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Abstract

In this paper, we propose a novel learning method for im-

age classification called Between-Class learning (BC learn-

ing)1. We generate between-class images by mixing two im-

ages belonging to different classes with a random ratio. We

then input the mixed image to the model and train the model

to output the mixing ratio. BC learning has the ability to

impose constraints on the shape of the feature distributions,

and thus the generalization ability is improved. BC learn-

ing is originally a method developed for sounds, which can

be digitally mixed. Mixing two image data does not ap-

pear to make sense; however, we argue that because con-

volutional neural networks have an aspect of treating input

data as waveforms, what works on sounds must also work

on images. First, we propose a simple mixing method us-

ing internal divisions, which surprisingly proves to signifi-

cantly improve performance. Second, we propose a mixing

method that treats the images as waveforms, which leads

to a further improvement in performance. As a result, we

achieved 19.4% and 2.26% top-1 errors on ImageNet-1K

and CIFAR-10, respectively.2

1. Introduction

Deep convolutional neural networks (CNNs) [18] have

achieved high performance in various tasks, such as image

recognition [17, 11], speech recognition [1, 21], and sound

recognition [19, 26]. One of the biggest themes of research

on image recognition has been network engineering. Many

types of image recognition networks have been proposed

mainly in ILSVRC competition [17, 23, 25, 11, 28, 29, 12].

Furthermore, training deep neural networks is difficult, and

many techniques have been proposed to achieve a high per-

formance: data augmentation techniques [17], new network

layers such as dropout [24] and batch normalization [14],

optimizers such as Adam [15], and so on. Thanks to these

1Our preliminary experimental results on CIFAR-10 and ImageNet-1K

were already presented in ILSVRC2017 on July 26, 2017.
2The code is publicly available at

https://github.com/mil-tokyo/bc_learning_image/.
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Figure 1. We argue that CNNs have an aspect of treating the input

data as waveforms. In that case, a mixture of two images is a mix-

ture of two waveforms. This make sense for machines, although it

does not visually make sense for humans.

research studies, training deep neural networks has become

relatively easy, with a stable performance, at least for image

classification. At present, a novel approach is needed for

further improvement.

In [3], a simple and powerful learning method named

Between-Class learning (BC learning) was proposed for

deep sound recognition. BC learning aims to learn a clas-

sification problem by solving the problem of predicting the

mixing ratio between two different classes. They generated

between-class examples by mixing two sounds belonging to

different classes with a random ratio. They then input the

mixed sound to the model and trained the model to output

the mixing ratio of each class. The advantages of BC learn-

ing are not limited only to the increase in variation of the

training data. They argued that BC learning has the abil-

ity to impose constraints on the feature distributions, which

cannot be achieved with standard learning, and thus the gen-

eralization ability is improved. They carefully designed the

method of mixing two sounds, considering the difference in

the sound energies, to achieve a satisfactory performance.

As a result, BC learning improved the performance on vari-

ous sound recognition networks, datasets, and data augmen-

tation schemes, and they achieved a performance surpasses

the human level in sound classification tasks.

The question here is whether BC learning also performs

well on images. The core idea of BC learning itself, i.e.,
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mixing two examples and training the model to output the

mixing ratio, can be used irrespective of the modality of

input data. BC learning is applicable to sounds, because

sound is a kind of wave motion and a mixture of multiple

sound data still counts as a sound. However, an image is

not a kind of wave motion, and mixing multiple image data

does not visually make sense. We show an example of a

mixed image in Fig. 1(top). A mixed image loses its object-

ness and does not count as an image. Therefore, it appears

inappropriate to apply BC learning to images.

However, the important thing is not how humans per-

ceive the mixed data, but how machines perceive them. We

argue that CNNs have an aspect of treating input data as

waveforms, considering the recent studies on speech and

sound recognition and the characteristics of image data as

pixel values. We assume that CNNs recognize images by

treating them as waveforms in quite a similar manner to

how they recognize sounds. Thus, a mixture of two images

is a mixture of two waveforms as shown in Fig. 1(bottom),

and it would make sense for machines. Therefore, what is

effective for sounds would also be effective for images.

