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Abstract

Convolutional neural network-based approaches for se-

mantic segmentation rely on supervision with pixel-level

ground truth, but may not generalize well to unseen image

domains. As the labeling process is tedious and labor inten-

sive, developing algorithms that can adapt source ground

truth labels to the target domain is of great interest. In this

paper, we propose an adversarial learning method for do-

main adaptation in the context of semantic segmentation.

Considering semantic segmentations as structured outputs

that contain spatial similarities between the source and tar-

get domains, we adopt adversarial learning in the output

space. To further enhance the adapted model, we con-

struct a multi-level adversarial network to effectively per-

form output space domain adaptation at different feature

levels. Extensive experiments and ablation study are con-

ducted under various domain adaptation settings, includ-

ing synthetic-to-real and cross-city scenarios. We show that

the proposed method performs favorably against the state-

of-the-art methods in terms of accuracy and visual quality.

1. Introduction

Semantic segmentation aims to assign each pixel a se-

mantic label, e.g., person, car, road or tree, in an image.

Recently, methods based on convolutional neural networks

(CNNs) have achieved significant progress in semantic seg-

mentation [2, 21, 23, 24, 38, 40, 41] with applications for

autonomous driving [9] and image editing [35]. The crux

of CNN-based approaches is to annotate a large number of

images that cover possible scene variations. However, this

trained model may not generalize well to unseen images,

especially when there is a domain gap between the training

(source) and test (target) images. For instance, the distribu-

tion of appearance for objects and scenes may vary in dif-

ferent cities, and even weather and lighting conditions can

change significantly in the same city. In such cases, rely-
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Figure 1. Our motivation of learning adaptation in the output

space. While images may be very different in appearance, their

outputs are structured and share many similarities, such as spatial

layout and local context.

ing only on the supervised model that requires re-annotating

per-pixel ground truths in different scenarios would entail

prohibitively high labor cost.

To address this issue, knowledge transfer or domain

adaptation techniques have been proposed to close the gap

between source and target domains, where annotations are

not available in the target domain. For image classification,

one effective approach is to align features across two do-

mains [8, 25] such that the adapted features can generalize

to both domains. Similar efforts have been made for se-

mantic segmentation via adversarial learning in the feature

space [3, 13]. However, different from the image classi-

fication task, feature adaptation for semantic segmentation

may suffer from the complexity of high-dimensional fea-

tures that needs to encode diverse visual cues, including

appearance, shape and context. This motivates us to de-

velop an effective method for adapting pixel-level predic-

tion tasks rather than using feature adaptation. In semantic

segmentation, we note that the output space contains rich

information, both spatially and locally. For instance, even

if images from two domains are very different in appear-

ance, their segmentation outputs share a significant amount

of similarities, e.g., spatial layout and local context (see Fig-

ure 1). Based on this observation, we address the pixel-

level domain adaptation problem in the output (segmenta-

tion) space.
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In this paper, we propose an end-to-end CNN-based do-

main adaptation algorithm for semantic segmentation. Our

formulation is based on adversarial learning in the output

space, where the intuition is to directly make the predicted

label distributions close to each other across source and tar-

get domains. Based on the generative adversarial network

(GAN) [10, 30, 22], the proposed model consists of two

parts: 1) a segmentation model to predict output results, and

2) a discriminator to distinguish whether the input is from

the source or target segmentation output. With an adversar-

ial loss, the proposed segmentation model aims to fool the

discriminator, with the goal of generating similar distribu-

tions in the output space for either source or target images.

The proposed method also adapts features as the errors

are back-propagated to the feature level from the output la-

bels. However, one concern is that lower-level features may

not be adapted well as they are far away from the high-level

output labels. To address this issue, we develop a multi-

level strategy by incorporating adversarial learning at differ-

ent feature levels of the segmentation model. For instance,

we can use both conv5 and conv4 features to predict seg-

mentation results in the output space. Then two discrimi-

nators can be connected to each of the predicted output for

multi-level adversarial learning. We perform one-stage end-

to-end training for the segmentation model and discrimina-

tors jointly, without using any prior knowledge of the data in

the target domain. In the testing phase, we can simply dis-

card discriminators and use the adapted segmentation model

on target images, with no extra computational requirements.

