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Abstract

Visual signals in a video can be divided into content and

motion. While content specifies which objects are in the

video, motion describes their dynamics. Based on this prior,

we propose the Motion and Content decomposed Genera-

tive Adversarial Network (MoCoGAN) framework for video

generation. The proposed framework generates a video by

mapping a sequence of random vectors to a sequence of

video frames. Each random vector consists of a content part

and a motion part. While the content part is kept fixed, the

motion part is realized as a stochastic process. To learn mo-

tion and content decomposition in an unsupervised manner,

we introduce a novel adversarial learning scheme utiliz-

ing both image and video discriminators. Extensive exper-

imental results on several challenging datasets with qual-

itative and quantitative comparison to the state-of-the-art

approaches, verify effectiveness of the proposed framework.

In addition, we show that MoCoGAN allows one to gener-

ate videos with same content but different motion as well as

videos with different content and same motion. Our code is

available at https://github.com/sergeytulyakov/mocogan.

1. Introduction

Deep generative models have recently received an in-

creasing amount of attention, not only because they provide

a means to learn deep feature representations in an unsuper-

vised manner that can potentially leverage all the unlabeled

images on the Internet for training, but also because they

can be used to generate novel images necessary for various

vision applications. As steady progress toward better image

generation is made, it is also important to study the video

generation problem. However, the extension from gener-

ating images to generating videos turns out to be a highly

challenging task, although the generated data has just one

more dimension – the time dimension.

We argue video generation is much harder for the fol-

lowing reasons. First, since a video is a spatio-temporal

recording of visual information of objects performing var-

ious actions, a generative model needs to learn the plausi-

ble physical motion models of objects in addition to learn-

Content subspace Motion subspace

Motion 1 Motion 2

Figure 1: MoCoGAN adopts a motion and content decom-

posed representation for video generation. It uses an image

latent space (each latent code represents an image) and di-

vides the latent space into content and motion subspaces.

By sampling a point in the content subspace and sampling

different trajectories in the motion subspace, it generates

videos of the same object performing different motion. By

sampling different points in the content subspace and the

same motion trajectory in the motion subspace, it generates

videos of different objects performing the same motion.

ing their appearance models. If the learned object motion

model is incorrect, the generated video may contain objects

performing physically impossible motion. Second, the time

dimension brings in a huge amount of variations. Consider

the amount of speed variations that a person can have when

performing a squat movement. Each speed pattern results

in a different video, although the appearances of the human

in the videos are the same. Third, as human beings have

evolved to be sensitive to motion, motion artifacts are par-

ticularly perceptible.

Recently, a few attempts to approach the video genera-

tion problem were made through generative adversarial net-

works (GANs) [12]. Vondrick et al. [41] hypothesize that a

video clip is a point in a latent space and proposed a VGAN
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framework for learning a mapping from the latent space to

video clips. A similar approach was proposed in the TGAN

work [31]. We argue that assuming a video clip is a point

in the latent space unnecessarily increases the complexity

of the problem, because videos of the same action with dif-

ferent execution speed are represented by different points

in the latent space. Moreover, this assumption forces ev-

ery generated video clip to have the same length, while the

length of real-world video clips varies. An alternative (and

likely more intuitive and efficient) approach would assume

a latent space of images and consider that a video clip is

generated by traversing the points in the latent space. Video

clips of different lengths correspond to latent space trajec-

tories of different lengths.

In addition, as videos are about objects (content) per-

forming actions (motion), the latent space of images should

be further decomposed into two subspaces, where the devi-

ation of a point in the first subspace (the content subspace)

leads content changes in a video clip and the deviation in

the second subspace (the motion subspace) results in tem-

poral motions. Through this modeling, videos of an action

with different execution speeds will only result in different

traversal speeds of a trajectory in the motion space. Decom-

posing motion and content allows a more controlled video

generation process. By changing the content representation

while fixing the motion trajectory, we have videos of dif-

ferent objects performing the same motion. By changing

motion trajectories while fixing the content representation,

we have videos of the same object performing different mo-

tion as illustrated in Fig. 1.

In this paper, we propose the Motion and Content de-

composed Generative Adversarial Network (MoCoGAN)

framework for video generation. It generates a video clip

by sequentially generating video frames. At each time step,

an image generative network maps a random vector to an

image. This vector consists of two parts where the first is

sampled from a content subspace and the second is sampled

from a motion subspace. Since content in a short video clip

usually remains the same, we model the content space using

a Gaussian distribution and use the same realization to gen-

erate each frame in a video clip. Sampling from the motion

space is achieved through a recurrent neural network where

the network parameters are learned during training. Despite

lacking supervision regarding the decomposition of motion

and content in natural videos, we show that MoCoGAN

can learn to disentangle these two factors through a novel

adversarial training scheme. Through extensive qualitative

and quantitative experimental validations with comparison

to the state-of-the-art approaches including VGAN [41] and

TGAN [31], as well as the future frame prediction methods

including Conditional-VGAN (C-VGAN) [41] and Motion

and Content Network (MCNET) [40], we verify the effec-

tiveness of MoCoGAN.

