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Figure 1: Results of our method. Detailed, complete 3D reconstructions shown next to their partially occluded input faces.

Abstract

Existing single view, 3D face reconstruction methods can

produce beautifully detailed 3D results, but typically only

for near frontal, unobstructed viewpoints. We describe a

system designed to provide detailed 3D reconstructions of

faces viewed under extreme conditions, out of plane rota-

tions, and occlusions. Motivated by the concept of bump

mapping, we propose a layered approach which decouples

estimation of a global shape from its mid-level details (e.g.,

wrinkles). We estimate a coarse 3D face shape which acts

as a foundation and then separately layer this foundation

with details represented by a bump map. We show how a

deep convolutional encoder-decoder can be used to esti-

mate such bump maps. We further show how this approach

naturally extends to generate plausible details for occluded

facial regions. We test our approach and its components

extensively, quantitatively demonstrating the invariance of

our estimated facial details. We further provide numerous

qualitative examples showing that our method produces de-

tailed 3D face shapes in viewing conditions where existing

state of the art often break down.

1. Introduction

Estimating 3D face shapes from single images is a prob-

lem with a history now spanning two decades [53]. During

this time, the related problem of recognizing faces in images

has graduated to the point where modern systems can pro-

duce invariant and discriminative face representations for

the most extreme face photos [34]. By comparison, 3D re-

construction methods have remained far behind.

Broadly speaking, existing face reconstruction methods

are designed with either one of two goals. The first goal,

exemplified by early 3D morphable models (3DMM) [1, 4,

35], some later shape from shading (SfS) techniques [26,

29], and several recent deep learning methods [38, 43],

is obtaining highly detailed 3D face shapes. These meth-

ods produce discriminative results which are often detailed

enough for subjects to be recognizable from their recon-

structions. These results, however, are typically restricted

to relatively easy viewing conditions. In particular, when

faces are partially occluded, these methods often indiscrim-

inately reconstruct the occlusion or fail completely.

Other face reconstruction methods were developed with

invariance to viewing conditions as their goal. Some of

these methods estimate face shapes by localizing facial

landmarks [25, 47, 58]; others take an example based ap-

proach [14]. Deep methods were also recently proposed for

this purpose [6, 11, 24, 49, 51]. All of these methods, how-

ever, sacrifice details in order to avoid failing on challeng-

ing, unconstrained photos. Their reconstructions typically

provide few details [14, 47, 51] or are very generic [58].

Unlike previous work, we describe a method designed

to attain both goals: Detailed 3D face reconstruction and

robustness to viewing conditions, including, in particular,

out of plane head rotations and occlusions (Fig. 1).

Our approach is inspired by the age old computer graph-

ics concept of bump mapping [5] which involves separa-

tion of global shape from local details. When reconstructing

faces, this implies estimating a global foundation shape sep-

arately from its local, mid-level features which are layered
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on the foundation. This modular design is very different

from recent state of the art methods which explicitly couple

global shape estimation with local details [43]. We see this

separation as particularly important, as it allows estimating

a robust global face shape, even under challenging condi-

tions where estimating mid-level features breaks down.

To our knowledge, despite being intuitive, our design is

novel. We additionally make the following technical con-

tributions: (a) We propose deep estimation of facial bump

maps in Sec. 4.1, (b) example based, bump map hole filling,

for estimating plausible facial details in regions occluded by

obstructions (Sec. 4.2), and (c) 3D soft symmetry for esti-

mating self-occluded facial details in Sec. 4.3.

We report quantitative tests measuring the capabilities

of these contributions (Sec. 5). We further provide quali-

tative comparisons of our reconstructions with recent state

of the art methods. These results show our method to pro-

vide detailed reconstructions in extreme settings where pre-

vious results are either generic, low resolution, or else fail

completely. Finally, code, deep models, and high resolution

images are available on our project page.1

2. Related work

Before reviewing single view 3D reconstruction meth-

ods, we note that some methods were developed for multi

view reconstruction [18, 27, 41, 42, 46]. With multiple

views, better guarantees can be made on reconstruction ac-

curacy and occlusion handling. We focus on single view

settings where this information is not available.