We thus propose BC learning for images in this paper.

First, we propose the simplest mixing method using inter-

nal divisions. Surprisingly, this mixing method proves to

perform well. Second, we also propose an improved mix-

ing method that treats images as waveform data (BC+). In

this method, we subtract the per-image mean value from

each image. By doing this, we can treat each image as a

zero-mean waveform similar to a sound. We then define the

image energy as the standard deviation per image, and mix

two images considering the image energy in quite a similar

manner to what [3] did for sounds. This mixing method is

also simple and easy to implement, and leads to a further

improvement in performance.

Experimental results show that BC learning also im-

proves the performance of various types of image recog-

nition networks from a simple network to the state-of-the-

art networks. The top-1 error of ResNeXt-101 (64 × 4d)

[28] on ImageNet-1K is improved from 20.4% to 19.4%
by using the simplest BC learning. Moreover, the error

rate of the state-of-the-art Shake-Shake Regularization [9]

on CIFAR-10 dataset is improved from 2.86% to 2.26% by

using the improved BC learning (BC+). Finally, we visual-

ize the learned features and show that BC learning indeed

imposes a constraint on the feature distribution. The contri-

butions of this paper are as follows:

• We applied BC learning [3] to images by mixing two

images belonging to different classes and training the

model to output the mixing ratio.

• We argued that CNNs have an aspect of treating input

data as waveforms, and proposed a mixing method that

treats the images as waveforms.

• We conducted experiments extensively and demon-

strated the effectiveness of BC learning for images.

The remainder of this paper is organized as follows. In

Section 2, we provide a summary of BC learning for sound

recognition [3] as a related work. We then propose BC

learning for image recognition in Section 3, explaining the

relationship with BC learning for sounds. In Section 4,

we compare the performance of standard learning and BC

learning, and demonstrate the effectiveness of BC learning.

Finally, we conclude this paper in Section 5.

2. BC learning for sounds

In this section, we describe BC learning for sound recog-

nition [3] as a related work. The contents in this section is a

summarization of Section 3 of [3]. Please see [3] for more

detailed information.

2.1. Overview

In standard learning for classification problems, a sin-

gle training example is selected from the dataset and input

to the model. Then, the the model is trained to output a

one-hot label. By contrast, in BC learning, two training ex-

amples belonging to different classes are selected from the

dataset and mixed with a random ratio. Then, the mixed

data is input to the model, and the model is trained to out-

put the mixing ratio of each class. KL-divergence between

the outputs of the model and the ratio labels is used as the

loss function, instead of the usual cross-entropy loss. Note

that mixing is not performed in testing phase.

2.2. Mixing method

Let {x1, t1} and {x2, t2} be two sets of sounds and

one-hot labels belonging to different classes randomly se-

lected from the training dataset. A random ratio r is gener-

ated from the uniform distribution U(0, 1) , and two sounds

and labels are mixed with this ratio. Two labels t1 and t2

are mixed simply by r t1 + (1 − r) t2 because BC learn-

ing aims to train the model to output the mixing ratio. We

then explain how to mix two sounds x1 and x2 , which

should be carefully designed to achieve a satisfactory per-

formance. The simplest method is r x1+(1− r)x2 . Here,
r x1+(1−r)x2√

r2+(1−r)2
is better because sound energy is proportional

to the square of the amplitude. However, when the differ-

ence in sound pressure level between x1 and x2 is large,

the perception of the sound mixed by this method does not

become x1 : x2 = r : (1 − r) . In this case, training the

model with a label of r t1 + (1− r) t2 is inappropriate. To

address this problem, they proposed to use a mixing method

that considers the sound pressure level of two sounds G1

and G2 [dB] so that the auditory perception of the mixed

sound becomes x1 : x2 = r : (1− r) :
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px1 + (1− p)x2
√

p2 + (1− p)2
,

where p =
1

1 + 10
G1−G2

20 · 1− r
r

.

