
Nonlinear 3D Face Morphable Model

Luan Tran, Xiaoming Liu

Department of Computer Science and Engineering

Michigan State University, East Lansing MI 48824

{tranluan, liuxm}@msu.edu

Abstract

As a classic statistical model of 3D facial shape and tex-

ture, 3D Morphable Model (3DMM) is widely used in facial

analysis, e.g., model fitting, image synthesis. Conventional

3DMM is learned from a set of well-controlled 2D face im-

ages with associated 3D face scans, and represented by two

sets of PCA basis functions. Due to the type and amount

of training data, as well as the linear bases, the represen-

tation power of 3DMM can be limited. To address these

problems, this paper proposes an innovative framework to

learn a nonlinear 3DMM model from a large set of un-

constrained face images, without collecting 3D face scans.

Specifically, given a face image as input, a network encoder

estimates the projection, shape and texture parameters. Two

decoders serve as the nonlinear 3DMM to map from the

shape and texture parameters to the 3D shape and texture,

respectively. With the projection parameter, 3D shape, and

texture, a novel analytically-differentiable rendering layer

is designed to reconstruct the original input face. The en-

tire network is end-to-end trainable with only weak super-

vision. We demonstrate the superior representation power

of our nonlinear 3DMM over its linear counterpart, and its

contribution to face alignment and 3D reconstruction. 1

1. Introduction

3D Morphable Model (3DMM) is a statistical model of

3D facial shape and texture in a space where there are ex-

plicit correspondences [4]. The morphable model frame-

work provides two key benefits: first, a point-to-point corre-

spondence between the reconstruction and all other models,

enabling morphing, and second, modeling underlying trans-

formations between types of faces (male to female, neutral

to smile, etc.). 3DMM has been widely applied in numerous

areas, such as computer vision [4, 43], graphics [1], human

behavioral analysis [2] and craniofacial surgery [34].

3DMM is learnt through supervision by performing di-

mension reduction, normally Principal Component Anal-

1Project page: http://cvlab.cse.msu.edu/project-nonlinear-3dmm.html
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Figure 1: Conventional 3DMM employs linear bases models for

shape/texture, which are trained with 3D face scans and associated

controlled 2D images. We propose a nonlinear 3DMM to model

shape/texture via deep neural networks (DNNs). It can be trained

from in-the-wild face images without 3D scans, and also better

reconstructs the original images due to the inherent nonlinearity.

ysis (PCA), on a training set of face images/scans. To

model highly variable 3D face shapes, a large amount of

high-quality 3D face scans is required. However, this re-

quirement is expensive to fulfill. The first 3DMM [4] was

built from scans of 200 subjects with a similar ethnicity/age

group. They were also captured in well-controlled condi-

tions, with only neutral expressions. Hence, it is fragile to

large variances in the face identity. The widely used Basel

Face Model (BFM) [26] is also built with only 200 subjects

in neutral expressions. Lack of expression can be compen-

sated using expression bases from FaceWarehouse [9] or

BD-3FE [42]. After more than a decade, almost all models

use less than 300 training scans. Such a small training set is

far from adequate to describe the full variability of human

faces [8]. Only recently, Booth et al. [8] spent a significant

effort to build 3DMM from scans of ∼10, 000 subjects.

Second, the texture model of 3DMM is normally built

with a small number of 2D face images co-captured with 3D

scans, under well-controlled conditions. Therefore, such a

model is only learnt to represent the facial texture in sim-

ilar conditions, rather than in-the-wild environments. This

substantially limits the application scenarios of 3DMM.
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Finally, the representation power of 3DMM is limited by

not only the size of training set but also its formulation. The

facial variations are nonlinear in nature. E.g., the variations

in different facial expressions or poses are nonlinear, which

violates the linear assumption of PCA-based models. Thus,

a PCA model is unable to interpret facial variations well.

Given the barrier of 3DMM in its data, supervision and lin-

ear bases, this paper aims to revolutionize the paradigm of

learning 3DMM by answering a fundamental question:

Whether and how can we learn a nonlinear 3D

Morphable Model of face shape and texture from

a set of unconstrained 2D face images, without

collecting 3D face scans?

