generation approach for both head

visible and blackhead cases in challenging social media

photos; (3) Novel facial landmark generator that effectively

hypothesize realistic facial structures and poses given con-

text (blackhead scenario).

2. Related work

Identity obfuscation. A few works from the vision com-

munity have analyzed and developed obfuscation patterns

for avoiding person identification. First, we introduce a line

of work on target-generic obfuscations that are designed

to work against generic automatic person recognizers as

well as humans. Oh et al. [17] and McPherson et al. [15]

have analyzed the obfuscation performance of blacking or

blurring faces against automatic recognizers. They have

concluded that these common obfuscation methods are not

only unpleasant but also ineffective, in particular due to the

adaptability of convnet-based recognizers [17]. More so-

phisticated approaches have been proposed since then. Has-

san et al. [8] have proposed to mask private image content

via cartooning. Brkic et al. [1] have generated full-person

patches to overlay on top of person masks. Similarly, we

propose an obfuscation technique based on head inpainting.

The key difference is that while [1] generates persons with

uniform poses independent of the context (fashion photos),

we naturally blend generated heads with diverse poses into

varied background and body poses (social media photos).

For the target-specific obfuscations, Oh et al. [18] and

Sharif et al. [23] have proposed adversarial example based

obfuscation. While the obfuscation performance is su-

perb even at imperceptible perturbation level, such a perfor-

mance depends highly upon the accessibility to target sys-

tem’s inner parameters. Since we aim to obfuscate identities

against a wide range of recognition systems, we do not con-

dition our inpainting against a specific recognizer.

Image inpainting. In our work, we propose generative ad-

versarial network (GAN) based method to complete head

regions based on the context. Raymond et al. [31] and

Pathak et al. [19] have also used GANs to inpaint pixels

based on the context. However, both approaches assume

appearance and texture similarity between the missing part

and the context. Our approach can inpaint heads solely from

body and scene context, without resorting to any informa-

tion from the head region. In particular, while [31] inpaints

aligned faces, we inpaint heads in the challenging social

media setup in which people appear with diverse poses and

backgrounds by taking a two-stage approach.

Structure guided image generation. For generating realis-

tic head inpainting that naturally blends into the given body

pose and scene context, we have conditioned the inpainting

on face landmarks. Prior work on structure-guided image

generation has shown that such a guidance is indeed very

helpful for generating images with complex inner structures

(e.g. persons) [13, 5, 28, 30, 6, 33, 14, 2]. Ma et al. [13]

have trained a system to synthesize persons based on pose.

Similarly, Walker et al. [28] have used the predicted fu-

ture poses to condition a GAN to generate future frames in

videos. In [30], Wang and Gupta factorizes the indoor scene

generation task into surface normal generation and texture

imbuing stages. Ehsani et al. [6] addresses the object occlu-

sion problem by first predicting the contour of the invisible

parts and then generating the appearance inside the contour.

Alpher et al. [5] have generated faces conditioning on de-

tected face landmarks. Despite the similarity shared by our

work, [5] only generates well-aligned faces. Our approach

generates realistic, seamless head patches in social media

photos where the body pose and the background are very

diverse.

3. Head inpainting framework

We focus on the scenario where the user wants to obfus-

cate some identities in a social media photo by inpainting

new heads for them. The task is challenging due to com-

plex poses and background typical in social media photos.

We use facial landmarks to provide strong guidance for the

head inpainter. We factor the head inpainting task into two

stages: (1) landmark detection or generation and (2) head

inpainting conditioned on body context and landmarks.

Figure 2 describes the global view of our two-stage ap-

proach. It takes either the original or blackhead image1 as

input, in order to give flexibility to deal with cases where the

original images are not available. Given original or head-

obfuscated input, stage-I detects or generates landmarks,

respectively. Stage-II takes the blackhead image and land-

marks as input, and outputs the generated image.

