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Our novel monocular reconstruction approach estimates high-quality facial geometry, skin reflectance (including facial hair)

and incident illumination at over 250 Hz. A trainable multi-level face representation is learned jointly with the feed forward

inverse rendering network. End-to-end training is based on a self-supervised loss that requires no dense ground truth.

Abstract

The reconstruction of dense 3D models of face geom-

etry and appearance from a single image is highly chal-

lenging and ill-posed. To constrain the problem, many ap-

proaches rely on strong priors, such as parametric face

models learned from limited 3D scan data. However, prior

models restrict generalization of the true diversity in fa-

cial geometry, skin reflectance and illumination. To alle-

viate this problem, we present the first approach that jointly

learns 1) a regressor for face shape, expression, reflectance

and illumination on the basis of 2) a concurrently learned

parametric face model. Our multi-level face model com-

bines the advantage of 3D Morphable Models for regular-

ization with the out-of-space generalization of a learned

corrective space. We train end-to-end on in-the-wild im-

ages without dense annotations by fusing a convolutional

encoder with a differentiable expert-designed renderer and

a self-supervised training loss, both defined at multiple de-

tail levels. Our approach compares favorably to the state-

of-the-art in terms of reconstruction quality, better general-

izes to real world faces, and runs at over 250 Hz.

1. Introduction

Monocular face reconstruction has drawn an incredible

amount of attention in computer vision and graphics in the

last decades. The goal is to estimate a high-quality per-

sonalized model of a human face from just a single photo-

graph. Such a model ideally comprises several interpretable

semantic dimensions, e.g., 3D facial shape and expressions

as well as surface reflectance properties. Research in this

area is motivated by the increasing availability of face im-

ages, e.g., captured by webcams at home, as well as a wide

range of important applications across several fields, such

as facial motion capture, content creation for games and

movies, virtual and augmented reality, and communication.

The reconstruction of faces from a single photograph is

a highly challenging and ill-posed inverse problem, since

the image formation process convolves multiple complex

physical dimensions (geometry, reflectance and illumina-

tion) into a single color measurement per pixel. To deal

with this ill-posedness, researchers have made additional

prior assumptions, such as constraining faces to lie in

a low-dimensional subspace, e.g., 3D Morphable Models

(3DMM) [8] learned from scan databases of limited size.

Many state-of-the-art optimization-based [6, 7, 52, 61, 26]

and learning-based face reconstruction approaches [16, 48,

49, 62, 60] heavily rely on such priors. While these algo-

rithms yield impressive results, they do not generalize well

beyond the restricted low-dimensional subspace of the un-

derlying model. Consequently, the reconstructed 3D face

may lack important facial details, contain incorrect facial

features and not align well to an image. For example,

beards have shown to drastically deteriorate the reconstruc-

tion quality of algorithms that are trained on pure synthetic

data [48, 49, 54] or employ a 3DMM for regularization

[8, 61, 26, 62, 60]. Some approaches try to prevent these

failures via heuristics, e.g., a separate segmentation method

to disambiguate disjunct skin and hair regions [52]. Recent

methods refine a fitted prior by adding fine-scale details, ei-

ther based on shape-from-shading [26, 48] or pre-learned

regressors [16, 49]. However, these approaches rely on
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Figure 1. Our approach regresses a low-dimensional latent face representation at over 250 Hz. The feed forward CNN is jointly learned

with a multi-level face model that goes beyond the low-dimensional subspace of current 3DMMs. Trainable layers are shown in blue and

expert-designed layers in gray. Training is based on differentiable image formation in combination with a self-supervision loss (orange).

slow optimization or require a high-quality annotated train-

ing corpus. Besides, they do not build an improved sub-

space of medium-scale shape, reflectance and expression,

which is critical for generalization. Very recently, Sela et

al. [54] predicted a per-pixel depth map to deform and fill

holes of a limited geometry subspace learned during train-

ing. While the results are impressive, the non-rigid registra-

tion runs offline. Furthermore, their method captures face

geometry only and fails if the faces differ drastically from

the training corpus, e.g., in terms of skin reflectance and fa-

cial hair. Ideally, one would like to build better priors that

explain a rich variety of real-world faces with meaningful

and interpretable parameters. Learning such models in the

traditional way requires large amounts of densely labeled

real world data, which is practically infeasible.