1.1. Related Work

Video generation is not a new problem. Due to limita-

tions in computation, data, and modeling tools, early video

generation works focused on generating dynamic texture

patterns [35, 42, 9, 43]. In the recent years, with the avail-

ability of GPUs, Internet videos, and deep neural networks,

we are now better positioned to tackle this problem.

Various deep generative models were recently proposed

for image generation including GANs [12], variational au-

toencoders (VAEs) [20, 29, 37], and PixelCNNs [39]. In

this paper, we propose the MoCoGAN framework for video

generation, which is based on GANs.

Multiple GAN-based image generation frameworks

were proposed. Denton et al. [8] showed a Laplacian pyra-

mid implementation. Radford et al. [28] used a deeper con-

volution network. Zhang et al. [45] stacked two generative

networks to progressively render realistic images. Coupled

GANs [22] learned to generate corresponding images in dif-

ferent domains, later extended to translate an image from

one domain to a different domain in an unsupervised fash-

ion [21]. InfoGAN [5] learned a more interpretable latent

representation. Salimans et al. [32] proposed several GAN

training tricks. The WGAN [3] and LSGAN [23] frame-

works adopted alternative distribution distance metrics for

more stable adversarial training. Roth et al. [30] proposed

a special gradient penalty to further stabilize training. Kar-

ras et al. [18] used progressive growing of the discriminator

and the generator to generate high resolution images. The

proposed MoCoGAN framework generates a video clip by

sequentially generating images using an image generator.

The framework can easily leverage advances in image gen-

eration in the GAN framework for improving the quality of

the generated videos. As discussed in Section 1, [41, 31]

extended the GAN framework to the video generation prob-

lem by assuming a latent space of video clips where all the

clips have the same length.

Recurrent neural networks for image generation were

previously explored in [14, 16, 27]. Specifically, some

works used recurrent mechanisms to iteratively refine a gen-

erated image. Our work is different to [14, 16, 27] in that

we use the recurrent mechanism to generate motion embed-

dings of video frames in a video clip. The image generation

is achieved through a convolutional neural network.

The future frame prediction problem studied in [34, 26,

24, 17, 10, 38, 44, 40, 7] is different to the video gen-

eration problem. In future frame prediction, the goal is

to predict future frames in a video given the observed

frames in the video. Previous works on future frame pre-

diction can be roughly divided into two categories where

one focuses on generating raw pixel values in future frames

based on the observed ones [34, 26, 24, 17, 44, 40], while

the other focuses on generating transformations for reshuf-

fling the pixels in the previous frames to construct fu-
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ture frames [10, 38]. The availability of previous frames

makes future frame prediction a conditional image gener-

ation problem, which is different to the video generation

problem where the input to the generative network is only a

vector drawn from a latent space. We note that [40] used a

convolutional LSTM [15] encoder to encode temporal dif-

ferences between consecutive previous frames for extract-

ing motion information and a convolutional encoder to ex-

tract content information from the current image. The con-

catenation of the motion and content information was then

fed to a decoder to predict future frames.

1.2. Contributions

Our contributions are as follows:

1. We propose a novel GAN framework for unconditional

video generation, mapping noise vectors to videos.

2. We show the proposed framework provides a means to

control content and motion in video generation, which is

absent in the existing video generation frameworks.

3. We conduct extensive experimental validation on bench-

mark datasets with both quantitative and subjective com-

parison to the state-of-the-art video generation algo-

rithms including VGAN[41] and TGAN [31] to verify

the effectiveness of the proposed algorithm.

2. Generative Adversarial Networks

GANs [12] consist of a generator and a discriminator.

The objective of the generator is to generate images resem-

bling real images, while the objective of the discriminator

is to distinguish real images from generated ones.

Let x be a real image drawn from an image distribution,

pX , and z be a random vector in ZI ≡ R
d. Let GI and DI

be the image generator and the image discriminator. The

generator takes z as input and outputs an image, x̃ = GI(z),
that has the same support as x. We denote the distribution

of GI(z) as pGI . The discriminator estimates the probability

that an input image is drawn from pX . Ideally, DI(x) = 1
if x ∼ pX and DI(x̃) = 0 if x̃ ∼ pGI

. Training of GI and

DI is achieved via solving a minimax problem given by

max
GI

min
DI

FI(DI, GI) (1)

where the functional FI is given by

FI(DI, GI) = Ex∼pX
[− logDI(x)] +

Ez∼pZI
[− log(1−DI(GI(z)))]. (2)

In practice, (1) is solved by alternating gradient update.

Goodfellow et al. [12] show that, given enough capacity

to DI and GI and sufficient training iterations, the distri-

bution pGI
converges to pX . As a result, from a random

vector input z, the network GI can synthesize an image that

resembles one drawn from the true distribution, pX .