If the answer were yes, this would be in sharp contrast

to the conventional 3DMM approach, and remedy all afore-

mentioned limitations. Fortunately, we have developed ap-

proaches that offer positive answers to this question. There-

fore, the core of this paper is regarding how to learn this

new 3DMM, what is the representation power of the model,

and what is the benefit of the model to facial analysis.

As shown in Fig. 1, starting with an observation that the

linear 3DMM formulation is equivalent to a single layer net-

work, using a deep network architecture naturally increases

the model capacity. Hence, we utilize two network de-

coders, instead of two PCA spaces, as the shape and tex-

ture model components, respectively. With careful consid-

eration of each component, we design different networks

for shape and texture: the multi-layer perceptron (MLP) for

shape and convolutional neural network (CNN) for texture.

Each decoder will take a shape or texture representation as

input and output the dense 3D face or a face texture. These

two decoders are essentially the nonlinear 3DMM.

Further, we learn the fitting algorithm to our nonlinear

3DMM, which is formulated as a CNN encoder. The en-

coder takes a 2D face image as input and generates the

shape and texture parameters, from which two decoders es-

timate the 3D face and texture. The 3D face and texture

would perfectly reconstruct the input face, if the fitting al-

gorithm and 3DMM are well learnt. Therefore, we design

a differentiable rendering layer to generate a reconstructed

face by fusing the 3D face, texture, and the camera projec-

tion parameters estimated by the encoder. Finally, the end-

to-end learning scheme is constructed where the encoder

and two decoders are learnt jointly to minimize the dif-

ference between the reconstructed face and the input face.

Jointly learning the 3DMM and the model fitting encoder al-

lows us to leverage the large collection of unconstrained 2D

images without relying on 3D scans. We show significantly

improved shape and texture representation power over the

linear 3DMM. Consequently, this also benefits other tasks

such as 2D face alignment and 3D reconstruction.

In this paper, we make the following contributions:

1) We learn a nonlinear 3DMM model that has greater

representation power than its traditional linear counterpart.

2) We jointly learn the model and the model fitting algo-

rithm via weak supervision, by leveraging a large collection

of 2D images without 3D scans. The novel rendering layer

enables the end-to-end training.

3) The new 3DMM further improves performance in re-

lated tasks: face alignment and face reconstruction.

2. Prior Work

Linear 3DMM. Since the original work by Blanz and Vet-

ter [4], there has been a large amount of effort trying to im-

prove 3DMM modeling mechanism. Paysan et al. [26] use

a Nonrigid Iterative Closest Point [3] to directly align 3D

scans as an alternative to the UV space alignment method

in [4]. Vlasic et al. [39] use a multilinear model to model

the combined effect of identity and expression variation on

the facial shape. Later, Bolkart and Wuhrer [6] show how

such a multilinear model can be estimated directly from the

3D scans using a joint optimization over the model param-

eters and groupwise registration of 3D scans.

Improving Linear 3DMM. With PCA bases, the statis-

tical distribution underlying 3DMM is Gaussian. Koppen

et al. [20] argue that single-mode Gaussian can’t represent

real-world distribution. They introduce the Gaussian Mix-

ture 3DMM that models the global population as a mixture

of Gaussian subpopulations, each with its own mean, but

shared covariance. Booth el al. [7] aim to improve texture

of 3DMM to go beyond controlled settings by learning in-

the-wild feature-based texture model. However, both works

are still based on statistical PCA bases. Duong et al. [25]

address the problem of linearity in face modeling by us-

ing Deep Boltzmann Machines. However, they only work

with 2D face and sparse landmarks; and hence cannot han-

dle faces with large-pose variations or occlusion well.

2D Face Alignment. 2D Face Alignment can be cast

as a regression problem where 2D landmark locations are

regressed directly [12]. For large-pose or occluded faces,

strong priors of 3DMM face shape have been shown to be

beneficial. Hence, there is increasing attention in conduct-

ing face alignment by fitting a 3D face model to a single

2D image [16–19, 21, 24, 45]. Among the prior works, iter-

ative approaches with cascades of regressors tend to be pre-

ferred. At each cascade, it can be a single [16, 38] or even

two regressors [40]. In contrast to aforementioned works

that use a fixed 3DMM model, our model and model fit-

ting are learned jointly. This results in a more powerful

model: a single-pass encoder, which is learnt jointly with

the model, achieves state-of-the-art face alignment perfor-

mance on AFLW2000 [45] benchmark dataset.