(1)

2.3. How BC learning works

We explain how BC learning improves the classification

performance. They argued that BC learning has the abil-

ity to impose the following two constraints on the feature

distributions learned by the model by training the model to

output the mixing ratio between two classes:

• Enlargement of Fisher’s criterion [8] (i.e., the ratio

of the between-class distance to the within-class vari-

ance).

• Regularization of positional relationship among fea-

ture distributions.

They hypothesized that when a mixed sound is input to

the model, the feature of the mixed sound is located approx-

imately in near the internally dividing point of the features

of original two sounds. This hypothesis came from the fact

that linearly-separable features are learned in hidden layers

close to the output layer [2] and that humans can perceive

which of the two sounds is louder from a digitally mixed

sound. They showed that this hypothesis was indeed cor-

rect by visualizing the feature distributions of the standard-

learned model using PCA. Under this hypothesis, we ex-

plain the two constraints that BC learning can impose on

the feature distributions.

Enlargement of Fisher’s criterion. They argued that BC

learning enlarges Fisher’s criterion [8] between any two

classes in the feature space. We explain the reason in

Fig. 2(top). If Fisher’s criterion between the feature dis-

tributions of class A (red) and class B (blue) is small as

shown in Fig. 2(upper left), the feature distribution of the

sounds obtained by mixing class A and B at a certain ratio

(magenta) becomes large, and would have a large overlap

with one or both feature distributions of class A and class

B. In this case, the model cannot output the mixing ratio for

some mixed examples projected onto the overlapping area,

and BC learning gives a large loss. To let the model output

the mixing ratio and make the loss of BC learning small,

Fisher’s criterion should be large as shown in Fig. 2(upper

right). In this case, the overlap becomes small, and BC

learning gives a small loss. Therefore, BC learning enlarges

Fisher’s criterion in the feature space.

Regularization of positional relationship among fea-

ture distributions. They also argued that BC learning

BC learning (ours)

A

B

mixr(A,B)

f(mixr(x1,x2))

f(x1)

f(x2)

A

B

C

r = 0

r = 1

mixr(A,B)

BC learning (ours)A

B

C
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Standard learning

crossing!

Standard learning A

B

f(mixr(x1,x2))

f(x1)

f(x2)

mixr(A,B)

overlapping!

1. Enlargement of Fisher’s criterion

2. Regularization of positional relationship

Figure 2. BC learning has the ability to impose constraints on the

feature distribution, which cannot be achieved with the standard

learning [3]. This figure represents the class distribution in the

feature space. The black dashed line represents the trajectory of

the feature when we input a mixture of two particular sounds to

the model changing the mixing ratio from 0 to 1.

has the effect of regularizing the positional relationship

among class feature distributions. We explain the reason

in Fig. 2(bottom). If the features of each class are not regu-

larly distributed as shown in Fig. 2(lower left), the decision

boundary of class C other than both A and B would appear

between class A and class B, and some of the mixed sounds

of class A and class B would be misclassified into class C.

This is an undesirable situation because there is little pos-

sibility that a mixed sound of two classes becomes a sound

of other classes. BC learning gives a large loss to this sit-

uation because BC learning trains the model to output the

mixing ratio between class A and class B. If the features of

each class are regularly distributed as shown in Fig. 2(lower

right), on the other hand, the decision boundary of class

C does not appear between class A and class B, and the

model can output the mixing ratio instead of misclassify-

ing the mixed sound as class C. As a result, the loss of BC

learning becomes small. Therefore, BC learning has the ef-

fect of regularizing the positional relationship of the feature

distributions. In this way, they argued that BC learning has

the ability to impose constraints on the feature distribution,

and thus BC learning improves the generalization ability.

3. From sounds to images

In this section, we consider applying BC learning to im-

ages. Following BC learning for sounds [3], we select two
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training examples from different classes and mix these two

examples using a random ratio. We then input the mixed

data to the model and train the model to output the mix-

ing ratio. BC learning uses only mixed data and labels and,

thus, never uses pure data and labels. How to mix two ex-

amples is also important for images. First, we propose the

simplest mixing method in Section 3.1. Second, we discuss

why BC learning can also be applied to images in Section

3.2. Finally, in Section 3.3, we propose a better version of

BC learning, considering the discussion in 3.2.