Reconstruction by example. These techniques include

some of the earliest methods for face reconstruction [15,

16, 53] and more recent approaches [14]. These methods

use reference 3D face shapes to modify the shape estimated

for an input face photo. Generally speaking, these meth-

ods were designed with an emphasis on robustness to un-

constrained viewing conditions rather than fidelity or fine

details. Note that like us, one of these methods actually

produced shape estimates for occluded objects [15, 16].

By comparison, our method is designed to perform well in

similar or even harder viewing conditions, including occlu-

sions, yet provides detailed and accurate estimates.

Face shape from facial landmarks. Detected facial land-

marks can be used to constrain 3D face shapes [25, 58].

Such methods often focus on landmark detection accuracy

rather than facial details. As such, they are remarkably ro-

bust, yet produce generic 3D face shapes with few details.

Furthermore, it is unclear how these methods would per-

form when presented with face images where landmarks are

occluded or otherwise difficult to detect.

SfS. By making assumptions on the light sources and the re-

flectance properties of face, SfS methods showed accurate

1Available: github.com/anhttran/extreme_3d_faces

Figure 2: Method overview. See related sections for details.

and often detailed reconstructions [26, 29]. The application

of such methods is limited to scenes meeting their assump-

tions. Moreover, these methods typically reconstruct not

only facial regions but also any objects occluding the faces.

Statistical representations. The most widely recognized

examples in this category are the 3DMM fitting methods,

originally proposed by Blanz and Vetter [3]. Since that sem-

inal work, many improvements were made to the methods

used to recover 3DMM face shape parameters [2, 10, 35,

39, 48, 54]. We rely on this representation and provide a

short overview in Sec. 3. We fit 3DMM parameters very

differently than the analysis by synthesis approach of these

earlier methods, instead using a deep convolutional neural

network (CNN) to regress 3DMM parameters and facial de-

tails directly from image intensities.

Deep face shape estimation. In keeping with the spirit of

the times, deep networks have recently been applied to face

shape estimation. Two main approaches were proposed. In

one, rather shallow networks are trained on synthetically

produced face shapes [37]. Facial details are added by train-

ing an end-to-end system to additionally estimate SfS [38].

To allow for detailed reconstructions unrestricted by the

limitations of the 3DMM representation, face shapes were

estimated directly using a depth map in [43].

Contrary to these methods, deep networks were used

in [6, 11, 24, 44, 49, 50, 51] to estimate 3D shapes with an

emphasis on unconstrained photos. These methods estimate

shapes which are highly invariant to viewing conditions but

provide only coarse 3D details.

We use deep networks to regress various elements of our

face reconstructions. Our method, however, combines the

benefits of both approaches, offering detailed reconstruc-

tions which are robust to viewing conditions.

3. Preliminaries: Laying the foundation

Our approach is motivated by this simple observation:

3D face reconstruction involves the conflicting require-

ments of a strong regularization for a global shape vs. a

weak regularization for capturing higher level details.

End-to-end reconstruction systems can easily fail to balance

these two requirements. Indeed, as we later show (Sec. 5.3),

existing methods are often either over-regularized (sacrific-
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ing fine details for invariance) or under-regularized (sacri-

ficing invariance for details).

To effectively combine these two requirements, we in-

stead take a modular approach (see Fig. 2). Our method

is inspired by computer graphics, bump map representa-

tions [5] which separate global shape from local details.

This separation allows for strong regularization over the

global face shape – thereby providing robustness even in

the most challenging viewing conditions – and weak reg-

ularization over the local details. Thus, failure to estimate

details does corrupt the final result; occluded details can be

estimated without modifying the global shape.

Given an input face photo I, we separately estimate the

following shape components: A foundation shape, s, facial

expression e, and 6 degrees of freedom (6DoF) viewpoint,

v, all described below. Next, we estimate a bump map ∆,

which captures facial wrinkles and other non-parametric,

mid-level features (Sec. 4.1). Finally, we complete miss-

ing facial details due to occlusions to produce our output

3D shape (Sec. 4.2 and 4.3).

The foundation shape. We use the standard, linear 3DMM

representation of 3D faces [1, 4, 10, 19, 35]. We refer to any

of these sources for details on this representation. Briefly,

we model a face as:

s = ŝ+

s∑

i=1

αiW
S
i , (1)

where ŝ represents an average 3D face shape, α ∈ R
s are

subject-specific, face shape coefficients estimated from I,

and WS ∈ R
3n×s are principal components representing

the distribution of 3D shapes. Here, 3n represents the 3D

coordinates for n vertices of our 3D faces. We use the Basel

face model (BFM) [35], which provides both ŝ and WS ,

and defines s = 99 as the number of shape components.