We present an entirely new end-to-end trainable method

that jointly learns 1) an efficient regressor to estimate

high-quality identity geometry, face expression, and col-

ored skin reflectance, alongside 2) the parameterization of

an improved multi-level face model that better generalizes

and explains real world face diversity. Our method can

be trained end-to-end on sparsely labeled in-the-wild im-

ages and reconstructs face and illumination from monocu-

lar RGB input at over 250 Hz. Our approach takes advan-

tage of a 3DMM for regularization and a learned corrective

space for out-of-space generalization. To make end-to-end

training on in-the-wild images feasible, we propose a hy-

brid convolutional auto-encoder that combines a CNN en-

coder with a differentiable expert-designed rendering layer

and a self-supervision loss, both defined at multiple levels

of details. In addition, we incorporate a novel contour con-

straint that generates a better face alignment. Unlike Tewari

et al. [60], our auto-encoder learns an improved multi-level

model that goes beyond a predefined low-dimensional para-

metric face prior. Experimental evaluations show that our

approach is more robust, generalizes better, and estimates

geometry, reflectance and lighting at higher quality.

2. Related Work

We focus our discussion on optimization- and learning-

based approaches that employ parametric models. While

high-quality multi-view 3D reconstruction methods [4, 13,

5, 24, 30, 69] exist, we are interested in the harder monocu-

lar reconstruction problem.

Parametric Face Models: The most widely used face

model is the 3D Morphable Model (3DMM) [8], which is

an affine parametric model of face geometry and texture

that is learned from high quality scans. A similar model

for facial animation is presented in [6]. Recently, Booth et

al. [11] created a Large-scale Facial Model (LSFM) from

around 10,000 facial scans which represents a richer shape

distribution. In Booth et al. [10], the face model is aug-

mented with an ‘in-the-wild’ texture model. Fitting such a

model to an image is a non-convex optimization problem,

akin to frameworks based on Active Shape (ASMs) [22]

and Appearance (AAMs) [21] Models. Although 3DMMs

are highly efficient priors, they limit face reconstruction to a

restricted low-dimensional subspace, e.g., beards or charac-

teristic noses can not be reconstructed. We, on the contrary,

extend the limited subspace by jointly learning a correction

model that generalizes much better to real-world data.

Optimization-based Approaches: Many approaches

for monocular face reconstruction [50], reconstruction

based on image collections [51], and the estimation of high-

quality 3D face rigs [26] are based on energy optimization.

Impressive face reconstruction results have been obtained

from varying data sources, e.g., photo collections [36], in-

ternet photos [35] or videos [59]. Also, methods that do not

rely on a trained shape or appearance model have been pro-

posed, e.g., they use a model obtained using modal analysis

[1], or leverage optical flow in combination with message-

passing [25]. While real-time face tracking is in general

feasible [61, 31], optimization-based face reconstruction is

computationally expensive. Moreover, optimization-based

approaches are sensitive to initialization, thus requiring 2D

landmark detection [66, 34]. Some approaches allow the 3D

face silhouette to slide over a predefined path (e.g., isolines)

[17, 71] or iterate over a fixed vertex set to find 3D contour

correspondences [23]. Our approach requires neither an ex-

pensive optimization strategy nor parameter initialization,

yet it accurately fits a 3D face mesh to an image by taking

silhouettes into account during training.
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Learning-based Approaches: In addition to

optimization-based reconstruction approaches, there

are many learning-based methods [72, 41, 27, 20, 56].

Among them there are methods that learn to detect fiducial

points in images with high accuracy, e.g., based on CNNs

[58, 70, 15] or Restricted Boltzmann Machines [67].

Furthermore, we can also find (weakly) supervised deep

networks that integrate generative models to solve tasks

like facial performance capture [39]. Ranja et al. [47]

proposed a multi-purpose CNN for regressing semantic

parameters (e.g., age, gender, pose) from face images.

Richardson et al. [48] proposed a hybrid learning- and

optimization-based method that reconstructs detailed facial

geometry from a single image. The work presented in [49]

train an end-to-end regressor to recover facial geometry at a

coarse- and fine-scale level. In [62], face shape and texture

are regressed for face identification. The generalization of

the latter face reconstruction approaches ([48, 49, 62]) to

the real-world diversity of face is limited by the underlying

low-dimensional face model.

Corrective Basis and Subspace Learning: Face re-

construction quality can be improved by adding medium-

scale detail. Li et al. [40] use incremental PCA for on-the-

fly personalization of the expression basis. Bouaziz et al.