3.1. Simple mixing

Let x1 and x2 be two images belonging to different

classes randomly selected from the training dataset, and t1

and t2 be their one-hot labels. Note that x1 and x2 may

have already been preprocessed, and they have the same size

as the input size of the network. We generate a random ratio

r from U(0, 1) , and mix two sets of data and labels with

this ratio. Because we aim to train the model to output the

mixing ratio, we mix two labels simply by:

r t1 + (1− r) t2. (2)

We now explain how to mix x1 and x2 . In [3], a care-

fully designed mixing method of two sounds was proposed

considering the difference in the sound energies, as we men-

tioned in Section 2.2. In a sound data, 0 is the absolute

center, and the distance from 0 represents the sound energy.

However, the pixel values of an image data do not have an

absolute center, and there appears to be no concept of en-

ergy. We thus first propose the following mixing method as

the simplest method using internal divisions:

r x1 + (1− r)x2. (3)

3.2. Why BC learning works on images

BC learning is applicable to sounds because a mixed

sound still counts as a sound. Sound is a kind of wave

motion, and mixing two sounds physically makes sense.

Humans can recognize two sounds and perceive which of

the two sounds is louder or softer from the digitally mixed

sound. However, image data, as pixel values, is not a kind

of wave motion for humans. Therefore, mixing multiple

images does not visually make sense.

However, the important thing is not whether mixing two

data physically makes sense, or whether humans can per-

ceive a mixed data, but how a machine perceives a mixed

data. We argue that CNNs have an aspect of treating in-

put data as waveforms. In fact, recent studies have demon-

strated that CNNs can learn speech and sounds directly from

raw waveforms, and each filter learns to respond to a partic-

ular frequency area [21, 26, 7]. It is also known that im-

ages, as pixel values, can be transformed into components

of various frequency areas by using 2-D Fourier transform
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Figure 3. Visualization of the feature space of a standard-learned

model using PCA. The features of the mixed images are distributed

between two classes.

[22], and some convolutional filters can act as frequency fil-

ters (e.g., a Laplacian filter acts as a high-pass filter [5]).

Therefore, it is expected that each convolutional filter of a

CNN learns to extract the frequency features. In this way,

we assume that CNNs recognize images by treating them as

waveforms in quite a similar manner to how they recognize

sounds. Thus, because a mixture of two images is a mixture

of two waveforms for machines, what is effective for sounds

would also be effective for images.

We visualized the feature distribution of the standard-

learned model against mixed data using PCA. We used the

output of the 10-th layer of an 11-layer CNN trained on

CIFAR-10. We mixed two images using Eqn. 3 and the re-

sults are shown in Fig. 3. The magenta dots represent the

feature distribution of the mixed images of automobile and

deer (left), dog and bird (right) with a ratio of 0.5 : 0.5,

and the black dotted line represents the trajectory of the

feature when we input a mixture of two particular images

to the model, changing the mixing ratio from 0 to 1. This

figure shows that the mixture of two images is projected

onto the point near the internally dividing point of two fea-

tures, and the features of the mixed images are distributed

between two classes, which is the same tendency observed

for sounds [3]. Therefore, the same effect as BC learning

for sounds, i.e., an enlargement of Fisher’s criterion in the

feature space and a regularization of the positional relation-

ship among the feature distributions of the classes, is ex-

pected. We compare the feature distributions learned with

standard and BC learning and demonstrate that a different

shape of feature distribution is learned with BC learning in

the visualization experiment.