3D Face Reconstruction. 3DMM also demonstrates its

strength in face reconstruction. Since with a single image,

present information about the surface is limited; 3D face re-
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Figure 2: Jointly learning a nonlinear 3DMM and its fitting algorithm from unconstrained 2D face images, in a weakly supervised fashion.

construction must rely on prior knowledge like 3DMM [31].

Besides 3DMM fitting methods [5, 15, 35, 44], recently,

Richardson et al. [30] design a refinement network that adds

facial details on top of the 3DMM-based geometry. How-

ever, this approach can only learn 2.5D depth map, which

loses the correspondence property of 3DMM. The recent

work of Tewari et al. reconstruct a 3D face by an elegant

encoder-decoder network [35]. While their ability to de-

compose lighting with reflectance is satisfactory, our work

has a different objective of learning a nonlinear 3DMM.

3. Proposed Method

3.1. Conventional Linear 3DMM

The 3D Morphable Model (3DMM) [4] and its 2D coun-

terpart, Active Appearance Model [11, 22], provide para-

metric models for synthesizing faces, where faces are mod-

eled using two components: shape and texture. In [4], Blanz

et al. propose to describe the 3D face space with PCA:

S = S̄+Aα, (1)

where S ∈ R
3×Q is a 3D face with Q vertices, S̄ ∈ R

3×Q

is the mean shape, α ∈ R
lS is the shape parameter corre-

sponding to a 3D shape bases A. The shape bases can be

further split into A = [Aid,Aexp], where Aid is trained

from 3D scans with neutral expression, and Aexp is from

the offsets between expression and neutral scans.

The texture T
(l) ∈ R

3Q of the face is defined within

the mean shape S̄, which describes the R, G, B colors of Q

corresponding vertices. T
(l) is also formulated as a linear

combination of texture basis functions:

T
(l) = T̄

(l) +Bβ, (2)

where T̄
(l) is the mean texture, B is the texture bases, and

β ∈ R
lT is the texture parameter.

The 3DMM can be used to synthesize novel views of the

face. Firstly, a 3D face is projected onto the image plane

with the weak perspective projection model:

g(α,m) = V = f ∗Pr∗R∗S+t2d = M(m)∗

[
S

1

]
, (3)

where g(α,m) is the model construction and projection

function leading to the 2D positions V of 3D vertices, f

is the scale factor, Pr =

[
1 0 0
0 1 0

]
is the orthographic

projection matrix, R is the rotation matrix constructed from

three rotation angles pitch, yaw, roll, and t2d is the transla-

tion vector. While the projection matrix M has dimensions

2× 4, it has six degrees of freedom, which is parameterized

by a 6-dim vector m. Then, the 2D image is rendered using

texture and an illumination model as described in [4].

3.2. Nonlinear 3DMM

As mentioned in Sec. 1, the linear 3DMM has the prob-

lems such as requiring 3D face scans for supervised learn-

ing, unable to leverage massive unconstrained face images

for learning, and the limited representation power due to the

linear bases. We propose to learn a nonlinear 3DMM model

using only large-scale in-the-wild 2D face images.

3.2.1 Problem Formulation

In linear 3DMM, the factorization of each components (tex-

ture, shape) can be seen as a matrix multiplication between

coefficients and bases. From a neural network’s perspective,

this can be viewed as a shallow network with only one fully

connected layer and no activation function. Naturally, to

increase the model’s representative power, the shallow net-

work can be extended to a deep architecture. In this work,

we design a novel learning scheme to learn a deep 3DMM

and its inference (or fitting) algorithm.