[12] introduced medium-scale shape correctives based on

manifold harmonics [65]. Recently, Garrido et al. [26] pro-

posed to learn medium-scale shape from a monocular video

based on a fixed corrective basis. Sela et al. [54] directly

regress depth and per-pixel correspondence, thus going be-

yond the restricted subspace of a 3DMM. Nonetheless, they

do not recover colored surface reflectance and require an

off-line non-rigid registration step to obtain reconstructions

with known consistent topology. To the best of our knowl-

edge, there is no algorithm that jointly learns geometry and

reflectance correctives from in-the-wild images.

Deep Integration of Generative Models: The seminal

work by Jaderberg et al. [32] introduced spatial transformer

nets that achieve pose-invariance within a neural network.

The authors of [3] extend this work by using a 3DMM as

spatial transformer network. Perspective transformer nets

[68] are able to obtain a 3D object representation from a

single 2D image. The gvvn library [28] implements low-

level computer vision layers for such transformations. Re-

cently, a model-based face autoencoder (MoFA) [60] has

been proposed for monocular face reconstruction that com-

bines an expert-designed rendering layer with a trainable

CNN encoder. Their results are remarkable but limited

to the fixed low-dimensional subspace of the face model.

Out-of-subspace variation, e.g., facial detail and personal-

ized noses, are not reproduced and severely degrades the

reconstruction quality. Our approach addresses all these

challenges, achieving more robustness and higher quality

in terms of geometry and reflectance.

3. Method Overview

Our novel face reconstruction approach estimates high-

quality geometry, skin reflectance and incident illumination

from a single image. We jointly train a regressor for all di-

mensions on the basis of a concurrently learned multi-level

parametric face model, see Fig. 1.

Parameter Regression: At test time (Fig. 1, left), a

low-dimensional, yet expressive and discriminative, latent

space face representation is computed in under 4ms using a

feed forward CNN, e.g., AlexNet [38] or VGG-Face [45].

Our latent space is based on a novel multi-level face model

(Sec. 4) that combines a coarse-scale 3DMM with train-

able per-vertex geometry and skin reflectance correctives.

This enables our approach to go beyond the restricted low-

dimensional geometry and skin reflectance subspaces, com-

monly used by 3DMM-based methods for face fitting.

Self-Supervised Training: We train (Fig. 1, right)

the feed forward network jointly with the corrective space

based on a novel CNN architecture that does not rely on a

densely annotated training corpus of ground truth geometry,

skin reflectance and illumination. To this end, we combine

the multi-level model with an expert-designed image for-

mation layer (Sec. 5) to obtain a differentiable computer

graphics module. To enable the joint estimation of our

multi-level face model, this module renders both the coarse

3DMM model and the medium-scale model that includes

the correctives. For training, we employ self-supervised

loss functions (Sec. 6) to enable efficient end-to-end train-

ing of our architecture on a large corpus of in-the-wild face

images without the need for densely annotated ground truth.

We evaluate our approach qualitatively and quantitatively,

and compare it to state-of-the-art optimization and learning-

based face reconstruction techniques (see Sec. 7).

4. Trainable Multi-level Face Model

At the core of our approach is a novel multi-level face

model that parameterizes facial geometry and skin re-

flectance. Our model is based on a manifold template mesh

with N ∼ 30k vertices and per-vertex skin reflectance. We

stack the x-, y- and z-coordinates of all vertices vi ∈ V in

a geometry vector vf ∈ R
3N . Similarly, we obtain a vector

of per-vertex skin reflectance rf ∈ R
3N . We parameterize

geometry and reflectance as follows:

vf(xg) = vb(α) + Fg(δg|Θg) ∈ R
3N (geometry), (1)

rf(xr) = rb(β) + Fr(δr|Θr) ∈ R
3N (reflectance), (2)

where xg = (α, δg,Θg) and xr = (β, δr,Θr) are the ge-

ometry and reflectance parameters, respectively. At the base

level is an affine face model that parameterizes the (coarse)

facial geometry vb and (coarse) skin reflectance rb via a

low-dimensional set of parameters (α,β). In addition, we
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employ correctives to add medium-scale geometry Fg and

reflectance Fr deformations, parametrized by (δg,Θg) and

(δr,Θr), respectively. A detailled explanation will follow

in Sec. 4.2. A combination of the base level model with the

corrective model yields the final level model, parameteriz-

ing vf and rf. In the following, we describe the different

levels of our multi-level face model.