3.3. BC+: Images as waveform data

Here, we consider a new mixing method, which treats

images as waveform data. We regard image data as a 2-D
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waveform consisting of (R, G, B) vectors. In recent state-

of-the-art methods, the input data is normalized for each

channel using the mean and standard deviation calculated

from the whole training data [28, 13, 9]. In this case, the

mean of each image is not equal to 0, and each image data

xi is represented as xi = µi+di, where µi and di are the

static component and wave component, respectively. Here,

the simplest mixing method of Eqn. 3 can be rewritten as

{r µ1 +(1− r)µ2}+ {r d1 +(1− r)d2}. We assume that

the performance improvement with Eqn. 3 is mainly owing

to the wave component r d1 + (1 − r)d2 if CNNs treat

the input data as waveforms. Moreover, the static compo-

nent r µ1+(1−r)µ2 can have a bad effect because mixing

two waveforms generally hypothesizes that the static com-

ponents of two waveforms are same.

Therefore, we remove the static component by subtract-

ing the per-image mean value (not channel-wise mean). We

consider the following mixing method instead of Eqn. 3. By

doing this, we can treat each image as a zero-mean wave-

form similar to a sound.

r (x1 − µ1) + (1− r) (x2 − µ2) (4)

We then apply a scheme similar to that applied to sounds

as described in Section 2.2. First, we consider mixing two

images with:

r (x1 − µ1) + (1− r) (x2 − µ2)
√

r2 + (1− r)2
, (5)

instead of Eqn. 4, considering that waveform energy is pro-

portional to the square of the amplitude. This process pre-

vents the input variance from decreasing.

Second, we take the difference of image energies into

consideration, in order to make the perception of the mixed

image x1 : x2 = r : (1−r) . We use a new coefficient p in-

stead of r and mix two images by
p (x1−µ1)+(1−p) (x2−µ2)√

p2+(1−p)2
.

We define p using the standard deviation per image (σ1 and

σ2) so that the ratio of amplitude becomes x1 : x2 = r :
(1 − r) . We solve p σ1 : (1 − p)σ2 = r : (1 − r) and

obtain the proposed mixing method:

p (x1 − µ1) + (1− p) (x2 − µ2)
√

p2 + (1− p)2
,

where p =
1

1 + σ1

σ2

· 1− r
r

.

(6)

The main differences from the mixing method for sounds

(Eqn. 1) are subtracting per-image mean values and using

standard deviations instead of sound pressure levels. This

mixing method is also easy to implement, and experimen-

tally proves to lead to a further improvement in perfor-

mance, compared to the simplest mixing method of Eqn. 3.

Table 1. Results of ResNeXt-101 (64× 4d) [28] on ImageNet-1K

dataset. BC learning improves the performance when using the

default learning schedule. Furthermore, the performance is further

improved when using a longer learning schedule, and the single-

crop top-1 error is improved by around 1% compared to the default

performance reported in [28].

Top-1/top-5 val. error (%)

# epochs Learning Single-crop 10-crop

100
Standard 20.4 / 5.3 [28] 18.90 / 4.61

BC (ours) 19.92 / 4.91 18.66 / 4.26

150
Standard 20.44 / 5.25 18.98 / 4.43

BC (ours) 19.43 / 4.80 18.22 / 4.13
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Figure 4. Training curves of ResNeXt-101 (64×4d) on ImageNet-

1K dataset. The dashed lines represent the training curves when

using the default learning schedule, and the solid lines represent

the training curves when using a longer learning schedule.

4. Experiments

4.1. Experiments on ImageNet­1K

First, we compare the performance of standard and BC

learning on the 1,000-class ImageNet classification task

[20]. In this experiment, we used the simple BC learn-

ing. We selected ResNeXt-101 (64× 4d) [28] as the model

for training because it has a state-of-the-art level perfor-

mance and, moreover, the official Torch [6] training codes

are available3. To validate the comparison, we incorpo-

rated BC learning into these official codes. When using BC

learning, we selected two training images and applied the

default data augmentation scheme as in described [28] to

each image, and obtained two 224 × 224 images. We then

mixed these two images with a random ratio selected from

U(0, 1). In addition to the default learning schedule (# of

epochs = 100), we also tried a longer learning schedule (#

of epochs = 150). In 100-epochs training, we started train-

ing with a learning rate of 0.1 and then divided the learning

rate by 10 at the epoch in {30, 60, 90}, as in [28]. In 150-

3https://github.com/facebookresearch/ResNeXt

5490



Table 2. Results on CIFAR-10 and CIFAR-100 datasets. We show the average and the standard error of 5 or 10 trials. BC learning improves

the performance of various settings. Note that † is trained with a different learning setting from the default.