Due to the high labor cost of annotating segmentation

ground truth, there has been great interest in large-scale syn-

thetic datasets with annotations, e.g., GTA5 [31] and SYN-

THIA [32]. As a result, one critical setting is to adapt the

model trained on synthetic data to real-world datasets, such

as Cityscapes [4]. We follow this setting and conduct ex-

tensive experiments to validate the proposed domain adap-

tation method. First, we use a strong baseline model that

is able to generalize to different domains. We note that a

strong baseline facilitates real-world applications and can

evaluate the limitation of the proposed adaptation approach.

Based on this baseline model, we show comparisons using

adversarial adaptation in the feature and output spaces. Fur-

thermore, we show that the multi-level adversarial learning

improves the results over single-level adaptation. In addi-

tion to the synthetic-to-real setting, we show experimental

results on the Cross-City dataset [3], where annotations are

provided in one city (source), while testing the model on

another unseen city (target). Overall, our method performs

favorably against state-of-the-art algorithms on numerous

benchmark datasets under different settings.

The contributions of this work are as follows. First,

we propose a domain adaptation method for pixel-level se-

mantic segmentation via adversarial learning. Second, we

demonstrate that adaptation in the output (segmentation)

space can effectively align scene layout and local context

between source and target images. Third, a multi-level ad-

versarial learning scheme is developed to adapt features at

different levels of the segmentation model, which leads to

improved performance.

2. Related Work

Semantic Segmentation. State-of-the-art semantic seg-

mentation methods are mainly based on the recent advances

of deep neural networks. As proposed by Long et al. [24],

one can transform a classification CNN (e.g., AlexNet [19],

VGG [33], or ResNet [11]) to a fully-convolutional net-

work (FCN) for semantic segmentation. Numerous meth-

ods have since been developed to improve this model by

utilizing context information [15, 40] or enlarging receptive

fields [2, 38]. To train these advanced networks, a substan-

tial amount of dense pixel annotations must be collected in

order to match the model capacity of deep CNNs. As a re-

sult, weakly and semi-supervised approaches [5, 14, 17, 28,

29] are proposed in recent years to reduce the heavy label-

ing cost of collecting segmentation ground truths. However,

in most real-world applications, it is difficult to obtain weak

annotations and the trained model may not generalize well

to unseen image domains.

Another approach to tackle the annotation problem is

to construct synthetic datasets based on rendering, e.g.,

GTA5 [31] and SYNTHIA [32]. While the data collection

is less costly since the pixel-level annotation can be done

with a partially automated process, these datasets are usu-

ally used in conjunction with real-world datasets for joint

learning to improve the performance. However, when train-

ing solely on the synthetic dataset, the model does not gen-

eralize well to real-world data, mainly due to the large do-

main shift between synthetic images and real-world images,

i.e., appearance differences are still significant with current

rendering techniques. Although synthesizing more realistic

images can decrease the domain shift, it is necessary to use

domain adaptation to narrow the performance gap.

Domain Adaptation. Domain adaptation methods for

image classification have been developed to address the

domain-shift problem between the source and target do-

mains. Numerous methods [7, 8, 25, 26, 34, 36, 37] are de-

veloped based on CNN classifiers due to performance gain.

The main insight behind these approaches is to tackle the

problem by aligning the feature distribution between source

and target images. Ganin et al. [7, 8] propose the Domain-

Adversarial Neural Network (DANN) to transfer the feature

distribution. A number of variants have since been proposed

with different loss functions [25, 36, 37] or classifiers [26].

Recently, the PixelDA method [1] addresses domain adap-

tation for image classification by transferring the source im-
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Figure 2. Algorithmic overview. Given images with the size H by W in source and target domains, we pass them through the segmentation

network to obtain output predictions. For source predictions with C categories, a segmentation loss is computed based on the source ground

truth. To make target predictions closer to the source ones, we utilize a discriminator to distinguish whether the input is from the source or

target domain. Then an adversarial loss is calculated on the target prediction and is back-propagated to the segmentation network. We call

this process as one adaptation module, and we illustrate our proposed multi-level adversarial learning by adopting two adaptation modules

at two different levels here.

ages to target domain, thereby obtaining a simulated train-

ing set for target images.