4.1. Static Parametric Base Model

The parametric face model employed on the base level

expresses the space of plausible facial geometry and re-

flectance via two individual affine models:

vb(α) = ag +

ms+me
∑

k=1

αkb
g
k (geometry) , (3)

rb(β) = ar +

mr
∑

k=1

βkb
r
k (reflectance) . (4)

Here, ag ∈ R
3N is the average facial geometry and ar ∈

R
3N the corresponding average reflectance. The subspace

of reflectance variations is spanned by the vectors {br
k}

mr

k=1
,

created using PCA from a dataset of 200 high-quality face

scans (100 male, 100 female) of Caucasians [8]. The geom-

etry subspace is split into ms and me modes, representing

shape and expression variations, respectively. The vectors

spanning the subspace of shape variations {bg
k}

ms

k=1
are con-

structed from the same data as the reflectance space [8]. The

subspace of expression variations is spanned by the vectors

{bg
k}

ms+me

k=ms+1
which were created using PCA from a sub-

set of blendshapes of [2] and [18]. Note that these blend-

shapes have been transferred to our topology using defor-

mation transfer [57]. The basis captures 99% of the vari-

ance of the used blendshapes. We employ ms = mr = 80
shape and reflectance vectors, and me = 64 expression vec-

tors. The associated standard deviations σg and σr have

been computed assuming a normally distributed population.

The model parameters (α,β) ∈ R
80+64 × R

80 constitute a

low-dimensional encoding of a particular face. Even though

such a parametric model provides a powerful prior, its low

dimensionality is a severe weakness as it can only represent

coarse-scale geometry.

4.2. Trainable Shape and Reflectance Corrections

Having only a coarse-scale face representation is one

of the major shortcomings of many optimization- and

learning-based reconstruction techniques, such as [8, 6, 61,

60]. Due to its low dimensionality, the base model de-

scribed in Sec. 4.1 has a limited expressivity for modeling

the facial shape and reflectance at high accuracy. A partic-

ular problem is skin albedo variation, since the employed

model has an ethnic bias and lacks facial hair, e.g., beards.

The purpose of this work is to improve upon this by learning

a trainable corrective model that can represent these out-of-

space variations. Unlike other approaches that use a fixed

pre-defined corrective basis [26], we learn both the gener-

ative model for correctives and the best corrective parame-

ters. Furthermore, we require no ground truth annotations

for geometry, skin reflectance and incident illumination.

Our corrective model is based on (potentially non-linear)

mappings F• : RC → R
3N that map the C-dimensional

corrective parameter space onto per-vertex corrections in

shape or reflectance. The mapping F•(δ•|Θ•) is a function

of δ• ∈ R
C that is parameterized by Θ•. The motivation

for disambiguating between δ• and Θ• is that during train-

ing we learn both δ• and Θ•, while at test time we keep

Θ• fixed and directly regress the corrective parameters δ•
using the feed forward network. In the affine/linear case,

one can interpret Θ• as a basis that spans a subspace of the

variations, and δ• is the coefficient vector that reconstructs

a given sample using the basis. However, in general we do

not assume F• to be affine/linear. The key difference to the

base level is that the correction level does not use a fixed

pre-trained basis but learns a generative model, along with

the coefficients, directly from the training data.

5. Differentiable Image Formation Model

To train our novel multi-level face reconstruction ap-

proach end-to-end, we require a differentiable image forma-

tion model. In the following, we describe its components.

Full Perspective Camera: We parameterize the posi-

tion and rotation of the virtual camera based on a rigid trans-

formation Φ(v) = Rv + t, which maps a model space 3D

point v onto camera space v̂ = Φ(v). Here, R ∈ SO(3)
is the camera rotation and t ∈ R

3 is the translation vector.

To render virtual images of the scene, we use a full perspec-

tive camera model to project the camera space point v̂ into

a 2D point p = Π(v̂) ∈ R
2. The camera model contains

the intrinsics and performs the perspective division.

Illumination Model: We make the assumption of dis-

tant lighting and approximate the incoming radiance using

spherical harmonics (SH) basis functions Hb : R3 → R.

We assume that the incoming radiance only depends on the

surface normal n:

B̃(r,n,γ) = r⊙
B2

∑

b=1

γbHb(n) . (5)

Here, ⊙ denotes the Hadamard product, r is the surface re-

flectance and B is the number of spherical harmonics bands.

