
Jerk-Aware Video Acceleration Magnification

Shoichiro Takeda Kazuki Okami Dan Mikami Megumi Isogai Hideaki Kimata

NTT Media Intelligence Laboratories 1-1 Hikarinooka, Yokosuka, Kanagawa, Japan

{shoichiro.takeda.us, kazuki.okami.ac, dan.mikami.vp, megumi.isogai.ks, hideaki.kimata.yu}@hco.ntt.co.jp

Figure 1: Sports use-case: visualizing the impact spread in the iron shaft. The yellow arrow depicts the golf swing along a trajectory. The

top row shows 2 frames overlaid to indicate the swing phase and the impact phase of the ball. The bottom row shows the spatiotemporal

slices along a single diagonal red line in the top of row of (a), and the green and cyan circles in them respectively indicate the swing phase

and impact phase. (a) Original video. (b) Phase-based motion magnification [25]. (c) Video acceleration magnification [28]. (d) Our

proposed jerk-aware video acceleration magnification. Our method only magnifies subtle deformation of the iron shaft without artifacts

caused by quick swinging motions in other methods. See the supplementary material for the video results.

Abstract

Video magnification reveals subtle changes invisible to

the naked eye, but such tiny yet meaningful changes are

often hidden under large motions: small deformation of

the muscles in doing sports, or tiny vibrations of strings in

ukulele playing. For magnifying subtle changes under large

motions, video acceleration magnification method has re-

cently been proposed. This method magnifies subtle accel-

eration changes and ignores slow large motions. However,

quick large motions severely distort this method. In this pa-

per, we present a novel use of jerk to make the acceleration

method robust to quick large motions. Jerk has been used

to assess smoothness of time series data in the neuroscience

and mechanical engineering fields. On the basis of our ob-

servation that subtle changes are smoother than quick large

motions at temporal scale, we used jerk-based smoothness

to design a jerk-aware filter that passes subtle changes only

under quick large motions. By applying our filter to the ac-

celeration method, we obtain impressive magnification re-

sults better than those obtained with state-of-the-art.

1. Introduction

The human visual system sometimes misses essential

properties of dynamic objects because the clues lie within

a very small world. For example, muscles and skin are

slightly deformed in doing sports, drones sway to stabilize

themselves in quick flight, and tiny vibrations of strings in

instruments play wonderful sounds. However, these mean-

ingful and attractive subtle changes are too small to see with

the naked eye, and are often hidden under large motions.

In recent years, video magnification algorithms have

been developed as a way to magnify and visualize such sub-

tle motion changes, or color changes in video [27, 25, 26].

These methods adopt efficient displacement analysis called

the Eulerian approach. This approach measures subtle im-

age changes at a fixed position without object tracking. Eu-

lerian video magnification achieves good results for mag-

nifying the sway of a bridge, the breathing of an infant,

and facial color changes due to blood circulation. However,

as the Eulerian approach cannot distinguish between subtle

changes and large ones, they perform only when objects and

camera remain still.

To overcome this limitation, layer-based Eulerian video

magnification techniques have been developed by Elgharib

et al. [5] and Kooij et al. [13]. These techniques separate

a target region of the above Eulerian magnification meth-

ods from background motions by manual segmentation [5]

or depth layers [13]. They can magnify subtle changes in

the presence of large motions, but they require burdensome
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interventions such as the need for human manipulation and

preparing for an environment suitable for a depth camera.

On the other hand, an impressive method called video accel-

eration magnification has recently been proposed by Zhang

et al. [28]. This method is close to the original Eulerian ap-

proach [27], but only magnifies subtle acceleration changes

of linear motions by assuming that the large motions are

typically linear at temporal scale. This method can magnify

subtle changes and ignores slow large motions, which can

be approximated as linear ones, without these interventions.

However, quick large motions severely distort this method

due to their having non-linearity: golf swings, quick drone

flights, and strumming in music play.

This paper presents a jerk-aware video acceleration mag-

nification method for magnifying subtle changes in the pres-

ence of slow and quick large motions without the afore-

mentioned interventions. Our method uses jerk to make the

video acceleration technique [28] robust to quick large mo-

tions. On the basis of our observation that subtle changes

are smoother than quick large motions at temporal scale, we

consider that grasping the difference in the smoothness en-

ables us to isolate subtle changes from quick large motions.