3.1. Stage­I: Landmark

In stage-I, we detect or generate face landmarks to guide

head inpainting in the subsequent stage. An overview of

stage-I is shown in Figure 3. For landmark detection, we de-

tect 68 facial keypoints using the python dlib toolbox [10].

For landmark generation, we train the Landmark Generator

(GL) adversarially with the Discriminator (DL). We will

1Blurhead image is another important obfuscation, and it is easily

adapted in our approach. We use blackhead image as a default example.
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Figure 2: Our two-stage head inpainting framework. The

input of stage-I is either the original or the blackhead image.

The output is the inpainted image.
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Figure 3: Stage-I: Landmark Detection/Generation. The

detector takes the original image Ic as input; the genera-

tor takes a blackhead image I and the head mask M as

input. For the Decoder in GL, we consider three versions

of training: from scratch (Scratch); pre-training as autoen-

coder (AEDec); pre-training as Point Distribution Model

(PDMDec).

describe the landmark generator in greater detail.

Landmark Generator (GL). GL has an autoencoder struc-

ture with two parts: Encoder and Decoder. The Encoder

compresses the body/scene context of the blackhead image

to a latent vector. The Decoder then decodes the vector into

landmark coordinates. In the following, we describe details

of the Encoder and Decoder.

Encoder of GL. Encoder takes a blackhead image I and the

corresponding head mask M (indicating the head bounding

box) as inputs. Encoder maps the input X = [I;M ] to

a latent vector zL. Encoder has 6 convolutional residual

blocks; the latent vector zL is 32-dimensional.

Decoder of GL. Taking the latent vector zL as input, De-

coder generates 2 × 68 landmark coordinates L. Decoder

contains 6 fully connected residual blocks. Both Encoder

and Decoder are trained from scratch by default.

Training Encoder and Decoder from scratch is challeng-

ing due to diverse body pose and background clutter in so-

cial media photos. Therefore, we consider first training a

strong decoder and training the encoder from scratch with

respect to the trained (and fixed) decoder. Such a procedure

is inspired by the previous work on knowledge transfer be-

tween deep models trained on different tasks [7, 22].

We consider pre-training Decoder in three possible ways:

(1) from scratch (and simultaneously training with En-

coder), (2) autoencoder, and (3) using the Point Distribution

Model (PDM, [4]).

AE decoder (AEDec). The autoencoder reconstructs face

landmarks using an encoder and a decoder through a bot-

tleneck layer. Both are fully connected layers with ReLU

activations. L2 loss is as the loss function.

PDM decoder (PDMDec). We consider using the Point

Distribution Model (PDM) to better represent the 3D pose

variations [4, 32]2. We train the PDM over the detected

landmarks on PIPA train set images. Our landmark points

are parametrized using p = [s,R, t, q] denoting scale, ori-

entation, translation and non-rigid transformations, respec-

tively. The PDM decoder has the following formulation:

L = s ·R · (L̄3D +ΦΦΦq) + t (1)

where L̄3D denotes the mean value of the 3D landmarks

mapped from our 2D data, and ΦΦΦ the 3 × n principal com-

ponent matrix. The output L has n + 6 parameters. In the

experiments we use n = 34 principal components.

Loss functions of GL and DL. We use the L2 loss as well

as an adversarial loss for optimization. Landmarks trained

only with the L2 loss show noisy alignments; we found the

adversarial loss to be useful at remedying this. We adopt

the DCGAN discriminator [20]. The landmark coordinates

are converted to channels to input to the convolutional lay-

ers, where the conversion process is differentiable. We have

also tried a fully-connected discriminator, instead of the

DCGAN discriminator, but the difference was marginal.

For training DL, any landmark generated by GL are la-

beled fake, while we use the detected landmarks as the real

examples. Exact losses are formulated as follows:

LDL
=EX∼pdata(X)

[

logDL(X)
]

+

EX∼pdata(X)

[

log (1−DL(GL(X)))
]

, (2)

LGL
=EX∼pdata(X)

[

log (DL(GL(X)))
]

+

λL‖GL(X)−Ld‖2, (3)

where X is the concatenation of the obfuscated image I

(3 channels) and the head mask M (1 channel). Ld is the

detected landmark coordinates (ground truth). λL ≥ 0 is a

scalar weight.