Error rate (%) on

Model Learning CIFAR-10 CIFAR-100

11-layer CNN

Standard 6.07± 0.04 26.68± 0.09

BC (ours) 5.40± 0.07 24.28± 0.11

BC+ (ours) 5.22± 0.04 23.68± 0.10

ResNet-29† [28]

Standard 4.24± 0.06 / 4.39 [28] 20.18± 0.07

BC (ours) 3.75± 0.04 19.56± 0.10

BC+ (ours) 3.55± 0.03 19.41± 0.07

ResNeXt-29 (16× 64d)† [28]

Standard 3.54± 0.04 / 3.58 [28] 16.99± 0.06 / 17.31 [28]

BC (ours) 2.79± 0.06 18.21± 0.12

BC+ (ours) 2.81± 0.06 17.93± 0.09

DenseNet-BC (k = 40)† [13]

Standard 3.61± 0.10 / 3.46 [13] 17.28± 0.12 / 17.18 [13]

BC (ours) 2.68± 0.03 16.36± 0.10

BC+ (ours) 2.57± 0.06 16.23± 0.07

Shake-Shake Regularization [9]

Standard 2.86 [9] 15.85 [9]

BC (ours) 2.38± 0.04 15.90± 0.06

BC+ (ours) 2.26± 0.01 16.00± 0.10

epochs training, we also started training with a learning rate

of 0.1 and then divided the learning rate by 10 at the epoch

in {50, 90, 120, 140}. We reported classification errors on

the validation set using both single-crop testing [28] and 10-

crop testing [17].

The results are shown in Table 1. We also show the train-

ing curves in Fig. 4. The performance of BC learning with

the default 100-epochs training was significantly improved

from that of standard learning. Moreover, the performance

of BC learning was further improved with 150-epochs train-

ing, while that of standard learning was not improved, and

we achieved 19.43%/4.80% single-crop top-1/top-5 valida-

tion errors and 18.22%/4.13% 10-crop validation top1/top5

errors. The single-crop top-1 error was improved by around

1% compared to the default performance reported in [28].

Discussion. Learning between-class examples among

1,000 classes is difficult, and it tends to require a large num-

ber of training epochs. As shown in Fig. 4, the performance

on the first 100 epochs of the 150-epochs training of BC

learning is worse than the performance of standard learn-

ing. Therefore, the learning schedule should be carefully

designed. Furthermore, we assume that the usage of cur-

riculum learning [4] would be helpful to speed up the train-

ing; namely, at the early stage, we generate a mixing ratio

close to 0 or 1 and input relatively pure examples, and we

gradually change the distribution of r to flat.

4.2. Experiments on CIFAR

Now, we compare the performance of standard and

BC learning on CIFAR-10 and CIFAR-100 datasets [16].

We trained the standard 11-layer CNN, ResNet-29 [28],

ResNeXt-29 (16 × 64d) [28], DenseNet (BC, k = 40)

[13], and Shake-Shake Regularization (S-S-I and S-E-I for

CIFAR-10 and CIFAR-100, respectively) [9]. To validate

the comparison, we also incorporated BC learning into their

original Torch [6] training codes4. The 11-layer CNN was

also incorporated into one of them. All of these codes use

the standard shifting/mirroring data augmentation scheme

that is widely used for these two datasets. We added 75
training epochs with a further smaller learning rate (1/10)

to the default learning schedule of a total of 300 epochs for

ResNet-29, ResNeXt-29, and DenseNet. We show the dif-

ference from the default settings in the appendix, as well as

the configuration of 11-layer CNN. We trained each model

10 times for the 11-layer CNN and ResNet-29, and 5 times

for other networks. We report the average and the standard

error of the final top-1 errors.