For that purpose we focus on jerk, which has been used to

evaluate smoothness of time series data in the neuroscience

[6, 23, 19] and mechanical engineering fields [20]. In de-

veloping our method, we used jerk-based smoothness to de-

sign a novel filter (which we call a jerk-aware filter) that

only passes subtle changes in the presence of quick large

motions. By applying our filter to the acceleration method

[28], we obtain impressive magnification results without ar-

tifacts caused by slow and quick large motions.

The contributions of this paper are below. 1) We propose

a novel filter for passing subtle changes only in the pres-

ence of quick large motions. 2) We successfully apply jerk,

a popular feature in other research fields, to grasp character-

istics of motions and show the qualitative and quantitative

effects it has on video magnification. 3) We demonstrate

the practical insight our method provides and analyze the

success obtained with it and its limitations.

2. Related Works

2.1. Lagrangian Approach

The concept of video magnification originates with Liu

et al. [16] and their Lagrangian approach. This approach

detects image changes by matching feature points between

frames and estimates motions based on optical flow. They

use this approach to segment background motions and mo-

tions of interest for magnification in input videos. Through

spatial registration of background motions, interest motion

can be re-estimated and magnified. However, the estimation

of optical flow in this approach is expensive and has been

researched as an unsolved problem [22, 14]. Unlike this ap-

proach, our method is based on Eulerian approaches that do

not require object tracking explicitly and can magnify subtle

motion changes, as well as subtle color changes.

2.2. Eulerian Approach

In comparison with the Lagrangian approach, Eulerian

approaches analyze image changes at a fixed position over

time without object tracking. Eulerian video magnification

first decomposes image sequences into multi-scale pyra-

mids, and then signals at each pyramid are temporally fil-

tered to detect subtle changes to be magnified [27]. This

method produces good color magnification results, but it

can only support small amplification factors for motion

magnification. To counter this problem, phase-based Eu-

lerian video magnifications have been proposed [25, 26].

They build a complex-steerable pyramid [8, 21, 24] or a

Riesz pyramid [26] to obtain phase variations of each pixel.

The phase information corresponds to motion independent

from color [7], which makes it possible to handle larger am-

plification factors for motion magnification. However, these

Eulerian methods can only perform well when objects and

cameras remain still, because they cannot distinguish subtle

changes and other large motions.

For handling large motions, layer-based Eulerian video

magnification techniques have been developed by Elgharib

et al. [5] and Kooij et al. [13]. Elgharib et al. [5] require

a user to select a region whose large motions are stabilized

by homography transform. After the stabilization, subtle

changes in the selected region are magnified by the above-

mentioned Eulerian magnification methods. In the tech-

nique described by Kooij et al. [13], the region to be mag-

nified is automatically selected by using a depth-weighted

bilateral filter that detects all pixels at the same depth layer.

However, these methods require human manipulation [5]

or an environment suitable for a depth camera [13]; con-

sequently, the methods are time consuming and error prone.

In contrast, Zhang et al. [28] tried to detect subtle

changes in the presence of large motions without these ad-

ditional requirements. By assuming that the large motions

are approximately linear at temporal scale, they only mag-

nify subtle acceleration changes of linear motions. This

acceleration method shows good subtle motion and color

magnification results in the presence of slow large motions

that can be approximated as linear ones, but fails to ignore

quick large motions due to their having non-linearity. Their

method excessively magnifies quick large motions and pro-

duces noisy magnification results.

Using an approach similar to that described by Zhang

et al. [28], we aim to magnify subtle changes in videos

without the use of the aforementioned requirements. How-

ever, we had to deal with a completely different and more

advanced problem: video magnification in the presence of

slow and quick large motions.
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3. Methods

We present jerk-aware video acceleration magnification

method for magnifying subtle variations within slow and

quick large motions without requiring additional resources.

First, we will show that jerk is a useful index to handle quick

large motions in video magnification. Second, we will de-

scribe how we designed a jerk-aware filter that passes subtle

changes only under quick large motions by using jerk-based

smoothness. Finally, we will show how we applied this filter

to color acceleration magnification and motion acceleration

magnification.