We note that domain adaptation for pixel-level prediction

tasks have not been explored widely. Hoffman et al. [13]

introduce the task of domain adaptation on semantic seg-

mentation by applying adversarial learning (i.e., DANN)

in a fully-convolutional way on feature representations and

additional category constraints similar to the constrained

CNN [29]. Other methods focus on adapting synthetic-to-

real or cross-city images by adopting class-wise adversarial

learning [3] or label transfer [3]. Similar to the PixelDA

method [1], one concurrent work, CyCADA [12] uses the

CycleGAN [42] and transfers source domain images to the

target domain with pixel alignment, thus generating extra

training data combined with feature space adversarial learn-

ing [13].

Although feature space adaptation has been successfully

applied to image classification, pixel-level tasks such as

semantic segmentation remains challenging based on fea-

ture adaptation-based approaches. In this paper, we use the

property that pixel-level predictions are structured outputs

that contain information spatially and locally, to propose an

efficient domain adaptation algorithm through adversarial

learning in the output space.

3. Algorithmic Overview

3.1. Overview of the Proposed Model

Our domain adaptation algorithm consists of two mod-

ules: a segmentation network G and the discriminator Di,

where i indicates the level of a discriminator in the multi-

level adversarial learning. Two sets of images ∈ R
H×W×3

from source and target domains are denoted as {IS} and

{IT }. We first forward the source image Is (with annota-

tions) to the segmentation network for optimizing G. Then

we predict the segmentation softmax output Pt for the tar-

get image It (without annotations). Since our goal is to

make segmentation predictions P of source and target im-

ages (i.e., Ps and Pt) close to each other, we use these two

predictions as the input to the discriminator Di to distin-

guish whether the input is from the source or target domain.

With an adversarial loss on the target prediction, the net-

work propagates gradients from Di to G, which would en-

courage G to generate similar segmentation distributions in

the target domain to the source prediction. Figure 2 shows

the overview of the proposed algorithm.

3.2. Objective Function for Domain Adaptation

With the proposed network, we formulate the adaptation

task containing two loss functions from both modules:

L(Is, It) = Lseg(Is) + λadvLadv(It), (1)

where Lseg is the cross-entropy loss using ground truth an-

notations in the source domain, and Ladv is the adversarial

loss that adapts predicted segmentations of target images to

the distribution of source predictions (see Section 4). In (1),

λadv is the weight used to balance the two losses.
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4. Output Space Adaptation

Different from image classification based on features

[8, 25] that describe the global visual information of the

image, high-dimensional features learned for semantic seg-

mentation encodes complex representations. As a result,

adaptation in the feature space may not be the best choice

for semantic segmentation. On the other hand, although

segmentation outputs are in the low-dimensional space, they

contain rich information, e.g., scene layout and context. Our

intuition is that no matter images are from the source or tar-

get domain, their segmentations should share strong simi-

larities, spatially and locally. Thus, we utilize this property

to adapt low-dimensional softmax outputs of segmentation

predictions via an adversarial learning scheme.

4.1. Single­level Adversarial Learning

Discriminator Training. Before introducing how to adapt

the segmentation network via adversarial learning, we first

describe the training objective for the discriminator. Given

the segmentation softmax output P = G(I) ∈ R
H×W×C ,

where C is the number of categories, we forward P to a

fully-convolutional discriminator D using a cross-entropy

loss Ld for the two classes (i.e., source and target). The loss

can be written as:

Ld(P ) = −
∑

h,w

(1− z) log(D(P )(h,w,0)) (2)

+z log(D(P )(h,w,1)),

where z = 0 if the sample is drawn from the target domain,

and z = 1 for the sample from the source domain.

Segmentation Network Training. First, we define the seg-

mentation loss in (1) as the cross-entropy loss for images

from the source domain:

Lseg(Is) = −
∑

h,w

∑

c∈C

Y (h,w,c)
s log(P (h,w,c)

s ), (3)

where Ys is the ground truth annotations for source images

and Ps = G(Is) is the segmentation output.