Specifically, as shown in Fig. 2, we use two deep net-

works to decode the shape, texture parameters into the 3D

facial shape and texture respectively. To make the frame-

work end-to-end trainable, these parameters are estimated

by an encoder network, which is essentially the fitting al-

gorithm of our 3DMM. Three deep networks join forces

for the ultimate goal of reconstructing the input face image,

with the assistance of a geometry-based rendering layer.

Formally, given a set of 2D face images {Ii}
N
i=1, we

aim to learn an encoder E: I→m, fS , fT that estimates the

projection parameter m, and shape and texture parameters

7348



Figure 3: Three texture representations. (a) Texture value per

vertex, (b) Texture as a 2D frontal face, (c) 2D unwarped texture.

fS ∈ R
lS , fT ∈ R

lT , a 3D shape decoder DS : fS→S that

decodes the shape parameter to a 3D shape S, and a texture

decoder DT : fT→T that decodes the texture parameter to a

realistic texture T ∈ R
U×V , with the objective that the ren-

dered image with m, S, and T can approximate the original

image well. Mathematically, the objective function is:

argmin
E,DS ,DT

N∑

i=1

‖R(Em(Ii), DS(ES(Ii)), DT (ET (Ii)))− Ii‖1 , (4)

where R(m,S,T) is the rendering layer (Sec. 3.2.3).

3.2.2 Shape & Texture Representation

Our shape representation is the same as that of the linear

3DMM, i.e., S ∈ R
3×Q is a set of Q vertices vS = (x, y, z)

on the face surface. The shape decoder DS is a MLP whose

input is the shape parameter fS from E.

Fig. 3 illustrates three possible texture representations.

Texture is defined per vertex in the linear 3DMM and recent

work such as [35] (Fig. 3(a)). There is a texture intensity

value corresponding to each vertex in the face mesh. Since

3D vertices are not defined on a 2D grid, this representation

will be parameterized as a vector, which not only loses the

spatial relation of vertices, but also prevents it from lever-

aging the convenience of deploying CNN on 2D imagery.

In contrast, given the rapid progress in image synthesis, it

is desirable to choose a 2D image, e.g., a frontal-view face

image in Fig. 3(b), as a texture representation. However,

frontal faces contain little information of two sides, which

would lose much texture information for side-view faces.

In light of these considerations, we use an unwrapped

2D texture as our texture representation (Fig. 3(c)). Specifi-

cally, each 3D vertex vS is projected onto the UV space us-

ing cylindrical unwarp. Assuming that the face mesh has the

top pointing up the y axis, the projection of vS = (x, y, z)
onto the UV space vT = (u, v) is computed as:

v → α1.arctan
(x
z

)
+ β1, u → α2.y + β2, (5)

where α1, α2, β1, β2 are constant scale and translation

scalars to place the unwrapped face into the image bound-

aries. Also, the texture decoder DT is a CNN constructed

by fractionally-strided convolution layers.

3.2.3 In-Network Face Rendering

To reconstruct a face image from the texture T, shape S,

and projection parameter m, we define a rendering layer

Figure 4: Forward and backward pass of the rendering layer.

R(m,S,T). This is accomplished in three steps. Firstly,

the texture value of each vertex in S is determined by

its predefined location in the 2D texture T. Usually, it

involves sub-pixel sampling via a bilinear sampling kernel:

TS(vS) =
∑

u′∈{⌊u⌋,⌈u⌉}
v′∈{⌊v⌋,⌈v⌉}

T(u′, v′)(1−|u−u′|)(1−|v−v′|), (6)

where vT = (u, v) is the UV space projection of vS via

Eqn. 5. Secondly, the 3D shape/mesh S is projected to

the image plane via Eqn. 3. Finally, the 3D mesh is then

rendered using a Z-buffer renderer, where each pixel is

associated with a single triangle of the mesh,

Î(m,n) = R(m,S,T)m,n =
∑

vS∈Φ(g,m,n)

λTS(vS), (7)

where Φ(g,m, n) = {v
(1)
S ,v

(2)
S ,v

(3)
S } is an operation re-

turning three vertices of the triangle that encloses the pixel

(m,n) after projection g. In order to handle occlusions,

when a single pixel resides in more than one triangle, the tri-

angle that is closest to the image plane is selected. The value

of each pixel is determined by interpolating the intensity of

the mesh vertices via barycentric coordinates {λ(i)}3i=1.