3.1. Jerk

Acceleration magnification [28] utilizes the fact that

large motions are approximately linear at temporal scale,

whereas our key idea is based on our observation that subtle

changes depict smoother trajectories than quick large mo-

tions at temporal scale (Fig.2). We consider that grasping

the difference in the smoothness better enables us to isolate

subtle changes from quick large motions. Therefore, we fo-

cus on the characteristic feature called jerk.

Jerk is a third temporal derivative of displacement, and

represents the rate of change in acceleration per unit of time.

It is an effective index to assess steepness or smoothness

of time series data. Its value becomes low during smooth

changes but high during steep changes. It has been used in

many research fields for assessing movements and trajecto-

ries [6, 23, 19, 20, 4]. In neuroscience, it has been used to

model the trajectory of voluntary arm movements [6] and

to assess the recovery of motor performance in stroke pa-

tients [23, 19]. In mechanical fields, the trajectories of the

robot models with jerk restrictions make it possible to ob-

tain smooth control [20]. Through these findings, we as-

sume that subtle changes have a lower jerk value than quick

large motions due to the smoothness. To check our hypothe-

sis, we simply calculated the third temporal derivative of lu-

minance intensity changes in a gun-shooting video (Fig.3).

The result shows that static objects, such as the body or the

arm, which may include invisible smooth subtle deforma-

tions, have lower jerk values than quick movement objects,

such as gun and cartridge.

3.2. JerkAware Filter

On the basis of our knowledge of jerk, we designed the

jerk-aware filter. This filter is designed to have jerk-based

smoothness so that it will pass subtle changes only and cut

off quick large motions. To obtain the jerk-based smooth-

ness, we first calculated the jerk value with a desired fre-

quency component. Given input image signal I(x, t) at po-

sition x that denotes 2D pixel coordinates and time t, by

referring to a previous study [28], we combined the third

temporal derivative of I(x, t) and a Gaussian filter. Gaus-

sian filter prevents spurious resolution [11] and its linearity

Figure 2: Our observation. Eulerian approaches [27, 25, 28] an-

alyze image or motion changes in video as time series data of in-

tensity or phase changes at a fixed position (purple square in (a),

(b), and (c)). We observed that the time series data of subtle phase

changes caused by subtle fluctuation of the drone (a) are smoother

than those of steep ones caused by quick and large rise motion (b)

because their magnitudes are very small.

Figure 3: Gun-shooting video in luminance space (a) and jerk cal-

culated by the temporal luminance intensity change (b). Jerk only

responds to quick large motions such as gun blowback and gun

cartridge release.

[12] permits its calculation of jerk with a Gaussian filter to

be rewritten as:

Jerkσ(x, t) = Gσ(t)⊗
∂3

∂t3
I(x, t)

=
∂3Gσ(t)

∂t3
⊗ I(x, t),

(1)

where ⊗ is convolution operator, Gσ(t) is a Gaussian

filter with variance σ2 and ∂3

∂t3 is the jerk calculation. Se-

lecting the scale parameter σ of the Gaussian filter makes it

possible to detect the jerk value with the desired frequency

component [15, 18]. Therefore, we set the scale parameter

σ of the Gaussian filter as: σ = r
4f

√

2
, where r indicates

the video frame rate and f is the desired frequency. Sub-

sequently, the temporal window width of Gaussian filter is

defined as r
4f .

Second, we transformed the jerk value into jerk-based

smoothness that has a high value (close to 1) when smooth

changes appear and a low value (close to 0) when no such

changes appear as:

nJerkσ(x, t) =
|Jerkσ(x, t)| −min

x,t
|Jerkσ(x, t)|

max
x,t

|Jerkσ(x, t)| −min
x,t

|Jerkσ(x, t)|
, (2)
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smoothnessσ(x, t) = 1− nJerkσ(x, t). (3)

Finally, to provide a filter capable of easily adjusting the

weight of the smoothness value, we correct Eq. (3) on the

basis of a hyper parameter β(> 0) and obtain jerk-aware

filter JAFσ(x, t), which can selectively permeate subtle

changes but cut off quick large motions:

JAFσ(x, t) = smoothnessσ(x, t)
β . (4)

3.2.1 Pyramid-based Correction

In video magnification algorithms, to reduce the unnatu-

ral appearance of synthetic videos in which subtle changes

are magnified, the input image sequences are decomposed

into multiple resolution pyramids at each frame before mag-

nification processing [27, 25, 26, 5, 13, 28]. In this way,

Eqs. (1) to (4) are simply transformed by taking pyramid

level l into consideration. For example, Eq. (4) can be writ-

ten as:

JAF l
σ(x, t) = smoothnesslσ(x, t)

β , (5)

where l is a pyramid level.

However, given the pyramid decomposition processing,

the meaning of our proposed filter JAF l
σ(x, t) changes in

accordance with the pyramid level. As mentioned in previ-

ous studies [17, 9], image sequences at higher level pyra-

mids can handle large displacements, but their values de-

crease in proportion to the resolution at the pyramid level.

This means that though our filters at higher level pyramids

capture much quicker large motions, they are designed by

lower jerk values.

Therefore, we define the filter correction on the basis of

the down sampling factor (0 < λ < 1) used to construct

each pyramid level as:

JAF l
σ,λ(x, t) := JAF l

σ(x, t)
1/λ. (6)

Furthermore, we consider that our proposed filter will

need to be modified by a similar coarse-to-fine approach

[17, 9]. As pyramids with higher levels observe image

changes in wider space, they can accurately capture quick

large motions and calculate correct jerk. On the other hand,

quick large motions do not fit in the observation range at

lower pyramid levels. This means that jerk at lower pyra-

mid levels cannot reflect this essence, even if quick large

motions occur. Therefore, it is necessary to propagate the

information of the filter JAF l
σ,λ(x, t) at a higher pyramid

level to a filter at a lower pyramid level. We define this

propagation correction as:

pJAF l
σ,λ(x, t) =

l+N
∏

i=l

res(JAF i
σ,λ(x, t), l), (7)

where N is the number of the pyramid level for this correc-

tion, and the function of res(JAF i
σ,λ(x, t), l) resizes the

filter size at the pyramid level i to that at pyramid level l

with bicubic interpolation. Through this correction, we ob-

tain a sophisticated jerk-aware filter pJAF l
σ,λ(x, t) that can

distinguish the essence of the difference between subtle and

quick large changes.

3.3. JerkAware Acceleration Magnification

3.3.1 Color Magnification

We present jerk-aware color acceleration magnification

combining an acceleration technique and the jerk-aware fil-

ter. In the acceleration technique for color magnification

[28], Gaussian pyramid used to decompose input signal

I(x, t) to I l(x, t). For detecting the subtle acceleration

changes Bl
f (x, t) with a desired frequency f , the temporal

acceleration filter Hf (t) [28] is convolved to I l(x, t) as:

Bl
f (x, t) = Hf (t)⊗ I l(x, t). (8)

After that, Bl
f (x, t) multiplied by the magnification fac-

tor α is added to I l(x, t) for obtaining the synthesis sig-

nal Î lf (x, t), in which subtle color changes are magnified at

each pyramid level:

Î lf (x, t) = I l(x, t) + αBl
f (x, t). (9)

For details, see [28].

This synthesis signal includes excessive magnification of

color changes due to quick large motions. To cut them off

and keep subtle color changes, we apply the jerk-aware filter

as below:

Î lf (x, t) = I l(x, t) + α(JAF l
σ,λ(x, t)×Bl

f (x, t)). (10)

Note that as the color magnification method amplifies

I l(x, t) only in the third level of the pyramid [27, 28], we

use the jerk-aware filter (Eq. 6), without propagation cor-

rection (Eq. 7). Through this process, our method produces

good color magnification results without artifacts caused by

slow and quick large motions.