Second, for images in the target domain, we forward

them to G and obtain the prediction Pt = G(It). To make

the distribution of Pt closer to Ps, we use an adversarial loss

Ladv in (1) as:

Ladv(It) = −
∑

h,w

log(D(Pt)
(h,w,1)). (4)

This loss is designed to train the segmentation network and

fool the discriminator by maximizing the probability of the

target prediction being considered as the source prediction.

4.2. Multi­level Adversarial Learning

Although performing adversarial learning in the output

space directly adapts predictions, low-level features may

not be adapted well as they are far away from the output.

Similar to the deep supervision method [20] that uses aux-

iliary loss for semantic segmentation [40], we incorporate

additional adversarial module in the low-level feature space

to enhance the adaptation. The training objective for the

segmentation network can be extended from (1) as:

L(Is, It) =
∑

i

λi
segL

i
seg(Is) +

∑

i

λi
advL

i
adv(It), (5)

where i indicates the level used for predicting the segmen-

tation output. We note that, the segmentation output is

still predicted in each feature space, before passing through

individual discriminators for adversarial learning. Hence,

Li
seg(Is) and Li

adv(It) remain in the same form as in (3)

and (4), respectively. Based on (5), we optimize the follow-

ing min-max criterion:

max
D

min
G

L(Is, It). (6)

The ultimate goal is to minimize the segmentation loss in

G for source images, while maximizing the probability of

target predictions being considered as source predictions.

5. Network Architecture and Training

Discriminator. For the discriminator, we use an architec-

ture similar to [30] but utilize all fully-convolutional lay-

ers to retain the spatial information. The network consists

of 5 convolution layers with kernel 4 × 4 and stride of 2,

where the channel number is {64, 128, 256, 512, 1}, re-

spectively. Except for the last layer, each convolution layer

is followed by a leaky ReLU [27] parameterized by 0.2. An

up-sampling layer is added to the last convolution layer for

re-scaling the output to the size of the input. We do not use

any batch-normalization layers [16] as we jointly train the

discriminator with the segmentation network using a small

batch size.

Segmentation Network. It is essential to build upon a good

baseline model to achieve high-quality segmentation results

[2, 38, 40]. We adopt the DeepLab-v2 [2] framework with

ResNet-101 [11] model pre-trained on ImageNet [6] as our

segmentation baseline network. However, we do not use

the multi-scale fusion strategy [2] due to the memory issue.

Similar to the recent work on semantic segmentation [2, 38],

we remove the last classification layer and modify the stride

of the last two convolution layers from 2 to 1, making the

resolution of the output feature maps effectively 1/8 times

the input image size. To enlarge the receptive field, we ap-

ply dilated convolution layers [38] in conv4 and conv5 lay-

ers with a stride of 2 and 4, respectively. After the last layer,

we use the Atrous Spatial Pyramid Pooling (ASPP) [2] as

the final classifier. Finally, we apply an up-sampling layer

along with the softmax output to match the size of the input

image. Based on this architecture, our segmentation model
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Table 1. Results of adapting GTA5 to Cityscapes. We first compare our results using single-level adversarial learning in the output space

with other state-of-the-art algorithms with the VGG-16 based model. Then we adopt the ResNet-101 based model and present ablation

study on different components of our proposed method.

GTA5 → Cityscapes

Method ro
ad

si
d

ew
al

k

b
u

il
d

in
g

w
al

l

fe
n

ce

p
o

le

li
g

h
t

si
g

n

v
eg

te
rr

ai
n

sk
y

p
er
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n

ri
d

er

ca
r
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u

ck

b
u

s

tr
ai

n

m
b

ik
e

b
ik

e

mIoU

FCNs in the Wild [13] 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1

CDA [39] 74.9 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 14.6 28.9

CyCADA (feature) [12] 85.6 30.7 74.7 14.4 13.0 17.6 13.7 5.8 74.6 15.8 69.9 38.2 3.5 72.3 16.0 5.0 0.1 3.6 0.0 29.2