There are alternative designs to our rendering layer.

If the texture representation is defined per vertex, as in

Fig. 3(a), one may warp the input image Ii onto the vertex

space of the 3D shape S, whose distance to the per-vertex

texture representation can form a reconstruction loss. This

design is adopted by the recent work of [35]. In comparison,

our rendered image is defined on a 2D grid while the alter-

native is on top of the 3D mesh. As a result, our rendered

image can enjoy the convenience of applying the adversarial

loss, which is shown to be critical in improving the quality

of synthetic texture. Further, our 2D texture representation

can be generated through convolutional filters, which sub-

stantially reduces the number of parameters in DT . Another

design for rendering layer is image warping based on the

spline interpolation, as in [10]. However, this warping is

continuous: every pixel in the input will map to the output.

Hence this warping operation fails in the occlusion part. As

a result, Cole et al. [10] limit their scope to only synthesiz-

ing frontal faces by warping from normalized faces.
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Table 1: The structures of E and DT networks

E DT

Layer Filter/Stride Output Size Layer Filter/Stride Output Size

FC 6×6×320
Conv11 3×3/1 96×96×32 FConv52 3×3/1 8×8×160
Conv12 3×3/1 96×96×64 FConv51 3×3/1 8×8×256

Conv21 3×3/2 48×48×64 FConv43 3×3/2 16×16×256
Conv22 3×3/1 48×48×64 FConv42 3×3/1 16×16×128
Conv23 3×3/1 48×48×128 FConv41 3×3/1 16×16×192

Conv31 3×3/2 24×24×128 FConv33 3×3/2 32×32×192
Conv32 3×3/1 24×24×96 FConv32 3×3/1 32×32×96
Conv33 3×3/1 24×24×192 FConv31 3×3/1 32×42×128

Conv41 3×3/2 12×12×192 FConv23 3×3/2 64×64×128
Conv42 3×3/1 12×12×128 FConv22 3×3/1 64×64×64
Conv43 3×3/1 12×12×256 FConv21 3×3/1 64×64×64

Conv51 3×3/2 6×6×256 FConv13 3×3/2 128×128×64
Conv52 3×3/1 6×6×160 FConv12 3×3/1 128×128×32
Conv53 3×3/1 6×6×(lS+lT+64) FConv11 3×3/1 128×128×3

AvgPool 6×6/1 1×1×(lS+lT+64)

FC (for m only) 64×6 6

3.2.4 Network Architecture

We design our E,DT network architecture as in Tab. 1.

Also, DS includes two fully connected layers with

1, 000-dim intermediate representation with eLU activation.

The entire network is end-to-end trained to reconstruct

the input images, with the loss function:

L = Lrec + λadvLadv + λLLL, (8)

where the reconstruction loss Lrec =
∑N

i=1 ||̂Ii − Ii||1 en-

forces the rendered image Îi to be similar to the input Ii,

the adversarial loss Ladv favors realistic rendering, and the

landmark loss LL enforces geometry constraint.

Adversarial Loss. Based on the principal of Generative

Adversarial Network (GAN) [14], the adversarial loss is

widely used to synthesize photo-realistic images [28, 37],

where the generator and discriminator are trained alterna-

tively. In our case, networks that generate the rendered im-

age Îi is the generator. The discriminator includes a dedi-

cated network DA, which aims to distinguish between the

real face image Ii and rendered image Îi. During the train-

ing of the generator, the texture model DT will be updated

with the objective that Îi is being classified as real faces

by DA. Since our face rendering already creates correct

global structure of the face image, the global image-based

adversarial loss may not be effective in producing high-

quality textures on local facial regions. Therefore, we em-

ploy patchGAN [33] in our discriminator. Here, DA is a

CNN consisting of four 3 × 3 conv layers with stride of 2,

and number of filters are 32, 64, 128 and 1, respectively. Fi-

nally, one of key reasons we are able to employ adversarial

loss is that we are rendering in the 2D image space, rather

than the 3D vertices space or unwrapped texture space. This

shows the necessity and importance of our rendering layer.