3.3.2 Motion Magnification

For magnifying subtle motions, we used a phase-based

acceleration technique [28]. This technique utilizes the

local phase changes in video that represent local motion

changes [7]. To obtain local phase information, this tech-

nique decomposes I(x, t) into a number of oriented fre-

quency bands Rl
ω,θ(x, t) by applying complex steerable fil-

ter ψl
ω,θ, which contains a set of filters at various spatial

scales ω and orientations θ at each pyramid level l. This

equation can be written as:

Rl
ω,θ(x, t) = (I(x, t)⊗ ψl

ω,θ)(x, t)

= Al
ω,θ(x, t)e

iφl
ω,θ(x,t).

(11)
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For detecting subtle acceleration phase information

Cl
f,ω,θ(x, t) with a desired frequency f , the temporal ac-

celeration filter Hf (t) [28] is convolved to φlω,θ(x, t) as:

Cl
f,ω,θ(x, t) = Hf (t)⊗ φlω,θ(x, t). (12)

For details, see [28].

However, this information includes quick large motions

as well as subtle motion changes. To cut them off and keep

subtle motion changes, we design a jerk-aware filter by us-

ing phase information. Using our method, we calculate the

jerk on this local phase information as:

Jerklσ,ω,θ(x, t) = Gσ(t)⊗
∂3

∂t3
φlω,θ(x, t)

=
∂3Gσ(t)

∂t3
⊗ φlω,θ(x, t).

(13)

After that, we create a jerk-aware filter by using phase

information with Eqs. (2)-(7); this filter appliesCl
f,ω,θ(x, t)

so as to only ignore quick large motions as:

Ĉl
f,λ,ω,θ(x, t) = pJAF l

σ,λ,ω,θ(x, t)× Cl
f,ω,θ(x, t). (14)

Finally, Ĉl
f,λ,ω,θ(x, t) multiplied by the magnification

factor α is added to φlω,θ(x, t) for obtaining the synthesis

phase information that subtle motion changes are magnified

at each pyramid level and orientations as:

φ̂lf,λ,ω,θ(x, t) = φlω,θ(x, t) + αĈl
f,λ,ω,θ(x, t). (15)

Similar to [28], we use phase unwrapping [10] to correct

unstable phase jumps due to the phase value being wrapped

within the range of [−π, π].

4. Results

4.1. Experimental Setup

To evaluate the effectiveness of our proposed method,

we performed experiments on real videos as well as on syn-

thetic ones with ground truth magnification. For real videos,

we assessed the performance qualitatively. For synthetic

ones, we assessed the performance quantitatively against

ground truth in control experiments. We set the magnifi-

cation factor α, the target frequency f to be magnified, and

the hyper parameter β as given in table 1. We applied our

proposed method to video sequences in YIQ color space.

We show the video magnification results in the supplemen-

tary material.

Color Magnification. We used a Gaussian pyramid to de-

compose each video frame into multi-scales and magnified

the intensity changes only on the third level of the pyramid.

This approach is similar to [27, 28].

Video α f fs β
α

(other)

Gun 10 20 480 0.3 8

Light bulb 1 25 10 600 0.0001 25

Golf [1] 20 2 60 0.8 12

Light bulb 2 [1] 40 2 160 20 40

Drone 25 2 30 1 18

Ukulele 25 40 240 1 18

Synthetic ball 35 10 60 0.0001-5 20

Eye [3] 40 10 500 1.5 30

Plate [2] 20 2 160 3 12

Table 1: Parameters for all videos: magnification factor α, target

frequency f , sampling rate fs, and correction hyper parameter β.

Gun and Light bulb 1 are from [28]; the others are new. The full

sequences and results are available in the supplemental video.

Motion Magnification. To decompose each video frame

into magnitude and phase information, we used a complex

steerable pyramid [25] with half-octave bandwidth filters

and eight orientations. We set the parameterN as 5 in prop-

agation correction (Eq. 7) and this correction was done in-

dependently for each orientation.

4.2. Real Videos

4.2.1 Comparison with Color Magnification

We compared our jerk-aware color acceleration magnifi-

cation technique with two state-of-the-art techniques, linear

[27] and acceleration [28], which can perform color inten-

sity magnification without user annotations or additional in-

formation in the same way as our technique does.

In Figure 4, we first show that our method did not have

any negative effects on a video for which the acceleration

method [28] produced good color magnification results in

the presence of slow large motions.