Given I, we estimate α (and hence, s) using the recent

deep 3DMM approach of Tran et al. [51], using their pub-

licly available code and pre-trained model. They regress

3DMM coefficients, α, directly from image intensities us-

ing a ResNet architecture with 101 layers [17].

Estimating facial expressions. We model expressions sim-

ilarly to shape, using the following formulation:

e =

m∑

j=1

ηjW
E
j . (2)

Expression deformations are represented as linear combina-

tion of expression coefficients η ∈ R
m (estimated from I)

and expression components which span the space of defor-

mations, WE ∈ R
3n×m. Here again, 3n represents the 3D

coordinates for the n vertices of BFM. We use the m = 29
expression components provided by 3DDFA [58].

Expressions were estimated using the same system pro-

vided by the authors of [51], though a more robust method

Figure 3: Illustrating Eq. (3). For an input image (a), the

difference between the depths of a detailed shape (b) and

foundation shape (c) provides our bump map (d) (visualized

here as a heat map). See text for more details.

would use the recent, deep ExpNet [9]. Comparing expres-

sion estimation methods on occluded faces is an ill-defined

task: After all, whenever parts of the face are occluded, the

expression coefficients controlling occluded facial regions

can be arbitrary. Our decision to use this method is there-

fore motivated simply by the utility of their public code.

Note that the shape from Eq. (1), s, and the expression e

from Eq. (2) can be summed, obtaining F = s + e, repre-

senting an expression adjusted foundation shape.

Estimating viewpoint. We represent viewpoint as v =
[rT , tT ], where r ∈ R

3 is the 3D rotation, represented in

Euler angles, and t ∈ R
3, a translation vector, together

aligning a generic 3D face shape with the face appearing

in I. Given v, a 3D to 2D projection matrix can be es-

timated using standard means [13], projecting the surface

points of our 3D shape onto the input image. To estimate

v given I, we use the deep, FacePoseNet method proposed

in [8]. Fig. 2 (d) provides an example foundation shape,

modified for expression and aligned with input I.

4. Adding mid-level details

Given an expression adjusted foundation shape, we layer

it with mid-level features estimated directly from I. Impor-

tantly, rather than estimating a detailed shape directly [43],

we estimate local deformations of the shape. Our foun-

dations shape thus provides strong regularization over the

global shape and allows facial details to be estimated with-

out sacrificing robustness to extreme viewing conditions.

As we later show, this separation also allows us to predict

missing details in places where the face is occluded from

view, by estimating the local deformations in those regions.

4.1. Image to bump map translation

Inspired by [7], we model local deformations of the face

surface as depth displacements. That is, as displacements

of the depth map defined by measuring the distances along

the rays emanating from the center of projection, through

the pixels of I to the face surface. (See Fig. 2 (c-d) and 3).

Formally, we store bump map ∆(p) in a matrix of the

same spatial dimensions as I, simply defined as:

∆(p) =

{
θ
(
z′(p)− z(p)

)
face projects to p

θ(0) all other pixels
, (3)
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Figure 4: Effect of our loss from Eq. (5). (a) Close-up view

of an input I. (b) Surface detailed by a network trained

with standard ℓ1 loss. (c) Surface details obtained follow-

ing training with our modified loss (Eq. (5)) are less noisy,

without compromising high frequencies.

where p = [x, y] is a pixel coordinate in I, z′(p) is the dis-

tance along the viewing ray from the surface of the detailed

face shape to p (its depth), z(p) is the depth of the founda-

tion shape at p, and θ(·) is a linear encoding function, here,

bringing depth values to the range [0, ..., 255].
The bump we aim to compute at every pixel p is thus

δ = z′(p) − z(p). Given a bump map ∆ and the depth of

the foundation, we can easily compute a detailed depth by:

z′(p) = z(p) + θ−1(∆(p)). (4)

Note that this detailed depth corresponds to a dense 3D face

model D, where each face pixel in the depth map defines a

3D point on the surface of the detailed face shape.