2We use [32] to train the PDM model [4]. Non-rigid structure from

motion [27] is used to map 2D points to 3D in this code. Our training data

are the detected landmarks in PIPA TRAIN set.
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3.2. Stage­II: Inpainting

Stage-II generates the head inpainting based on the land-

marks from Stage-I and the blackhead or blurhead image.

Figure 4 shows an overview; the head generator GH is

trained adversarially with a head discriminator DH .
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Figure 4: Stage-II: Head generation. The input are black-

head image I and landmark channels Lh. The generator

has an Auto-encoder structure which encodes the input to a

bottleneck then decodes to a fake image. The discriminator

is the same as in DCGAN [20].

Input. The 68-channel landmark heatmaps Lh from Stage-

I are concatenated with the blackhead (or blurhead) image

I as an input to the generator GH . The landmark heatmaps

provide the missing skeleton information in the obfuscated

image.

We treat the blackhead image as fake and the original

image as real the head discriminator DH . Note that we use

the whole body image instead of just head regions to pro-

vide sufficient information about the body and background

to generate a realistic inpainting.

Head Generator (GH ) and Discriminator (DH ). The

head generator GH has a a convolutional autoencoder with

skip connections between encoder and decoder, inspired by

the U-Net [21]. The skip connections propagate image in-

formation directly from input to output, improving the fine-

grained details in the output. The architecture of the head

discriminator DH is the DCGAN discriminator [20].

Loss function. We use the L1 and the adversarial losses to

optimize GH and DH :

LDH
=EY ∼pdata(Y )

[

logDH(Y )
]

+

EY ∼pdata(Y )

[

log (1−DH(GH(Y )))
]

, (4)

LGH
=EY ∼pdata(Y )

[

log (DH(GH(Y )))
]

+

λH‖GH(Y )− Ic‖1, (5)

where Y is the concatenation of the obfuscated image I

and the landmark heatmaps Lh. Ic is the original image.

λH ≥ 0 is a scalar weight. Detailed architecture and hyper-

parameters are given in the supplementary materials.

4. Experiments

We evaluate the presented two-stage head inpainting

pipeline on a social media dataset in terms of inpainting ap-

pearance and pose plausibility, as well as the identity obfus-

cation performance against machine recognizers. We ana-

lyze the impact of different input types (original, blackhead,

and blurhead), different choices of landmark decoders, and

the losses for the landmark generators (§3.1).

4.1. Dataset

We use the PIPA dataset [34], the largest social media

dataset to date with people in diverse events, activities, and

poses. It is a suitable for evaluating our methods under the

social media obfuscation scenario.

In order to maximize the amount of training data, we

have introduced a new partitioning of the images in PIPA.

We partition 2,356 PIPA identities into TRAIN set (2,099

identities, 46,576 instances) and TEST set (257 identities,

5,175 instances). We have further pruned both partitions

with heavy profile or back-view heads, resulting in 34,383

instances in TRAIN and 1,909 in TEST. The TRAIN set is

used for training landmark and head generators. TEST set

is the evaluation set.

Our landmark and inpainting generators take a fixed-size

image (256× 256× 3) as input. For every training and test-

ing sample, we prepare the input by first obtaining the body

crop, following the procedure in [16, 25]: extend the head

box with fixed ratios (3×width and 6×height), and then re-

size and zero-pad the body crop such that it fits tightly in

the square 256× 256.

4.2. Scenarios and inputs

Our approach introduced in §3 is versatile and supports

scenarios where the user (who wants to obfuscate an im-

age) has access to the original image or only has access to

already head-obfuscated images (e.g. blacked out). The

necessity for this versatility is that social network service

providers may aim to upgrade the privacy level by obfus-

cating images through blurring or blacking-out heads, even

though it has been shown to be quite ineffective [17].