CyCADA (pixel) [12] 83.5 38.3 76.4 20.6 16.5 22.2 26.2 21.9 80.4 28.7 65.7 49.4 4.2 74.6 16.0 26.6 2.0 8.0 0.0 34.8

Ours (singel-level) 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 35.0

Baseline (ResNet) 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6

Ours (feature) 83.7 27.6 75.5 20.3 19.9 27.4 28.3 27.4 79.0 28.4 70.1 55.1 20.2 72.9 22.5 35.7 8.3 20.6 23.0 39.3

Ours (single-level) 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4

Ours (multi-level) 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

achieves 65.1% mean intersection-over-union (IoU) when

trained on the Cityscapes [4] training set and tested on the

Cityscapes validation set.

Multi-level Adaptation Model. We construct the above-

mentioned discriminator and segmentation network as our

single-level adaptation model. For the multi-level structure,

we extract feature maps from the conv4 layer and add an

ASPP module as the auxiliary classifier. Similarly, a dis-

criminator with the same architecture is added for adversar-

ial learning. Figure 2 shows the proposed multi-level adap-

tation model. In this paper, we use two levels due to the

balance of its efficiency and accuracy.

Network Training. To train the proposed single/multi-level

adaptation model, we find that jointly training the segmen-

tation network and discriminators in one stage is effective.

In each training batch, we first forward the source image Is
to optimize the segmentation network for Lseg in (3) and

generate the output Ps. For the target image It, we obtain

the segmentation output Pt, and pass it along with Ps to the

discriminator for optimizing Ld in (2). In addition, we com-

pute the adversarial loss Ladv in (4) for the target prediction

Pt. For the multi-level training objective in (5), we simply

repeat the same procedure for each adaptation module.

We implement our network using the PyTorch toolbox

on a single Titan X GPU with 12 GB memory. To train

the segmentation network, we use the Stochastic Gradient

Descent (SGD) optimizer with Nesterov acceleration where

the momentum is 0.9 and the weight decay is 10−4. The

initial learning rate is set as 2.5 × 10−4 and is decreased

using the polynomial decay with power of 0.9 as mentioned

in [2]. For training the discriminator, we use the Adam op-

timizer [18] with the learning rate as 10−4 and the same

polynomial decay as the segmentation network. The mo-

mentum is set as 0.9 and 0.99.

Table 2. Performance gap between the adapted model and the

fully-supervised (oracle) model. We first compare results with

state-of-the-art methods using the VGG based model, and then

show our result using the ResNet one.

GTA5 → Cityscapes

method Baseline Adapt Oracle mIoU Gap

FCNs in the Wild [13]

VGG-16

27.1 64.6 -37.5

CDA [39] 28.9 60.3 -31.4

CyCADA (feature) [12] 29.2 60.3 -30.5

CyCADA (pixel) [12] 34.8 60.3 -24.9

Ours (single-level) 35.0 61.8 -25.2

Ours (multi-level) ResNet-101 42.4 65.1 -22.7

6. Experimental Results

In this section, we present experimental results to val-

idate the proposed domain adaptation method for seman-

tic segmentation under different settings. First, we show

evaluations of the model trained on synthetic datasets (i.e.,

GTA5 [31] and SYNTHIA [32]) and test the adapted model

on real-world images from the Cityscapes [4] dataset. Ex-

tensive experiments including comparisons to the state-of-

the-art methods and ablation study are also conducted, e.g.,

adaptation in the feature/output spaces and single/multi-

level adversarial learning. Second, we carry out experi-

ments on the Cross-City dataset [3], where the model is

trained on one city and adapted to another city without

using annotations. In all the experiments, the IoU met-

ric is used. The code and model are available at https:

//github.com/wasidennis/AdaptSegNet.

6.1. GTA5

The GTA5 dataset [31] consists of 24966 images with

the resolution of 1914 × 1052 synthesized from the video
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game based on the city of Los Angeles. The ground truth

annotations are compatible with the Cityscapes dataset [4]

that contains 19 categories. Following [13], we use the full

set of GTA5 and adapt the model to the Cityscapes training

set with 2975 images. During testing, we evaluate on the

Cityscapes validation set with 500 images.