Figure 5 shows light bulbs shattered by a bullet shot from

a gun. The color variations in the bulb caused by electrical

current changing are hardly visible without magnification

(see the original in Fig. 5). Processing this video with a lin-

ear method [27] reveals color intensity changes, but creates

intensity clipping artifacts. While an acceleration technique

[28] succeeds in magnifying subtle color intensity changes

clearly, it detects steep changes in color intensity due to

quick flying of the transparent fragments of broken light

bulbs and produces messy artifacts. On the other hand, our

proposed method is able to magnify only subtle color in-

tensity changes before and after the light bulbs shattering

despite the quick flying of the transparent fragments.

4.2.2 Comparison with Motion Magnification

We compared our jerk-aware motion acceleration mag-

nification technique with two state-of-the-art techniques.
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Figure 4: Color magnification in the presence of slow large mo-

tions; the light bulb moves upward slowly. Acceleration [28] and

our method are well able to magnify the intensity for videos with-

out artifacts caused by the effects of slow large motions.

These were phase-based [25] and phase-based accelera-

tion [28] techniques that can perform motion magnification

without any need for user annotations and additional infor-

mation.

For Figures 1 and 6, we considered a sports use-case in

which an athlete is shocked externally by hitting a ball or

reacting to the recoil of gun. Our goal in these experiments

was to ascertain what kind of impact they felt while they

were engaged in sports activities.

Figure 1 shows the motion magnification results for a

golf swing video to magnify the subtle deformation of the

iron that occurs when the ball is hit. The phase-based

method [25] induces large artifacts due to the quick swing.

The acceleration method [28] can magnify subtle deforma-

tion of the iron that occurs when the ball is hit, but induces

collapsing of the shape of the iron due to the quick large

swing motion. Our proposed method can reveal this de-

formation by magnifying the acceleration motions [28] and

ignores the effects of the quick large swing motion automat-

ically.

Figure 6 shows a gun-shooting video with slow camera

panning and quick gun recoil motion. We magnify the sub-

tle deformation of the muscles and the skin due to the strong

gun recoil. The phase-based method [25] induces large

noise due to the slow camera panning and quick gun recoil

motion. The acceleration method [28] can magnify subtle

skin deformation of the arm in the presence of slow camera

panning, but induces collapsing of the shape of the gun due

to misdetected quick gun recoil motion. Our method only

magnifies the skin deformation of the arm in the presence

of slow camera panning and quick gun recoil motion.

Figure 7 shows an example of applying our proposed

magnification to a mechanical use-case for managing the

quality of mechanical stability. In this case, a drone is sub-

tly fluctuating with various types of motions: slow parallel

transition, quick rising, and 3D rotation of the body shift.

Our proposed magnification is able to magnify only the sub-

tle fluctuation of the drone without the effects of various

large motions as mentioned above.

Figure 8 shows the case for a ukulele strumming video

Figure 5: Color magnification in the presence of quick large mo-

tions; light bulbs shattered by a gun bullet are depicted by the yel-

low arrow. Our proposed method only magnifies subtle electrical

current changing during quick flying of the transparent fragments

of broken light bulbs (see the purple arrow time intervals).

in which quick hand motions appear many times. Our pro-

posed magnification automatically ignores all the strum-

ming hand motions and can magnify the subtle vibration

of ukulele strings without user annotations and additional

information.

4.3. Controlled Experiments

In Figure 9 (left), we show a 4-second synthetic ball

video. We set the radius of the ball as 20 pixels. The ball

has vertically subtle motion that is defined as dsubtle =

Asin
(

2π f
fsj

)

where A = 0.5 pixels, f = 10 cy-

cles/frame, fs = 60 frames/second, and j is the frame

number. Moreover, the ball has vertical slow large mo-

tions on the screen from the top to bottom, with 0.5 pix-

els/frame. When the frame number j reaches 80 frames,

the ball moves quickly and horizontally with dquick =

Aquicksin
(

2π
fquick

fs
j
)

where Aquick = 0 ∼ 100 pixels,

fquick = 2 cycles/frame, but after 20 frames the ball move-

ment returns to what it was before.