In order to simulate multiple scenarios, we consider three

types of inputs to our obfuscator: original, blackhead, or

blurhead, where the latter two are common obfuscation

techniques these days. We prepare blackhead and blurhead

inputs following the procedure in [17]. PIPA head box an-

notations indicate the head region to be obfuscated, which

is either filled in with black pixels or smoothed with a Gaus-

sian blur kernel specified in [17].

4.3. Quantitative results

Our head inpainting should both look natural and effec-

tively obfuscate the identity. We report quantifiable mea-

surements of the two criteria in this section.
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Table 1: Evaluation of proposed obfuscation methods. We quantify the quality of the proposed obfuscation method against

landmark quality, inpainting quality, as well as obfuscation effectiveness (person recognition rates). We vary the loss (DL

here represents the adversarial loss) and decoder used in our landmark generator (§3.1); the head inpainter is always the GH

+ DH (§3.2).

Obfuscation method Evaluation

Landmark Landmark Inpainting Person recognizer

Input Loss Decoder L2 Norm. L2 SSIM mask-SSIM head body+head head contrib.

Original No head inpainting / / 1.000 1.000 85.6% 88.3% 72.2%

Original NN head copy-paste / / 0.872 0.195 1.2% 7.1% 67.5%

Blur No head inpainting / / 0.931 0.396 52.2% 71.6% 3.2%

Blur Detected landmarks 0.00 0.000 0.962 0.679 43.7% 51.7% 70.8%

Blur L2 Scratch 6.32 0.230 0.954 0.578 36.2% 48.4% 66.8%

Blur L2+DL Scratch 4.85 0.182 0.955 0.586 38.0% 48.4% 66.6%

Blur L2+DL AEDec 4.77 0.180 0.951 0.585 37.5% 48.0% 66.1%

Blur L2+DL PDMDec 4.50 0.168 0.953 0.593 37.9% 49.1% 66.7%

Black No head inpainting / / 0.815 0.000 2.1% 67.0% 14.0%

Black Detected landmarks 0.00 0.000 0.902 0.405 10.1% 21.4% 70.8%

Black NN landmarks 2.48 0.088 0.896 0.332 7.9% 20.4% 71.3%

Black L2 Scratch 13.6 0.501 0.884 0.186 5.8% 17.4% 73.6%

Black L2+DL Scratch 13.0 0.477 0.882 0.191 5.8% 17.2% 71.4%

Black L2+DL AEDec 11.7 0.431 0.885 0.199 5.6% 17.4% 72.5%

Black L2+DL PDMDec 12.3 0.453 0.885 0.196 5.6% 17.4% 71.0%

4.3.1 Landmark

As intermediate output, facial landmarks should represent a

realistic human face in order to provide correct guidance to

the inpainting stage. In this section, we evaluate the gen-

erated landmark quality in terms of the L2 distance to the

detected landmarks, assuming that the detected landmarks

are accurate. The L2 distances are normalized with respect

to the inter-ocular distances [10].

We investigate three axes of factors for our landmark

generator. (1) Input type: original, blackhead, or blurhead.

(2) Loss function: only L2 versus L2 and adversarial loss

(DL). (3) Decoder type: trained from scratch, autoencoder

pretrained (AEDec), or Point Distribution Model pretrained

(PDMDec). A summary of the results is in Table 1 (“Land-

mark” column). On the original images, our best landmark

generator achieves the L2 distance of 2.41 on average (not

shown in table), which gives an upper bound on the land-

marks generated on blurhead or blackhead.

Input type. We compare the L2 distance between the gen-

erated and detected landmarks for three types of inputs:

original, blackhead, or blurhead. For original images, we

use detected landmarks (by definition zero L2 distance).

We observe from Table 1 that blurhead inputs show more

accurate landmarks than blackhead cases: e.g. 6.32 (blur)

versus 13.6 (black) for the baseline landmark generator (L2

loss, trained from scratch). Blurhead images already pro-

vide much structural information.