Overall Results. We present adaptation results in Table 1

with comparisons to the state-of-the-art domain adaptation

methods [12, 13, 39]. For these approaches, the baseline

model is trained using VGG-based architectures [24, 38].

To fairly evaluate our method, we first use the same baseline

architecture (VGG-16) and train our model with the pro-

posed single-level adaptation module. Table 1 shows that

our method performs favorably against the other algorithms.

While these methods all have feature adaptation modules,

our results show that adapting the model in the output space

achieves better performance. We note that CyCADA [12]

has a pixel adaptation module by transforming source do-

main images to the target domain and hence obtains ad-

ditional training samples. Although this strategy achieves

a similar performance as ours, one can always apply pixel

transformation combined with our output space adaptation

to improve the results.

On the other hand, we argue that utilizing a stronger

baseline model is critical for understanding the importance

of different adaptation components as well as for enhancing

the performance to enable real-world applications. Thus,

we use the ResNet-101 based network introduced in Sec-

tion 5 and train the proposed adaptation model. Table 1

shows the baseline results only trained on source images

without adaptation, with comparisons to our adapted mod-

els under different settings, including feature adaptation and

single/multi-level adversarial learning in the output space.

Figure 3 presents some example results for adapted seg-

mentation. We note that for small objects such as poles and

traffic signs, they are harder to adapt since they easily get

merged with background classes.

In addition, another factor to evaluate the adaptation per-

formance is to measure how much gap is narrowed be-

tween the adaptation model and the fully-supervised model.

Hence, we train the model using annotated ground truths

in the Cityscapes dataset as the oracle results. Table 2

shows the gap under different baseline models. We observe

that, although the oracle result does not differ a lot between

VGG-16 and ResNet-101 based models, the gap is larger for

the VGG one. It suggests us that to narrow the gap, using a

deeper model with larger capacity is more practical.

Parameter Analysis. During optimizing the segmentation

network G, it is essential to balance the weight between

segmentation and adversarial losses. We first consider the

single-level case in (1) and conduct experiments to observe

the impact of changing λadv . Table 3 shows that a smaller

λadv may not facilitate the training process significantly,

Table 3. Sensitivity analysis of λadv for feature/output space do-

main adaptation in the proposed method. We show that output

space adaptation can tolerate a wide range of λadv , while it is sen-

sitive to change λadv for feature adaptation.

GTA5 → Cityscapes

λadv 0.0005 0.001 0.002 0.004

Feature 35.3 39.3 35.9 32.8

Output Space 40.2 41.4 40.4 40.1

while a larger λadv may propagate incorrect gradients to

the network. We empirically choose λadv as 0.001 in the

single-level setting.

Feature Level v.s. Output Space Adaptation. In the

single-level setting in (1), we compare results by using

feature-level or output space adaptation via adversarial

learning. For feature-level adaptation, we adopt a similar

strategy as used in [13, 3] and train our model accordingly.

Table 1 shows that the proposed adaptation method in the

output space performs better than the one in the feature

level.

In addition, Table 3 shows that adaptation in the feature

space is more sensitive to λadv , which causes the training

process more difficult, while output space adaptation allows

for a wider range of λadv . One reason is that as feature

adaptation is performed in the high-dimensional space, the

problem for the discriminator becomes easier. Thus, such

an adapted model cannot effectively match distributions be-

tween source and target domains via adversarial learning.

Single-level v.s. Multi-level Adversarial Learning. We

have shown the merits of adopting adversarial learning in

the output space. In addition, we present the results of us-

ing multi-level adversarial learning in Table 1. Here, we

utilize an additional adversarial module (see Figure 2) and

jointly optimize (5) for two levels. To properly balance λi
seg

and λi
adv , we use the same weight as in the single-level set-

ting for the high-level output space (i.e., λ1
seg = 1 and λ1

adv

= 0.001). Since the low-level output carries less informa-

tion to predict the segmentation, we use smaller weights for

both the segmentation and adversarial loss (i.e., λ2
seg = 0.1

and λ2
adv = 0.0002). Evaluation results show that our multi-

level adversarial adaptation further improves the segmenta-

tion accuracy. More results and analysis are presented in

the supplementary material.