γb ∈ R
3 are coefficients to control the illumination. Since

the incident radiance is sufficiently smooth, an average error

below 1% [46] can be achieved with only B = 3 bands in-

dependent of the illumination. This leads to ml = B2 = 9
variables per color channel.
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Image Formation: Our differentiable image formation

layer takes as input the per-vertex shape and reflectance in

model space. This can be the model of the base level vb

and rb or of the final level vf and rf that include the learned

correctives. Let vℓ
i ∈ R

3 and rℓi ∈ R
3 denote the posi-

tion and the reflectance of the i-th vertex for the base level

(ℓ = b) and the final level (ℓ = f). Our rendering layer

takes this information and forms a point-based rendering of

the scene, as follows. First, it maps the points onto camera

space, i.e., v̂ℓ
i = Φ(vℓ

i ), and then computes the projected

pixel positions of all vertices as

uℓ
i(x) = Π(v̂ℓ

i ) .

The shaded colors cℓi at these pixel locations are computed

based on the illumination model described before:

cℓi(x) = B̃(rℓi , n̂
ℓ
i ,γ) ,

where n̂ℓ
i are the associated camera space normals to v̂ℓ

i .

Our image formation model is differentiable, which enables

end-to-end training using back propagation. The free vari-

ables that the regressor learns to predict are: The model

parameters (α,β, δg, δr), the camera parameters R, t and

the illumination parameters γ. In addition, during training,

we learn the corrective shape and reflectance bases Θg , Θr.

This leads to the following vector of unknowns:

x = (α,β, δg, δr,R, t,γ,Θg,Θr) ∈ R
257+2C+|Θg|+|Θr| .

6. Self-supervised Learning

Our face regression network is trained using a novel self-

supervision loss that enables us to fit our base model and

learn per-vertex correctives end-to-end. Our loss function

consists of a data fitting and regularization term:

Etotal(x) = Edata(x) + wregEreg(x) , (6)

where Edata penalizes misalignments of the model to the in-

put image and Ereg encodes prior assumptions about faces at

the coarse and medium scale. Here, wreg is a trade-off factor

that controls the amount of regularization. The data fitting

term is based on sparse and dense alignment constraints:

Edata(x) = Esparse(x) + wphotoEphoto(x) . (7)

The regularization term represents prior assumptions on the

base and corrective model:

Ereg(x) = Estd(x)+Esmo+Eref(x)+Eglo(x)+Esta(x) .
(8)

In the following, the individual terms are explained in detail.

Figure 2. We distinguish between fixed and sliding feature points.

This leads to better contour alignment. Note how the outer contour

depends on the rigid head pose (left). The skin mask (right) is

employed in the global reflectance constancy constraint.

6.1. Data Terms

Multi-level Dense Photometric Loss: We employ a

dense multi-level photometric loss function that measures

the misalignment of the coarse and fine fit to the input. Let

V̄ be the set of all visible vertices. Our photometric term is

then defined as:

Ephoto(x) =
∑

ℓ∈{b,f}

1

N

∑

i∈V̄

∥

∥

∥
I
(

uℓ
i(x)

)

− cℓi(x)
∥

∥

∥

2
. (9)

Here, uℓ
i(x) is the screen space position, cℓi(x) is the shaded

color of the i-th vertex, and I is the current image during

training. For robustness, we employ the ℓ2,1-norm, which

measures the color distance using the ℓ2-norm, while the

summation over all pixel-wise ℓ2-norms encourages spar-

sity as it corresponds to the ℓ1-norm. Visibility is computed

using backface culling. This is an approximation, but works

well, since faces are almost convex.

Sparse Feature Points: Faces contain many salient fea-

ture points. We exploit this by using a weak supervision

in the form of automatically detected 66 facial landmarks

f ∈ F ⊂ R
2 [53] and associated confidence cf ∈ [0, 1]

(1 confident). The set of facial landmarks falls in two cat-

egories: Fixed and sliding feature points. Fixed feature

points, e.g. eyes and nose, are associated with a fixed ver-

tex on the template model, whereas sliding feature points,

e.g., the face contour, change their position on the template

based on the rigid pose, see Fig. 2. We explicitly model this

as follows:

Esparse(x) =
1

|F|

∑

f∈F

cf ·
∥

∥f − ub
kf
(x)

∥

∥

2

2
. (10)