Loss function. We compare two loss functions: without ad-

versarial loss (L2) versus with adversarial loss (L2 +DL).

Given a blackhead input with landmark decoder trained

from scratch, using only L2 loss yields the 13.6 distance,

while adding DL marginally improves the distance to 13.0.

However, for blurhead images, the improvement due to DL

is much greater (from 6.32 to 4.85).

Decoder. We consider three choices of decoder in the

landmark generator GL: learning from scratch (Scratch),

pre-trained with AE (AEDec), and pre-trained with PDM

(PDMDec). For both blurhead or blackhead cases, condi-

tioning the decoder with either AEDec or PDMDec helps

generating better landmarks: e.g. for blackhead input, L2

distance improved from 13.0 to 11.7 and 12.3, respectively.

4.3.2 Inpainting

Head inpainting, the final output of our method, should look

natural to be suitable as a social media photo. While we

will visualize the output and report user study in the next

sections (§4.4 and §4.5), we provide a large-scale summary

measures for the quality of final output using the SSIM dis-

tance [29] from the original image. We report two mea-

sures: comparing the whole images (SSIM [29]) and head

region only (mask-SSIM [13]). As a baseline, we consider

inpainting with the Nearest Neighbor (NN) head3. Our head

3NN head is searched in training data based on the mean L2 distance

of detected landmarks.
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inpainting always gives a better SSIM (>0.88) than this

baseline (0.872).

4.3.3 Obfuscation

We now measure how well our inpainting obfuscates corre-

sponding identities. Unlike some prior work [23, 18], our

obfuscation scheme is target generic – it is designed to ac-

tually change the identity, instead of fooling specific clas-

sifiers. We use state of the art person recognizers [16, 18]

to measure the change in identifability due to obfuscation.

While the method is target generic, we report results on two

recognisers with great structural differences to provide fur-

ther evidence that the obfuscation is effective regardless of

the target (experiments on one of the recognisers are in sup-

plementary materials). We provide a rationale for our good

obfuscation performance based on the analysis of the recog-

nizer attention. We show furthermore that the obfuscation

results in non-confident top-1 predictions – the obfuscation

does not change the appearance to another person known to

the recogniser (which may be unethical) but comes up with

a new, unseen identity.

Person recognizer. We use the social media person recog-

nition framework naeil [16]. Unlike typical face recog-

nizers, naeil uses body and scene context cues for recog-

nition. It has thus proved to be relatively immune to com-

mon obfuscation techniques like blacking or blurring head

regions [17].

Following [16], we first train feature extractors over head

and body regions, and then train an SVM identity classi-

fier on top of those features. We may also concatenate

features from multiple regions (e.g. head+body) to allow

it to extract cues from multiple regions. In our work, we

use GoogleNet [26] features from head and head+body

to evaluate obfuscation performances. AlexNet [11] based

recogniser is also considered in Supplementary Materials

to show that the obfuscation is similarly effective for two

greatly distinct types of recognisers (e.g. 98 layers for

GoogleNet and 8 layers for AlexNet).

Head inpainting provides good protection. Table

1 shows obfuscation performance (columns head and

head+body). Under no obfuscation, the head+body

recognition performance is 88.3%. Black/blurring baselines

give 67.0%, and 71.6%, respectively – confirming the ob-

servation in [17] that these are ineffective. On the other

hand, our head inpainting methods show < 50% (blurhead

input) and < 21% (blackhead input) recognition rates for

head+body recognizers. They are more effective protec-

tion techniques than blacking or blurring head regions.

Cues used. We compare the recognition rates between

head and head+body. When the recognizer relies solely

on head cues, while the head has been inpainted, then the

recognition rates are lower than the head+body counter-

parts. For example, the last row method against head rec-

ognizer gives 5.6% versus 17.4% for head+body, nearly

reaching the chance level recognition rate 2.1%.