6.2. SYNTHIA

To adapt from the SYNTHIA to Cityscapes datasets,

we use the SYNTHIA-RAND-CITYSCAPES [32] set as

the source domain which contains 9400 images compati-

ble with the cityscapes annotated classes. Similar to [3],

we evaluate images on the Cityscapes validation set with 13
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Table 4. Results of adapting SYNTHIA to Cityscapes. We first compare our results using single-level adversarial learning in the output

space with other state-of-the-art algorithms with the VGG-16 based model. Then we adopt the ResNet-101 based model and present

ablation study on different components of our proposed method.

SYNTHIA → Cityscapes

Method ro
ad

si
d
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al

k
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il
d
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g

li
g

h
t

si
g

n

v
eg

sk
y

p
er

so
n

ri
d

er
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r

b
u

s

m
b

ik
e

b
ik

e

mIoU

FCNs in the Wild [13] 11.5 19.6 30.8 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 22.9

CDA [39] 65.2 26.1 74.9 3.7 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 34.8

Cross-City [3] 62.7 25.6 78.3 1.2 5.4 81.3 81.0 37.4 6.4 63.5 16.1 1.2 4.6 35.7

Ours (single-level) 78.9 29.2 75.5 0.1 4.8 72.6 76.7 43.4 8.8 71.1 16.0 3.6 8.4 37.6

Baseline (ResNet) 55.6 23.8 74.6 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 38.6

Ours (feature) 62.4 21.9 76.3 11.7 11.4 75.3 80.9 53.7 18.5 59.7 13.7 20.6 24.0 40.8

Ours (single-level) 79.2 37.2 78.8 9.9 10.5 78.2 80.5 53.5 19.6 67.0 29.5 21.6 31.3 45.9

Ours (multi-level) 84.3 42.7 77.5 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 46.7

Table 5. Performance gap between the adapted model and the

fully-supervised (oracle) model. We first compare results with

state-of-the-art methods using the VGG based model, and then

show our result using the ResNet one.

SYNTHIA → Cityscapes

Method Baseline Adapt Oracle mIoU Gap

FCNs in the Wild [13]

VGG-16

22.9 73.8 -50.9

CDA [39] 34.8 69.6 -34.8

Cross-City [3] 35.7 73.8 -38.1

Ours (single-level) 37.6 68.4 -30.8

Ours (multi-level) ResNet-101 46.7 71.7 -25.0

classes. For the weight in (1) and (5), we use the same ones

as in the case of GTA5 dataset.

Table 4 shows evaluation results of the proposed algo-

rithm against the state-of-the-art methods [3, 13, 39] that

use feature adaptation. Similar to the experiments with the

GTA5 dataset, we first utilize the same VGG-based model

and train our single-level adaptation model for fair com-

parisons. The experimental results suggest that adapting

the model in the output space performs better. Second, we

compare results using different components of the proposed

method with the ResNet based model. We show that the

multi-level adaptation module improves the results over the

baseline, feature space adaptation and single-level adapta-

tion models. In addition, we present comparisons of mean

IoU gap between adapted and oracle results in Table 5. Our

method achieves the smallest gap and is the only one that

can minimize the gap below 30%.

6.3. Cross­City Dataset

In addition to the synthetic-to-real adaptation for a larger

domain gap, we conduct experiment on the Cross-City

dataset [3] with smaller domain gaps between cities. The

dataset contains four different cities: Rio, Rome, Tokyo and

Taipei, in which each city has 3200 images without annota-

tions and 100 images with pixel-level ground truths for 13

classes. Similar to [3], we use the Cityscapes training set

as the source domain and adapt it to each target city using

3200 images, while 100 annotated images are used for eval-

uation. Since a smaller domain gap results in smaller output

differences, we use smaller weights for the adversarial loss

(i.e., λi
adv = 0.0005) when training our models, while the

weights for segmentation remain the same as previous ex-

periments.