Here, kf is the index of the target vertex. For fixed feature

points, we hard-code the index of the corresponding mesh

vertex. The indexes for sliding feature points are computed

via an alternation scheme: In each step of stochastic gradi-

ent descent, we find the mesh vertex that is closest to the 3D

line, defined by the camera center and the back-projection

of the detected 2D feature point. Based on the squared Eu-

clidean distance we set kf to the index of the closest vertex.
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6.2. Regularization Terms

Statistical Regularization: We enforce statistical regu-

larization on the 3DMM model parameters of the base level

to ensure plausible reconstructions. Based on the assump-

tion that the model parameters follow a zero-mean Gaussian

distribution, we employ Tikhonov regularization:

Estd(x ) =
m s+ m eX

k =1

�
αk

(� g )k

� 2

+ wrstd

m rX

k =1

�
βk

(� r )k

� 2

. (11)

This is a common constraint [8, 61, 26, 60] that prevents the

degeneration of the facial geometry and face reflectance in

the ill-posed monocular reconstruction scenario.

Corrective Smoothness: We also impose local smooth-

ness by adding Laplacian regularization on the vertex dis-

placements for the set of all vertices V:

Esmo(x)=
wsmo

N

∑

i∈V

∥

∥

∥

1

|Ni|

∑

j∈Ni

(

(Fg(x))i−(Fg(x))j
)

∥

∥

∥

2

2
.

(12)

Here, (Fg(x))i = (Fg(δg|Θg))i denotes the correction for

the i-th vertex given the parameter x, and Ni is the 1-ring

neighborhood of the i-th vertex.

Local Reflectance Sparsity: In spirit of recent intrinsic

decomposition approaches [9, 43], we enforce sparsity to

further regularize the reflectance of the full reconstruction:

Eref(x) = wref

1

N

∑

i∈V

∑

j∈Ni

wi,j ·
∥

∥

∥
rf
i(x)− rf

j(x)
∥

∥

∥

p

2
.

(13)

Here, wi,j = exp(−α · ||I(uf
i(x

old)) − I(uf
j(x

old))||2) are

constant weights that measure the chromaticity similarity

between the colors in the input, where xold are the param-

eters estimated in the previous iteration. We assume that

pixels with the same chromaticity are more likely to have

the same reflectance. The term ‖·‖p2 enforces sparsity on

the combined reflectance estimate. We employ α = 50 and

p = 0.9 in all our experiments.

Global Reflectance Constancy: We enforce skin re-

flectance constancy over a fixed set of vertices that covers

only the skin region, see Fig. 2 (right):

Eglo(x) = wglo

1

|M|

∑

i∈M

∑

j∈Gi

∥

∥

∥
rf
i(x)− rf

j(x)
∥

∥

∥

2

2
. (14)

Here, M is the per-vertex skin mask and Gi stores 6 random

samples of vertex indexes of the mask region. The idea is to

enforce the whole skin region to have the same reflectance.

For efficiency, we use reflectance similarity between ran-

dom pairs of vertices in the skin region. Note that regions

that may have facial hair were not included in the mask.

In combination, local and global reflectance constancy effi-

ciently removes shading from the reflectance channel.

Figure 3. Our approach allows for high-quality reconstruction of

facial geometry, reflectance and incident illumination from just a

single monocular color image. Note the reconstructed facial hair,

e.g., the beard, reconstructed make-up, and the eye lid closure,

which are outside of the space of the used 3DMM.

Figure 4. Jointly learning a multi-level model improves the ge-

ometry and reflectance compared to the 3DMM. Note the better

aligning nose, lips and the reconstructed facial hair.

Figure 5. Comparison of linear and non-linear corrective spaces.

Stabilization: We also ensure that the corrected geome-

try stays close to the base reconstruction by enforcing small

vertex displacements:

Esta(x) = wsta

1

N

∑

i∈V

∥

∥

∥
(Fg(x))i

∥

∥

∥

2

2
. (15)

7. Results

We demonstrate joint end-to-end self-supervised train-

ing of the feed forward encoder and our novel multi-level

face representation based on in-the-wild images without the

need for densely annotated ground truth. Our approach

regresses pose, shape, expression, reflectance and illumi-

nation at high-quality with over 250 Hz, see Fig. 3. For

the feed forward encoder we employ a modified version of

AlexNet [38] that outputs the parameters of our face model.

Note that other feed forward architectures could be used.

We implemented our approach using Caffe [33]. Training
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