Bump map training set. We produce bump maps using

a deep encoder-decoder framework [23]. Training such a

network requires a substantial number of face images, all

assigned with target bump maps. To obtain such a set, we

estimate bump maps using an existing method applied to

a large face image set. These estimates are then used as

surrogates for ground truth.

Specifically, we used face photos from the VGG set [34].

We estimate a foundation shape along with 6DoF view-

point for each image (Sec. 3). The viewpoint was used to

project the estimated 3D shape onto the image [13], pro-

viding depth values, z(p), along with a face / background

mask. We then applied a state of the art SfS method [33]

to the face (foreground) region in each image. The detailed

depth estimates produced by this method are then taken to

be z′(p). With both foundation and detailed depths, we use

Eq. (3) to compute a bump map for each image (See Fig. 3).

The SfS method we used is rather slow, taking minutes

to compute a single depth map. This limited application of

the process to a subset of the VGG set. We further manually

selected only images where SfS produced reasonable depth

estimates (determined by visual inspection). Consequently,

we were left with 4,300 images assigned with target bump

maps. Of these, 4,200 were used to train our method and

the reminder as a validation set.

Learning to estimate bump maps. We estimate bump

maps with a framework similar to the one used for image

translation [23] with some notable modifications. Specifi-

cally, since our goal emphasizes facial details, we increase

both the input and the output resolution of this network to

500×500. This also implies a deeper network than the ones

originally used in [23]: we use seven encoding blocks and

six decoding blocks. Finally, as reported by others, this ap-

proach tends to produce output with checkerboard artifacts.

To mitigate this, we use resize and convolutions rather than

transposed convolutions [32].

Importantly, we define our own network loss, which we

found to suppress noise without sacrificing high frequency

details, as follows:

ℓbump
.
= ℓ1

(
∆̃−∆

)
+

+ ℓ1

(∂∆̃
∂x

−
∂∆

∂x

)
+ ℓ1

(∂∆̃
∂y

−
∂∆

∂y

)
. (5)

Here, ℓ1 = || · ||1 is the classic L1 loss which does not

tend to over-smooth results. The 2D gradient of the bump

map is expressed by ∂∆
∂x

, ∂∆
∂y

. We found that by adding

these last two terms we reduce bump map noise by favoring

smoother surfaces, but still allowing high frequency details

to be preserved. A qualitative effect of the new loss pro-

posed in Eq. (5) can be appreciated in Fig. 4. At test time,

this trained deep encoder-decoder is used to translate an in-

put RGB image I into a bump map ∆.

4.2. Recovering occluded details

Similarly to other methods for detailed face reconstruc-

tion [14], our bump map estimation method of Sec. 4.1 is

not invariant to occlusions. Glasses, for example, are often

reconstructed along with the surface of the face (Fig. 2 (d)).

By separately reconstructing a foundation shape invariant to

these obstructions (see Sec. 5.1) and mid-level details rep-

resented as bump maps, these errors can be corrected by

modifying the 2D bump map directly using techniques sim-

ilar to those used for image inpainting.

Specifically, we use an existing face segmentation

method [31] to determine occluded regions in the input im-

age I. Because I and its bump map, ∆, are both aligned, the

segmentation obtained on I can be directly applied to ∆.

We consider any non-face regions as holes which we fill us-

ing an example based technique.

Example based hole filling approach. We use a collec-

tion of reference bump maps from which we borrow un-

occluded details to complete missing regions of our bump

map. Given image I we search through this reference set for

one presenting a suitably similar individual. We then trans-

fer details from the bump map associated with the selected

reference image to the occluded regions in ∆.

We use deep features designed for face recognition to

encode identity and to search for matching reference faces.
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Figure 5: Hole filling comparison. 3D Reconstruction with

occlusions, comparing Yeh et al. [55] with our bump map

hole filling (Sec. 4.2). Their 64 × 64 resolution limit over-

smooths results compared to our example based method.

Our rationale is simple: Deep features produced by modern

face recognition systems are designed to be highly robust

to appearance variations and particularly occlusions. We

therefore expect them to match the partially occluded input

face with a reference image of a similar individual (with

similar facial details) regardless of occlusions.

Searching the reference set. Our references consist of 12K

unoccluded face images selected from the CASIA [56] and

VGG [34] sets. We search this set for k = 100 images

with viewpoints most similar to the one in the input (v). By

ensuring that both reference and input share similar poses

we mostly eliminate the need to address pose differences

when transferring details between their bump maps.