We summarize the results in Table 2. The performances

of all networks on CIFAR-10 were improved with the sim-

ple BC learning. Furthermore, with the improved version

of BC learning (BC+), which treat the image data as wave-

forms, the performance was further improved. The best re-

sult on CIFAR-10 was 2.26% on Shake-Shake Regulariza-

tion. The performance was stable, and the error rate of all 5
trials were in the range of 2.25%–2.28%. We do not know

whether this result should be counted as the state-of-the-art;

however, BC learning proves to be able to improve the per-

formance of various networks, from a simple network to the

state-of-the-art networks.

4https://github.com/facebookresearch/ResNeXt, https://github.com/

liuzhuang13/DenseNet, https://github.com/xgastaldi/shake-shake
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Figure 5. Training curves on CIFAR-10 (average of all trials).

We also show the training curves in Fig. 5. Note that the

training curves represent the average of all trials. Contrary

to the training curves on ImageNet-1K, the testing error of

BC learning decreases at almost the same speed as the stan-

dard learning in the early stage of the training. Furthermore,

the last 75 training epochs for 11-layer CNN and DenseNet

leads to a lower testing error when using BC learning.

The performances on CIFAR-100 were also improved

with BC learning. Although it may be difficult to learn

the between-class examples among 100 classes with no

improvement to performance on ResNeXt-29 and Shake-

Shake Regularization, BC learning shows a significant im-

provement on 11-layer CNN, ResNet-29, and DenseNet.

Relationship with data augmentation. Here, we show

the performance when using no data augmentation in Table

3. We show the average of 10 trials. As shown in this ta-

ble, the degree of improvement in the performance is at the

same level as, or even smaller than when using the standard

data augmentation, although the variation of training data

increases from 50,000 to approximately 50,000C2. We as-

sume this is because the potential within-class variance is

small when using no data augmentation. If the within-class

variance of the feature space is small, the variance of the

features of the mixed images also becomes small, and the

overlap in Fig. 2(top) becomes small. Therefore, the effect

of BC learning becomes small as a result. We assume that

BC learning is compatible with, or even strengthened by, a

strong data augmentation scheme.

Table 3. Comparison when using no data augmentation. The fig-

ures between brackets indicate the error rates when using the stan-

dard data augmentation.

Error rate (%) on

Model Learning CIFAR-10 CIFAR-100

11-layer CNN
Standard 9.68 (6.07) 33.04 (26.68)

BC (ours) 8.38 (5.40) 31.00 (24.28)

ResNet-29 [28]
Standard 8.38 (4.24) 31.36 (20.18)

BC (ours) 7.69 (3.75) 30.79 (19.56)

4.3. Ablation analysis

To understand the part that is important for BC learning,

we conducted an ablation analysis following [3]. We trained

an 11-layer CNN on CIFAR-10 and CIFAR-100 using vari-

ous settings. We implemented the codes of ablation analysis

using Chainer v1.24 [27]. All results are shown in Table 4,

as well as the average of 10 trials.

Mixing method. The differences of the improved BC

learning (Eqn. 6) from the simplest BC learning (Eqn. 3)

are as follows: a) we subtract par-image mean; b) we di-

vide the mixed image by
√

r2 + (1− r)2 considering that

waveform energy is proportional to the square of the ampli-

tude; and c) we take the difference of image energies into

consideration. We investigated which of them has a great

effect. As a result, considering the difference of image en-

ergies (c) proved to be of little significance, comparing a+b

and a+b+c. This would be because the variance of image

energies is smaller than that of sound energies. However,

per-image mean subtraction (a) and dividing by the square

root (b) are important (a+b+c vs. b+c and a vs. a+b). This

result shows that treating the image data as waveforms con-

tributes to the improvement in performance.

Label. We compared the different labels that we applied

to the mixed image. The performance worsened when we

used a single label (t = t1 if r > 0.5, otherwise t = t2)

and softmax cross entropy loss. It would be inappropriate

to train the model to recognize a mixed image as particu-

lar class. Using multi label (t = t1 + t2) and sigmoid

cross entropy loss marginally improved the performance,

but the proposed ratio label and KL loss performed the best.