To obtain the ground truth of the subtle motion magnifi-

cation, we created a true magnification video while chang-

ing dsubtle to dsubtleMag = αAsin
(

2π f
fsj

)

where α is an

amplification factor.

4.3.1 Effects of Quick Motion Magnitude

Our purpose is to assess the effectiveness of each motion

magnification technique for magnifying subtle motions and

ignoring quick horizontal large motions of the synthetic ball

while changing the Aquick parameter relative to the ground

truth video. We applied different magnification methods to

the synthetic ball video. We fixed the parameters at α = 20
and β = 1 for all methods except ours for which α was set

to be 35.

Note that to investigate the effectiveness of our proposed

pyramid-based correction, we prepared two magnification
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Figure 6: Sports use-case: visualizing the impact spread in an ath-

lete’s body. We show the spatiotemporal slices along a single red

and green line (top-left). Our method magnifies deformations in

the arm without the effect of camera panning and gun recoil mo-

tion (see the purple circles).

Figure 7: Mechanical use-case: analyzing the quality of mechan-

ical stability. We show the spatiotemporal slices along a single

vertical red line (left). Our proposed magnification is able to mag-

nify and reveal the subtle fluctuation of the drone without artifacts

caused by various types of large motions.

methods: a jerk method that uses a jerk-aware filter without

down sampling correction (Eq. 6) or propagation correction

(Eq. 7), and a jerk-down method that uses a jerk-aware filter

without propagation correction (Eq. 7).

Figure 9 (right) shows the MSE (Mean Square Error) we

obtained between each magnification result and the ground

truth motion magnification as Aquick = 100, measured in

each frame. For the phase-based method [25], we magni-

fied the vibration in the frequency range of 9 to 11 Hz. This

method incurs major errors in all frames due to slow and

quick large motions. The acceleration method [28] magni-

fies subtle motions during the time slow large motions ap-

pear but produces artifacts during the time quick large mo-

tions appear. The jerk and jerk-down methods can cope with

quick horizontal large motions fairly well, but our proposed

jerk-aware method, despite its bigger amplification factor,

best handles quick horizontal large motions while magni-

fying subtle motions that resemble the ground truth in all

frames.

Figure 10 shows how a synthetic ball video behaves

with different quick horizontal large motions Aquick. Here,

at each Aquick we calculate the mean of MSE during

Figure 8: Music playing video: a ukulele being strummed with

repetitive and quick hand motions. We show the spatiotempo-

ral slices along a single red and green line (left). Our proposed

method automatically ignores all the strumming hand motions and

can magnify the subtle vibration of ukulele strings without hand

manipulation or additional information.

the time subtle motions appear with slow large motions

(mMSEsubtle) and the mean of MSE during the time quick

horizontal large motions appear (mMSEquick) relative to

the ground truth. The phase-based method [25] takes large

mMSEsubtle and mMSEquick everyAquick values due to the

effects of slow and quick large motions. Acceleration [28]

and jerk methods keep mMSEsubtle low, but the mMSEquick

increases in proportion to Aquick. The jerk-down method

keeps mMSEquick lower than the above three methods, but

our proposed method is best for keeping mMSEsubtle and

mMSEquick low even if Aquick is increasing.

4.3.2 Effects of Pyramid-based Correction

To evaluate the effectiveness of our proposed pyramid-

based correction, we applied the jerk method, the jerk-down

method, and our proposed jerk-aware method to a synthetic

ball video at the parameter ofAquick = 100 while changing

the hyper parameter β.

In Figure 11, we show mMSEsubtle and mMSEquick for

every β relative to the ground truth video. Although the

hyper parameter β increased in this case, the jerk method

was not able to handle the quick large motions well (Fig.11

left). As we added down sampling correction to the jerk-

aware filter, the jerk-down method correctly obtained the

value of quick large motions in proportion to the pyramid

level. Thus, this method can obtain lower mMSEsubtle

and mMSEquick. However, it cannot completely ignore

quick large motions; as can be seen from the center of

Figure 11, mMSEquick does not reach 0. Our proposed

method uses the jerk-aware filter with all pyramid correc-

tions: down sampling correction and propagation correc-

tion. By integrating spatial information across the pyramid

hierarchy through propagation correction, our method pro-

duces the result that the value of mMSEquick is almost 0 and

mMSEsubtle is kept low; this implies our proposed method

best copes with quick large motions and magnifies subtle

motions in the presence of slow large motions without user

annotations or additional information (Fig.11 right).
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Figure 9: Left: synthetic ball video. Four frames are overlaid to

indicate the ball trajectory that is depicted by the yellow arrow.