From this short list, we select the face with the most sim-

ilar deep features. For this purpose, we use the publicly

available deep models trained for face recognition by [30].

Deep feature similarity is determined using the cosine dis-

tance.

Blending details. We transfer details from the bump map

∆r∗ associated with the selected reference, to fill-in holes

in ∆. To this end, we align the two faces in 2D using

standard, similarity transform alignment. With the two

bump maps registered, we use the occlusion mask to up-

date only occlusions in ∆. Details transferred over from

∆r∗ onto these regions are blended into their surroundings

using gradient-based blending [36].

More sophisticated inpainting? Many recent methods

were proposed for filling-in holes in images with some re-

cent ones including [21, 55]. Though we tried several al-

ternatives, our best results were produced with the method

described above. This is demonstrated in a comparison with

the recent, state of the art method of Yeh et al. [55], in

Fig. 5. Their system is limited to 64 × 64 pixel input im-

ages. This low resolution is apparent in the over smooth

results produced by their method compared to our exam-

ple based approach which is less restricted by scale and can

handle far larger images.

As our tests in Sec. 5.2 show, our hole filling is not only

more plausible but actually recovers much of the original

discriminative details which were lost due to the occlusion.

4.3. Soft symmetry based model completion

Our bump map estimation does not provide features for

regions of the face turned away from the camera. Once de-

tails are estimated for regions occluded due to obstructions

(Sec. 4.2), we therefore proceed to estimate details missing

due to self occlusions. We make the standard assumption

of face symmetry [12] and propose to transfer bump map

details from visible face regions to self occluded regions,

blending them smoothly to produce the result.

BFM, used to represent the foundation shape, provides

a complete face representation and their vertices allow for

easy indexing of symmetric face regions. These properties

are very useful for transferring details between symmetric

face regions. Our bump maps, however, are produced in the

same resolution as the input I. This resolution is typically

higher than the one defined by BFM for the density of its 3D

vertex distribution. To effectively recover such high resolu-

tion details in the occluded region, we use soft symmetry

applied to the BFM (despite being sparse and low resolu-

tion) as an intermediate representation.

Dense to sparse conversion. We first convert our dense 3D

model D (Sec. 4.1), to a sparse mesh, R, represented using

BFM. This process is simple: we project each visible vertex

of the foundation shape, F, onto the detailed depth map,

acquire the new depth, and update its 3D coordinates. Any

occluded vertices will be updated later by soft symmetry.

Dense from sparse registration. In order to recover a

dense 3D model from the sparse one, we register each 3D

vertex of the dense mesh D – corresponding to a pixel in

the detailed depth map – to its corresponding triangle on

the sparse mesh R. Specifically, let pD be a pixel in the 2D

depth map and PD its corresponding vertex in a dense (high

resolution) 3D face. A triangle in the sparse representation

is defined by its three vertices and their corresponding three

projections onto the depth map: {(PR
i ,p

R
i )|i = 1, ..., 3}.

A correspondence between the dense pixel location PD

and its three sparse counterparts, is computed using the 2D

alignment parameters u, v ∈ [0, 1] such that:

pD = upR
1
+ vpR

2
+ (1− u− v)pR

3
. (6)

The residual in 3D, is then defined as:

δP = PD − (uPR
1
+ vPR

2
+ (1− u− v)PR

3
). (7)

Finally, we store the parameter set (u, v, δP) in order to

recover PD from {PR
i }:

PD = (uPR
1
+ vPR

2
+ (1− u− v)PR

3
) + δP. (8)
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Figure 6: Reconstructions with occlusions. Left: Qualita-

tive results of Sela et al. [43] and the method used as our

foundation [51]. The loose regularization required by [43]

to produce fine details results in a corrupt shape for the

occluded face. The foundation sacrifices details but re-

mains robust. Right: LFW verification ROC for foundation

shapes [51], with and without occlusions.

Soft symmetry on the sparse mesh. Self occluded face

regions are defined as those where the normals of the 3D

face shape, point away from the image plane. For every

such point Pi on the sparse representation R, we locate its

corresponding point, P
f
i , by reflection over the vertical axis

of symmetry. We then use Poisson blending to recover this

occluded point [36, 57]:

∇RPi =

{
∇RP

f
i if P

f
i is visible

∇FP
I
i otherwise,

(9)

where ∇R and ∇F are the discrete graph Laplacians on R

and F = s+ e, respectively.