Semi-Supervised Pre-Training. Fully unsupervised train-

ing using only the mentioned reconstruction and adversarial

loss on the rendered image could lead to a degenerate solu-

tion, since the initial estimation is far from ideal to render

meaningful images. Hence, we introduce pre-training loss

functions to guide the training in the early iterations.

With face profiling technique, Zhu et al. [45] expands

the 300W dataset [32] into 122, 450 images with the fitted

3DMM shape S̃ and projection parameters m̃. Given S̃ and

m̃, we create the pseudo groundtruth texture T̃ by referring

every pixel in the UV space back to the input image, i.e.,

backward of our rendering layer. With m̃, S̃, T̃, we define

our pre-training loss by L0 = LS +λTLT +λmLm +λLLL,

where LS = ||S− S̃||2, LT = ||T− T̃||1, and Lm = ||m−
m̃||2. Due to the pseudo groundtruth, using L0 may run into

the risk that our solution learns to mimic the linear model.

Thus, we switch to the loss of Eqn. 8 after L0 converges.

Sparse Landmark Alignment. To help DT to better learn

the facial shape, the landmark loss can be an auxiliary task.

LL =

∥∥∥∥M(m) ∗

[
S(:,d)

1

]
−U

∥∥∥∥
2

, (9)

where U ∈ R
2×68 is the manually labeled 2D landmark lo-

cations, d is a constant 68-dim vector storing the indexes of

68 3D vertices corresponding to the labeled 2D landmarks.

Unlike the three losses above, these landmark annotations

are “golden” groundtruth, and hence LL can be used dur-

ing the entire training process. Different from traditional

face alignment work where the shape bases are fixed, our

work jointly learns the bases functions (i.e., the shape de-

coder DS) as well. Minimizing the landmark loss when

updating DS only moves a tiny subset of vertices, since our

DS is a MLP consisting of fully connected layers. This

could lead to unrealistic shapes. Hence, when optimizing

the landmark loss, we fix the decoder DS and only update

the encoder. Note that the estimated groundtruth in L0 and

the landmarks are the only supervision used in our training,

due to this our learning is considered as weakly supervised.

4. Experimental Results

The experiments study three aspects of the proposed

nonlinear 3DMM, in terms of its expressiveness, rep-

resentation power, and applications to facial analysis.

Using facial mesh triangle definition by Basel Face

Model (BFM) [26], we train our 3DMM using 300W-LP

dataset [45]. The model is optimized using Adam optimizer

with an initial learning rate of 0.001 when minimizing L0,

and 0.0002 when minimizing L. We set the following pa-

rameters: Q = 53, 215, U = V = 128, lS = lT = 160.

λ values are set to make losses to have similar magnitudes.

4.1. Expressiveness

Exploring feature space. We use the entire CelebA

dataset [23] with ∼200k images to feed to our network to

obtain the empirical distribution of our shape and texture

parameters. By varying the mean parameter along each di-

mension proportional to their standard deviations, we can
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Figure 5: Each column shows shape changes when varying one

element of fS . Ordered by the magnitude of shape changes.

Figure 6: Each column shows texture changes when varying one

element of fT .

Table 2: Quantitative comparison of texture representation power.

Method Linear Nonlinear w. Grad De. Nonlinear w. Network

L1 0.103 0.066 0.066

get a sense how each element contributes to the final shape

and texture. We sort elements in the shape parameter fS

based on their differences to the mean 3D shape. Fig. 5

shows four examples of shape changes, whose differences

rank No.1, 40, 80, and 120 among 160 elements. Most of

top changes are expression related. Similarly, in Fig. 6, we

visualize different texture changes by adjusting only one el-

ement of fT off the mean parameter f̄T . The elements with

the same 4 ranks as the shape counterpart are selected.

Attribute Embedding. To better understand different

shape and texture instances embedded in our two decoders,

we dig into their attribute meaning. For a given attribute,

e.g., male, we feed images with that attribute {Ii}
n
i=1 into

our encoder to obtain two sets of parameters {f iS}
n
i=1 and

{f iT }
n
i=1. These sets represent corresponding empirical dis-

tributions of the data in the low dimensional spaces. By

computing the mean parameters f̄S , f̄T , and feed into their

respective decoders, we can reconstruct the mean shape

and texture with that attribute. Fig. 7 visualizes the recon-

structed shape and texture related to some attributes. Dif-

ferences among attributes present in both shape and texture.