The ball performs quick horizontal large motion between 80-100

frames. Right: MSE with the ground truth for each frame of the

synthetic ball video. Smaller MSE is better. Our method outper-

forms all examined techniques.

Figure 10: Mean-MSE during the appearance of subtle motions

in the presence of slow large motions (mMSEsubtle) and mean-

MSE during the appearance of quick large motions (mMSEquick)

with ground truth over different quick large transition Aquick. Our

method handles quick large displacement with lower artifacts bet-

ter than all the other techniques we cited.

5. Discussion and Limitations

While our proposed method expands the applicable

range of video magnification by overcoming disturbance of

quick large motions, it has some limitations.

Our jerk-aware filter can cut off quick large motions

while permeating subtle changes. In other words, our ap-

proach is based on the assumption that subtle changes and

quick large motions are spatio-temporally independent. For

example, Figure 1 shows our method can magnify subtle

deformations of the iron shaft that occur when the ball is

hit, but cannot magnify them while the golf club is being

swung. This is due to the fact that the subtle deformations

mixed with quick large swing motions are regarded as being

subject to removal by the jerk-aware filter. However, such

motions are out of the range of our magnified targets. Even

if we can magnify such subtle motions, quick large motions

overwhelm these magnification results and we cannot fol-

low them with the naked eye. We consider that a method for

detecting and magnifying subtle changes mixed with quick

large motions can be developed as a subject for future work.

Another limitation of our method is due to the assump-

tion that all quick motions are large. If quick subtle changes

exist, our method adversely affects them. As shown in Fig-

ure 9 to 11, our method slightly increases MSE during the

time subtle changes appear. However, as we use magnifica-

tion techniques for revealing subtle changes in videos, the

Figure 11: mMSEsubtle and mMSEquick with ground truth over

different hyper parameter β. Our proposed method best handles

quick large motions while magnifying subtle motions; mMSEquick

is almost 0 and mMSEsubtle is kept low.

most important points are detecting and magnifying their

amplitude. We define the amplitude of subtle changes as the

distance between the top side of the crest and the bottom of

the trough. Since our jerk-aware filter adopts a Gaussian

filter, the surroundings of the crest and trough are smoothly

connected. This indicates that our method does not affect

the crest and the trough of subtle changes much and pre-

serves their amplitude. Therefore, for example, compared

with directly using the amplitude of changes to remove

large motions, our method is superior in that only the quick

large motions can be filtered out without worrying about the

amplitude of the subtle changes being affected. However,

an unresolved problem is that our proposed method slightly

distorts magnified subtle changes; Figure 5 shows our color

intensity magnification video slightly sharpens subtle light

intensity changes compared with [28].

6. Conclusions

We present a method for magnifying subtle variations in

the presence of slow and quick large motions without the

need for user annotations or additional information.

Video acceleration magnification [28] has been recently

proposed for magnifying subtle changes in the presence of

large motions without requiring the additional resources.

However, this method can only handle slow large motions.

It excessively magnifies quick large motions and produces

noisy magnification results.

To overcome this limitation, on the basis of our obser-

vation that subtle changes are smoother than quick large

motions at temporal scale, we use jerk to evaluate the dif-

ference in smoothness between them. Using the jerk-based

smoothness, we designed a jerk-aware filter that passes only

subtle changes under quick large motions. Our proposed fil-

ter is able to dramatically cut off artifacts caused by quick

large motions in a video acceleration method [28] and thus

produces impressive magnification results.

We demonstrated our proposed method on synthetic and

real videos and obtained better results than those obtained

with other methods. Our method is highly applicable to

sports use-cases (Golf and Gun), for mechanical stability

quality control (Drone), and music entertainment (Ukulele).
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