Input type. While having access to blurred head images

help generating more plausible landmarks (§4.3.1) as well

as visually natural head inpainting (§4.4), they may leak

identity information. We compare the recognition rates

when either blurhead or blackhead inputs are used. Our

head inpainting based on blackhead result in 17% ∼ 21%
accuracy, while blurhead based results are in the range

48% ∼ 50% accuracy. The choice of input type gives users

a control over the trade-off between plausibility of gener-

ated heads and the obfuscation performance.

Detected versus generated landmarks. While identity in-

formation may leak through blurred heads, it may also leak

through the landmark detections (face shape). On the other

hand, generated landmarks enjoys the possibility to come

up with an equally plausible landmark hypothesis but with

different face shapes. For the blackhead input, the detected

landmarks indeed result in higher recognition rate (21.4%)

than generated ones (e.g. 17.4% on last row), with similar

trend for the blurhead cases.

Rationale for good obfuscation – recognizer attention.

We have verified that our head obfuscation scheme exhibits

better performance than commonly used ones like blacking

and blurring. We give a rationale for this phenomenon by

means of the recognizer attention. Given an input, recog-

nizer attention refers to the image regions where recogniz-

ers extract cues from. We hypothesize that while blacked

or blurred heads induce recognizer attention on non-head

regions, our inpainted heads attract attention on the heads.

For the recognizer attention we have used the gradient-

based mechanism from Simonyan et al. [24]. We first

compute the gradient of the neural network prediction

with respect to the input image; take maximal abso-

lute values along the RGB channel; and then smooth

with Gaussian blurring. To quantify the chance of at-

tending on the head region, we have computed the

“head contribution” score by estimating head contrib. =
P[max attention is inside head region] over the test samples.

See final column of table 1 for the results. We observe

that while the original image has 72.2% chance of inducing

attention on the head region, blacked or blurred heads are

much less likely to attract the recognizer’s attention (14.0%
and 3.2%, respectively). This explains why head+body is

still performing well: it simply ignores the confusing head

cue. On the other hand, our inpainting-based obfuscation

still attracts the recognizer’s attention as much as the non-

obfuscated head image does (71.0% versus 72.2%). This

indicates that the realism of inpainted heads encourages the

recognizer to still rely its decision on the inpainted head,

effectively leading to misjudgment by the recognizer.

Low prediction confidence and ethics. Ethical problems
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might entail if the obfuscation mislead the recogniser into

confidently predicting other identities in the gallery set.

We have measured the SVM prediction confidence (1-vs-

all SVM) on the original as well as obfuscated images to

ensure that the obfuscation results in a uniformly low pre-

diction scores.

On the original images, the top-1 identity is predicted

with SVM score 0.63 on average. On the other hand, our

inpainting conditioned on blurhead results in -0.29 average

top-1 SVM score, inpainting conditioned on blackhead re-

sults in much lower top-1 score of -0.52. This confirms that

the inpainting based obfuscation does not shift the identity

prediction to another person with high confidence. If the

recogniser filters out low-confidence predictions, a common

practice in application, then the head-inpainted images will

most likely be filtered out as “background identity”.

4.4. Qualitative results

For confirming the naturalness of the inpainted heads, we

have measured the SSIM score in §4.3.2. However, SSIM

is only a proxy measure. In this section, we qualitatively

visualize the quality of the generated landmarks as well as

inpainted heads. We also include user study in the next sec-

tion (§4.5)

For generating natural heads, landmarks should look like

that of an actual face and be consistent with the body pose.

However, at the same time obfuscation performance bene-

fits from landmarks that do not preserve the original face

shape. In this section, we discuss if our generated land-

marks achieve both realism, while effectively obfuscating

machine recognizers. Qualitative results are in Figure 5.