Soft symmetry on the dense mesh. We now have a com-

plete and detailed sparse mesh R. The 3D details on the

self-occluded area can be recovered by converting this mesh

back to the dense structure using symmetry-based infer-

ence, as follows.

For each point PD on D, we already registered it to a

triangle {PR
i |i = 1, ..., 3} on R with an alignment pa-

rameter set (u, v, δP ) using Eq. (8). We denoted the op-

posite triangle on R, through the axis of symmetry, as

{PRf
i |i = 1, ..., 3}. If any point in {PRf

i } is newly re-

covered from Poisson blending, we can define the reflection

of PD over the symmetry axis, denoted PDf , as follows:

PDf = (uPRf
1

+ vP
Rf
2

+ (1− u− v)PRf
3

) + δPf , (10)

where δPf is the reflection of δP over the symmetry axis.

Producing the final shape. Symmetry-based inference

cannot fill all missing regions in D; sometimes occlusions

appear on both sides (e.g. chin, nose, lower jawline). There-

fore, the dense and sparse mesh are combined into the final

Method 100%-EER Accuracy nAUC

Foundation s and occlusions (See Sec. 5.1, and Fig. 6)

Tran et al. [51] 89.40±1.52 89.36±1.25 95.90±0.95

w/ Occ. 86.96±1.70 87.86±1.35 94.09±0.86

w/o Occ. 90.30±0.83 89.91±0.86 96.46±0.44

Bump maps ∆ and hole filling (See Sec. 5.2 and Fig. 7)

Baseline (bump maps) 92.76±1.34 92.76±1.22 98.17±0.63

w/ Occ. 75.66±2.00 75.96±1.98 83.73±1.86

Ex. based filling 83.87±1.79 84.06±1.96 91.87±1.43

Table 1: Quantitative evaluations on LFW.

mesh S, which is both complete and dense. We first remove

the overlapping regions from R, then zipper the meshes us-

ing the well-known technique of [52].

5. Results

Our foundation shape, its expression, and viewpoint are

estimated using publicly available code (Sec. 3). These

steps require ∼0.3s per image. Deep bump-map regres-

sion is implemented in PyTorch, and requires a further

0.03s/image. Segmenting faces requires 0.02s/image.

To search for suitable examples, transfer, and blend

their details into occluded regions of our bump map re-

quires 0.6s/image (Sec. 4.2). Our unoptimized C++ im-

plementation for soft symmetry (Sec. 4.3) currently takes

∼50s/image. These runtimes were measured on a desktop

system with an Intel(C) Xeon(R) CPU X5687 @ 3.60GHz

4, 12GB RAM, and GeForce GTX 1080.

5.1. Occlusion invariance of the foundation shape

Any number of 3DMM fitting methods could potentially

be used to estimate a foundation shape in Sec. 3. Our choice

of using deep 3DMM [51] is motivated by the quantitative

results provided in that paper, demonstrating its unique ro-

bustness to extreme viewing conditions. To fully support

its application to occluded face images, however, we extend

their tests by evaluating their method on occluded faces.

Test settings and verification system. To this end, we use

images from the Labeled Faces in the Wild (LFW) bench-

mark [20]. We automatically select partially occluded LFW

images, using a recent, state of the art face segmentation

method [31] (Fig. 6 (top left)). We then conducted face ver-

ification tests using only pairs where at least one of the faces

was occluded, where both faces were unoccluded, and the

original LFW set. We used the same face verification sys-

tem from [51], and we refer to that paper for more details.

Occlusion invariance results. Fig. 6 (left) shows the sen-

sitivity of the state of the art method of [43] to these occlu-

sions. Their failure is likely due to their weak regularization

over the global face shape, required to produce fine details.

The figure also visualizes the shape estimated by [51]. Its

much stronger regularization provides a natural face shape
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Figure 7: LFW verification on bump maps. Our example

based hole filling clearly restores identifiable features to oc-

cluded bump maps (dashed blue vs. dashed red).

despite any occlusion. Though this regularization also lim-

its the details produced by that method, we use it only as a

foundation and add details separately.