We show our results in Table 6 with comparisons to [3]

and our baseline models under different settings. Again,

our final multi-level model achieves consistent improve-

ment for different cities, which demonstrates the advantages

of the proposed adaptation method in the output space. Note

that the state-of-the-art method [3] uses a different baseline

model, and we present it as a reference to analyze how much

the proposed algorithm can improve.

7. Concluding Remarks

In this paper, we exploit the fact that segmentations

are structured outputs and share many similarities between

source and target domains. We tackle the domain adaptation

problem for semantic segmentation via adversarial learning

in the output space. To further enhance the adapted model,

we construct a multi-level adversarial network to effectively

perform output space domain adaptation at different feature

levels. Experimental results show that the proposed method

performs favorably against numerous baseline models and

the state-of-the-art algorithms. We hope that our proposed

method can be a generic adaptation model for a wide range

of pixel-level prediction tasks.
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NVIDIA.

7478



Table 6. Results of adapting Cityscapes to the Cross-City dataset. We construct our baseline model using the ResNet-101 architecture,

and compare results between feature adaptation and our multi-level adaptation method in the output space.

Cityscapes → Cross-City

City Method ro
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mIoU

Rome

Cross-City [3] 79.5 29.3 84.5 0.0 22.2 80.6 82.8 29.5 13.0 71.7 37.5 25.9 1.0 42.9

Our Baseline 83.9 34.3 87.7 13.0 41.9 84.6 92.5 37.7 22.4 80.8 38.1 39.1 5.3 50.9

Ours (feature) 78.8 28.6 85.5 16.6 40.1 85.3 79.6 42.4 20.7 79.6 58.8 45.5 6.1 51.4

Ours (output space) 83.9 34.2 88.3 18.8 40.2 86.2 93.1 47.8 21.7 80.9 47.8 48.3 8.6 53.8

Rio

Cross-City [3] 74.2 43.9 79.0 2.4 7.5 77.8 69.5 39.3 10.3 67.9 41.2 27.9 10.9 42.5

Our Baseline 76.6 47.3 82.5 12.6 22.5 77.9 86.5 43.0 19.8 74.5 36.8 29.4 16.7 48.2

Ours (feature) 73.7 44.2 83.0 6.1 18.1 79.6 86.9 51.0 22.1 73.7 31.4 48.3 28.4 49.7

Ours (output space) 76.2 44.7 84.6 9.3 25.5 81.8 87.3 55.3 32.7 74.3 28.9 43.0 27.6 51.6

Tokyo

Cross-City [3] 83.4 35.4 72.8 12.3 12.7 77.4 64.3 42.7 21.5 64.1 20.8 8.9 40.3 42.8

Our Baseline 82.9 31.3 78.7 14.2 24.5 81.6 89.2 48.6 33.3 70.5 7.7 11.5 45.9 47.7

Ours (feature) 81.5 30.8 76.6 15.3 20.2 82.0 84.0 49.4 33.3 70.5 4.5 24.3 51.6 48.0

Ours (output space) 81.5 26.0 77.8 17.8 26.8 82.7 90.9 55.8 38.0 72.1 4.2 24.5 50.8 49.9

Taipei

Cross-City [3] 78.6 28.6 80.0 13.1 7.6 68.2 82.1 16.8 9.4 60.4 34.0 26.5 9.9 39.6

Our Baseline 83.5 33.4 86.6 12.7 16.4 77.0 92.1 17.6 13.7 70.7 37.7 44.4 18.5 46.5

Ours (feature) 82.1 31.9 84.1 25.7 13.2 77.2 81.2 28.1 12.0 67.0 35.8 43.5 20.9 46.6

Ours (output space) 81.7 29.5 85.2 26.4 15.6 76.7 91.7 31.0 12.5 71.5 41.1 47.3 27.7 49.1

Target Image Ground Truth Before Adaptation Feature Adaptation Ours

Figure 3. Example results of adapted segmentation for GTA5-to-Cityscapes. For each target image, we show results before adaptation,

with feature adaptation and our adapted segmentations in the output space.
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