Detected versus generated landmarks. Given an origi-

nal image with a visible head, we detect landmarks, while

for blackhead we hypothesize them from regions other than

the head itself. The comparison between columns 2,3 (de-

tected landmarks) and columns 4,5 (generated landmarks)

in Figure 5 illustrates the difference. In all the examples

shown, the detected landmarks closely follow the original

image. On the other hand, the generated landmarks, espe-

cially for blackhead cases, results in landmarks and head in-

painting with different head poses. However, the generated

landmarks are still plausible with respect to the body pose

and activity. Finally, note that by generating landmarks, we

can further mask identity information (recognition rates are

consistently lower for inpainting based on generated land-

marks), while keeping reasonable realism.

Blackhead versus blurhead. Landmarks may be gener-

ated from either blurhead or blackhead images. We visu-

alize how the head information contained in blurred cases

improve the inpainting quality. Columns 2,4 and columns

3,5 in Figure 5 show respective examples for blur and black

cases. Involving blurred head images during landmark and

head generation results in inpainting that resembles the

original head, especially the head pose and hair color/style

(e.g. ID-690). On the other hand, not providing any infor-

mation in the head region results in a significantly different,

yet plausible, head images. In particular, when even land-

marks are generated, the resulting head images are drasti-

cally different from the original one. Such a shift of appear-

ance is reflected in the low recognition rate (17.4%).

Table 2: Human perceptual study (HPS) scores and land-

mark detection success ratios (LDSR). Landmarks are from

“detected”, and “generated” by PDMDec methods.

blurhead(Ours) blackhead(Ours)

Orig. CE [19] detected generated detected generated

HPS: 0.93 0.04 0.60 0.39 0.19 0.11

LDSR: 1.00 0.36 1.00 0.95 0.99 1.00

4.5. Comparing against the state­of­the­art

In this section, we compare the quality of our inpainting

against two state-of-the-art inpainting methods [19, 1] via

an extensive user study. We did not compare directly against

[1] because it focuses on full body replacement using body

contours and the generated heads are visually far from be-

ing competitive (e.g. Figure 1 in [1]). For all methods, we

perform the human perceptual study (HPS) on Amazon Me-

chanical Turk (AMT). For each method, we show 55 real

and 55 inpainted images in a random order to 20 users.

Users press the real or fake button for an image within a sec-

ond. The first 10 images are only practice samples [13, 9].

Table 2 shows comparison of the considered methods.

The first row contains the ratios of images that were judged

as real for different methods: (1) original unaltered; (2) in-

painted by the Context Encoder (CE) [19] (blackhead im-

age as input); (3) inpainted by our four models. We observe

several interesting results. (1) Only 93% of the participants

believed the original image to be real; this gives an upper

bound on the score. (2) Our method based on blackhead im-

ages with generated landmarks results in 11% of the users

believing that the image is real – nearly threefold boost from

the CE baseline (4%). (3) Conditioning on the blurhead

helps a lot (from 11% to 39% for generated landmarks) (4)

Detected landmarks greatly improve the realism compared

to generated ones (from 39% to 60% for blurhead). The re-

alism is not perfect yet, but we greatly outperform the prior

state of the art.

Finally, we also measure the landmark detection success

ratio (LDSR) as a proxy measure of the output soundness

(inspired by [9]). Intuitively, LDSR should be higher for

heads with greater realism. As shown in Table 2, heads in-

painted by our methods have LDSR above 95%, while ones

inpainted by CE achieve only 36%. Our methods generate

heads with much clearer face structures.
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Figure 5: Head inpainting results using detected and generated landmarks (from the PDMDec model). Top rows present key

quantitative numbers. The L2 distance between detected and generated landmarks is also given for each single instance.

5. Conclusion

To address the problem of obfuscating identities in so-

cial media photos, we have presented a two-stage head in-

painting method. Despite the challenges in the social me-

dia setup (diverse head and body poses and backgrounds),

our method has proved to generate both natural obfuscation

patterns that effectively confuses automatic person recog-

nizers. In particular, our method is target-generic: the ob-

fuscation is not conditioned on a particular recognizer, be

it human or machine. Also, the method does not require

access to the original image, enabling to “upgrade” weak

obfuscation patterns (e.g. blurred or blacked heads) to our

privacy-enhanced version.
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