We further quantitatively verify the robustness of [51]

to occlusions. Tab. 1 (top) reports verification results on

the LFW benchmark with and without occlusions, using the

foundation shape as a representation (see also ROC in Fig. 6

(right)). Though occlusions clearly impact recognition, this

drop is limited, demonstrating the robustness of [51] to oc-

clusions and supporting our decision to use this method for

our foundation shapes.

5.2. Bump map hole filling and identifiable features

Our bump map hole filling method (Sec. 4.2) is designed

to produce only plausible details. Still, it is interesting to

consider how well this process correctly estimates discrim-

inative features. To this end, we again use the LFW bench-

mark, this time measuring verification rates on our esti-

mated bump maps, rather than the original images.

Specifically, we measure accuracy on (a) bump maps es-

timated from LFW images, (b) bump maps with occluded

regions, and (c) bump maps with occlusions completed us-

ing the example based method of Sec. 4.2. The first tests

measure how well bump maps capture identities. The sec-

ond measure the impact of occlusions on these representa-

tions. The third measure if and how hole filling affects the

identity perceived from the bump maps.

Test settings and verification system. We randomly po-

sition occlusions (black squares) of 75×75 pixels on bump

maps estimated for LFW images. Bump maps were repre-

sented as 2D images, with bumps in the range of [0,...,255]

(Sec. 4.1). We used a simple recognition system, favor-

ing it over more elaborate ones to emphasize the effect of

the information reflected by the bump maps rather than

the method used to recognize them. This system encoded

bump maps using a standard AlexNet [28], trained on bump

maps extracted from the entire CASIA set [56]. Follow-

ing the current best practice we added Batch Normaliza-

tion layers [22] to ease the training and removed dropout.

We used transfer learning from weights pre-trained on Ima-

geNet; further details can be found in [45].

Hole filling results. Our results are presented in Fig. 7

and offer several noteworthy conclusions. First, the original

bump maps (solid red) capture identifiable features; recog-

nition results on the bump maps before holes were intro-

duced are very high. This is not surprising: bump maps

essentially reflect SfS which is known to be discriminative.

Also, not surprising is that by introducing occlusions, these

recognition rates drop substantially (dashed red). Remark-

ably, however, our example based hole filling recovers much

of this drop in accuracy (dashed blue). These results imply

that not only does our example based hole filling produce

plausible estimates for occluded regions, these estimates are

a good approximation of the true, occluded details.

5.3. Qualitative results

Rendered views of reconstructed 3D faces produced by

our method are provided throughout the paper. A compari-

son of our results to those produced by recent state of the art

is provided in Fig. 8. Baseline methods include the analysis

by synthesis 3DMM fitting of [40], the flow based approach

of [14], the recent 3DDFA method for facial landmark de-

tection and shape estimation [58], the deep 3DMM method

used to produce our foundation shapes [51], and the deep

system for detailed reconstructions of [43].

The recent method of Sela et al. produces beautifully de-

tailed results when the face is relatively unoccluded (Fig. 8

(c)), but due to its weaker regularization over the global

shape, fails completely on occluded faces and other chal-

lenging views. Other methods are either not regularized

enough (3DMM and flow, in rows (a) and (e)) or are too

regulated, producing generic shapes (3DDFA).

6. Conclusions

We describe a method capable of producing detailed 3D

face reconstructions from photos taken in extreme viewing

conditions. Our method goes on to estimate plausible fa-

cial details in places where the face is occluded. Our results

represent a leap in 3D face reconstruction capabilities, pre-

viously confined to mostly frontal, unoccluded views or to

3D shapes with limited details. At the heart of our approach

is its modular design, which decouples the task of estimat-

ing a robust foundation shape from the task of estimating

its mid-level details, represented here as bump maps. This

approach goes against the grain of more recent methods,

which explicitly seek to train deep, end-to-end systems for

this purpose. Although there is no denying the benefits of

such end-to-end systems, this paper shows the potential ad-

3941



Figure 8: Comparison of qualitative results. Baseline methods from left to right: 3DMM fitting of [40], flow based ap-

proach [14], 3DDFA [58], Tran et al. [51] (used to produce our foundations), and the end-to-end system of Sela et al. [43].

vantage modular designs can sometimes have. This advan-

tage is particularly relevant for faces, a class where domain

knowledge is abundant and object shapes are well regulated.
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