4.2. Representation Power

Texture. Given a face image, assuming we know the

groundtruth shape and projection parameters, we can un-

warp the texture into the UV space, as we generate “pseudo

Male Mustache Pale skin

Female Chubby Smiling

Figure 7: Nonliner 3DMM generates shape and texture embed-

ded with different attributes.

Input Linear
Nonlinear

Grad desc Network

Figure 8: Texture representation power comparison. Our nonlin-

ear model can better reconstruct the facial texture.

groundtruth” texture in the weakly supervised step. With

the groundtruth texture, by using gradient descent, we can

estimate a texture parameter fT whose decoded texture

matches with the groundtruth. Alternatively, we can min-

imize the reconstruction error in the image space, through

the rendering layer with the groundtruth S and m. Empir-

ically, the two methods give similar performances but we

choose the first option as it involves only one warping step,

instead of rendering in every optimization iteration. For the

linear model, we use the fitting results of Basel texture and

Phong illumination model [27] given by [45]. As in Fig. 8,

our nonlinear texture is closer to the groundtruth than the

linear model, especially for in-the-wild images (the first two

rows). This is expected since the linear model is trained

with controlled images. Quantitatively, our nonlinear model

has significantly lower L1 reconstruction error than the lin-

ear model (0.066 vs. 0.103, as in Tab. 2).

3D Shape. We also compare the power of nonlinear

and linear 3DMM in representing real-world 3D scans. We

compare with BFM [26], the most commonly used 3DMM

at present. We use ten 3D face scans provided by [26],

which are not included in the training set of BFM. As these

face meshes are already registered using the same triangle

definition with BFM, no registration is necessary. Given

the groundtruth shape, by using gradient descent, we can

estimate a shape parameter whose decoded shape matches
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lS = 40 lS = 80 lS = 160 lS = 160

Figure 9: Shape representation power comparison.

Table 3: 3D scan reconstruction comparison (NME).

lS 40 80 160

Linear 0.0321 0.0279 0.0241

Nonlinear 0.0277 0.0236 0.0196

Table 4: Face alignment performance on ALFW2000

Method Linear SDM [41] 3DDFA [45] Ours

NME 5.61 6.12 5.42 4.70

the groundtruth. We define matching criteria on both vertex

distances and surface normal direction. This empirically

improves fidelity of final results compared to only optimiz-

ing vertex distances. Also, to emphasize the compactness

of nonlinear models, we train different models with differ-

ent latent space sizes. Fig. 9 shows the visual quality of two

models’ reconstructions. As we can see, our reconstructions

closely match the face shapes. Meanwhile the linear model

struggles with face shapes outside its PCA span.

To quantify the difference, we use NME, averaged per-

vertex errors between the recovered and groundtruth shapes,

normalized by inter-ocular distances. Our nonlinear model

has a significantly smaller reconstruction error than the lin-

ear model, 0.0196 vs. 0.0241 (Tab. 3). Also, the non-linear

models are more compact. They can achieve similar perfor-

mances as linear models whose latent spaces sizes doubled.

4.3. Applications

Having shown the capability of our nonlinear 3DMM

(i.e., two decoders), now we demonstrate the applications of

our entire network, which has the additional encoder. Many

applications of 3DMM are centered on its ability to fit to 2D

face images. Fig. 10 visualizes our 3DMM fitting results on

CelebA dataset. Our encoder estimates the shape S, texture

T as well as projection parameter m. We can recover per-

sonal facial characteristic in both shape and texture. Our

texture can have variety skin color or facial hair, which is

normally hard to be recovered by linear 3DMM.

2D Face Alignment. Face alignment is a critical step for

any facial analysis task such as face recognition. With en-

hancement in the modeling, we hope to improve this task

Input Shape Texture Reconstruction

Figure 10: 3DMM fits to faces with diverse skin color, pose,

expression, lighting, facial hair, and faithfully recovers these cues.