The model can learn the between-class examples more effi-

ciently when using our ratio label.

Number of mixed classes. We investigated the relation-

ship between the performance and the number of classes

of images that we mixed. Surprisingly, the performance

was improved when we mixed two images belonging to the
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Table 4. Ablation analysis. We trained 11-layer CNN on CIFAR-

10 and CIFAR-100 using various settings. We report the average

error rate of 10 trials.

Error rate (%) on

Comparison of Setting C-10 C-100

Mixing method

None (Eqn. 3, BC) 5.40 24.28

a (Eqn. 4) 5.45 24.25

a+b (Eqn. 5) 5.17 23.72

a+b+c (Eqn. 6, BC+) 5.22 23.68

b+c 5.26 23.98

Label

Single 6.35 27.28

Multi 6.05 26.31

Ratio (proposed) 5.22 23.68

# mixed classes

N = 1 5.98 26.01

N = 1 or 2 5.31 23.79

N = 2 (proposed) 5.22 23.68

N = 2 or 3 5.15 23.78

N = 3 5.32 24.20

Where to mix

Input (proposed) 5.40 24.28

pool1 5.74 24.09

pool2 6.52 25.38

pool3 6.05 27.40

fc4 6.05 26.70

fc5 6.12 25.99

Standard learning 6.07 26.68

same class (N = 1). Additionally, if we selected two im-

ages completely randomly and allowed the two images to

be sometimes the same class (N = 1 or 2), the performance

was worse than proposed N = 2, in which two images were

always different classes. Because BC learning is a method

of providing constraints to the feature distribution of differ-

ent classes, we should select two images belonging to the

different classes. We also tried to use mixtures of three dif-

ferent classes with a probability of 0.5 in addition to the

mixtures of two different classes (N = 2 or 3), but the

performance was not significantly improved from N = 2.

Moreover, the performance when we used only the mixtures

of three different classes (N = 3) was worse than that of

N = 2 despite the larger variation in training data. We as-

sume that mixing more than two classes cannot efficiently

provide constraints to the feature distribution.

Where to mix. We investigated what occurs when we mix

two examples within the network. Here, we used the sim-

ple mixing method of Eqn. 3. The performance was also

improved when we mixed two examples at the layer near

the input layer. We assume this is because the activations of

lower layers can be treated as waveforms because the spatial

information is preserved to some extent. Additionally, mix-

ing at the layer close to the output layer had little effect on

the performance. It is interesting that the performance was

Standard learning BC learning (ours)

Figure 6. Visualization of feature distributions using 3-D PCA. BC

learning indeed imposes a constraint on the feature distribution.

worsened when we mixed two examples at the middle point

of the network (pool2 and pool3 for CIFAR-10 and CIFAR-

100, respectively). It is expected that the middle layer of

the network extracts features that represent both spatial and

semantic information simultaneously, and mixing such fea-

tures would not make sense for machines.

4.4. Visualization

Finally, we visualize the features learned with standard

and BC learning in Fig. 6. We applied PCA to the acti-

vations of the 10-th layer of the 11-layer CNN trained on

CIFAR-10 against the training data. As shown in this fig-

ure, the features obtained with BC learning are spherically

distributed, and have small within-class variances, whereas

that obtained with standard learning are widely distributed

from near to far the decision boundaries. We conducted fur-

ther analysis on the learned features in the appendix. In this

way, BC learning indeed imposes a constraint on the fea-

ture distribution, which cannot be achieved with standard

learning. We conjecture that is why the classification per-

formance was improved with BC learning.

5. Conclusion

We proposed a novel learning method for image classi-

fication called BC learning. We argued that CNNs have an

aspect of treating input data as waveforms, and attempted to

apply a similar idea to what has been done for sounds. As a

result, the performance was significantly improved by sim-

ply mixing two images using internal divisions and training

the model to output the mixing ratio. Moreover, the per-

formance was further improved with a mixing method that

treats the images as waveforms. BC learning is a simple and

powerful method that can impose constraints on the feature

distribution. We assume that BC learning can be applied not

only to images and sounds but also to other modalities.
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