Figure 11: Our 2D face alignment results. Invisible landmarks

are marked as red. We can handle extreme pose and/or expression.

(Fig. 11). We compare face alignment performance with

state-of-the-art methods, SDM [41] and 3DDFA [45], on

the AFLW2000 dataset. The alignment accuracy is eval-

uated by the Normalized Mean Error (NME), the average

of visible landmark error normalized by the bounding box

size. Here, current state-of-the-art 3DDFA [45] is a cascade

of CNNs that iteratively refines its estimation in multiple

steps, meanwhile ours is a single-pass of E and DS . How-

ever, by jointly learning model fitting with 3DMM, our net-

work can surpass [45]’s performance, as in Tab. 4. Another

perspective is that in conventional 3DMM fitting [45], the

texture is used as the input to regress the shape parameter,

while ours adopts an analysis-by-synthesis scheme and tex-

ture is the output of the synthesis. Further, for a more fair

comparison of nonlinear vs. linear models, we train an en-

coder with the same architecture as our E, whose output
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Figure 12: 3D reconstruction results comparison. We achieve comparable visual quality in 3D reconstruction.

Figure 13: Quantitative evaluation of 3D reconstruction. We ob-

tain a low error that is comparable to optimization-based methods.

parameter will multiple with the linear shape bases A, and

train with the landmark loss function (Eqn. 9). Again we

observe the higher error from the linear model-based fitting.

3D Face Reconstruction. We compare our approach to

recent works: the CNN-based iterative supervised regres-

sor of Richardson et al. [29, 30] and unsupervised regres-

sor method of Tewari et al. [35]. The work by Tewari et

al. [35] is relevant to us as they also learn to fit 3DMM in

an unsupervised fashion. However, they are limited to lin-

ear 3DMM bases, which of course are not jointly trained

with the model. Also, we only compare with the coarse

network in [30] as their refinement network use SfS, which

leads to a 2.5D representation and loses correspondence be-

tween different 3D shapes. This is orthogonal to our ap-

proach. Fig. 12 shows visual comparison. Following the

same setting in [35], we also quantitatively compare our

method with prior works on 9 subjects of FaceWarehouse

database (Fig. 13). We achieve on-par results with Garrido

et al. [13], an offline optimization method, while surpassing

all other regression methods [30, 35, 36].

4.4. Ablation on Texture Learning

With great representation power, we would like to learn

a realistic texture model from in-the-wild images. The ren-

dering layer opens a possibility to apply adversarial loss in

addition to global L1 loss. Using a global image-based dis-

criminator is redundant as the global structure is guaranteed

Input No GAN ImgGAN PatchGAN

Figure 14: Effects of adversarial losses for texture learning.

by the rendering layer. Also, we empirically find that using

global image-based discriminator can cause severe artifacts

in the resultant texture. Fig. 14 visualizes outputs of our

network with different options of adversarial loss. Clearly,

patchGAN offers higher realism and fewer artifacts.

5. Conclusions

Since its debut in 1999, 3DMM has became a corner-

stone of facial analysis research with applications to many

problems. Despite its impact, it has drawbacks in requiring

training data of 3D scans, learning from controlled 2D im-

ages, and limited representation power due to linear bases.

These drawbacks could be formidable when fitting 3DMM

to unconstrained faces, or learning 3DMM for generic ob-

jects such as shoes. This paper demonstrates that there ex-

ists an alternative approach to 3DMM learning, where a

nonlinear 3DMM can be learned from a large set of uncon-

strained face images without collecting 3D face scans. Fur-

ther, the model fitting algorithm can be learnt jointly with

3DMM, in an end-to-end fashion.

Our experiments cover a diverse aspects of our learnt

model, some of which might need the subjective judgment

of the readers. We hope that both the judgment and quanti-

tative results could be viewed under the context that, unlike

linear 3DMM, no genuine 3D scans are used in our learning.

Finally, we believe that unsupervisedly learning 3D models

from large-scale in-the-wild 2D images is one promising re-

search direction. This work is one step along this direction.
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