2.1. Extension to Fixed­length Video Generation

Recently, [41] extended the GAN framework to video

generation by proposing a Video GAN (VGAN) framework.

Let vL = [x(1), ...,x(L)] be a video clip with L frames.

The video generation in VGAN is achieved by replacing

the vanilla CNN-based image generator and discriminator,

GI and DI, with a spatio-temporal CNN-based video gener-

ator and discriminator, GVL and DVL . The video generator

GVL maps a random vector z ∈ ZVL ≡ R
d to a fixed-length

video clip, ṽL = [x̃(1), ..., x̃(L)] = GVL(z) and the video

discriminator DVL differentiates real video clips from gen-

erated ones. Ideally, DVL(vL) = 1 if vL is sampled from

pV L and DVL(ṽL) = 0 if ṽ
L is sampled from the video

generator distribution pGVL . The TGAN framework [31]

also maps a random vector to a fixed length clip. The dif-

ference is that TGAN maps the random vector, representing

a fixed-length video, to a fixed number of random vectors,

representing individual frames in the video clip and uses an

image generator for generation. Instead of using the vanilla

GAN framework for minimizing the Jensen-Shannon diver-

gence, the TGAN training is based on the WGAN frame-

work [3] and minimizes the earth mover distance.

3. Motion and Content Decomposed GAN

In MoCoGAN, we assume a latent space of images ZI ≡
R

d where each point z ∈ ZI represents an image, and a

video of K frames is represented by a path of length K in

the latent space, [z(1), ..., z(K)]. By adopting this formula-

tion, videos of different lengths can be generated by paths of

different lengths. Moreover, videos of the same action ex-

ecuted with different speeds can be generated by traversing

the same path in the latent space with different speeds.

We further assume ZI is decomposed into the content

ZC and motion ZM subspaces: ZI = ZC × ZM where

ZC = R
dC , ZM = R

dM , and d = dC + dM. The content

subspace models motion-independent appearance in videos,

while the motion subspace models motion-dependent ap-

pearance in videos. For example, in a video of a person

smiling, content represents the identity of the person, while

motion represents the changes of facial muscle configura-

tions of the person. A pair of the person’s identity and the

facial muscle configuration represents a face image of the

person. A sequence of these pairs represents a video clip

of the person smiling. By swapping the look of the person

with the look of another person, a video of a different person

smiling is represented.

We model the content subspace using a Gaussian distri-

bution: zC ∼ pZC ≡ N (z|0, IdC) where IdC is an identity

matrix of size dC × dC. Based on the observation that the

content remains largely the same in a short video clip, we

use the same realization, zC, for generating different frames

in a video clip. Motion in the video clip is modeled by a
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Figure 2: The MoCoGAN framework for video gener-

ation. For a video, the content vector, zC, is sam-

pled once and fixed. Then, a series of random variables

[ǫ(1), ..., ǫ(K)] is sampled and mapped to a series of motion

codes [z
(1)
M , ..., z

(K)
M ] via the recurrent neural network RM.

A generator GI produces a frame, x̃(k), using the content

and the motion vectors {zC, z
(k)
M }. The discriminators, DI

and DV, are trained on real and fake images and videos,

respectively, sampled from the training set v and the gener-

ated set ṽ. The function S1 samples a single frame from a

video, ST samples T consequtive frames.

path in the motion subspace ZM. The sequence of vectors

for generating a video is represented by

[z(1), ..., z(K)] =
[

[ zC

z
(1)
M

]

, ...,
[ zC

z
(K)
M

]

]

(3)

where zC ∈ ZC and z
(k)
M ∈ ZM for all k’s. Since not all

paths in ZM correspond to physically plausible motion, we

need to learn to generate valid paths. We model the path

generation process using a recurrent neural network.

Let RM to be a recurrent neural network. At each time

step, it takes a vector sampled from a Gaussian distribu-

tion as input: ǫ(k) ∼ pE ≡ N (ǫ|0, IdE
) and outputs a

vector in ZM, which is used as the motion representation.

Let RM(k) be the output of the recurrent neural network at

time k. Then, z
(k)
M = RM(k). Intuitively, the function of

the recurrent neural network is to map a sequence of inde-

pendent and identically distributed (i.i.d.) random variables

[ǫ(1), ..., ǫ(K)] to a sequence of correlated random variables

[RM(1), ..., RM(K)] representing the dynamics in a video.

Injecting noise at every iteration models uncertainty of the

future motion at each timestep. We implement RM using a

one-layer GRU network [6].

Networks. MoCoGAN consists of 4 sub-networks, which

are the recurrent neural network, RM, the image generator,

GI, the image discriminator, DI, and the video discrimi-

nator, DV. The image generator generates a video clip by

sequentially mapping vectors in ZI to images, from a se-

quence of vectors [
[

zC

z
(1)
M

]

, ...,
[

zC

z
(K)
M

]

] to a sequence of im-

ages, ṽ = [x̃(1), ..., x̃(K)], where x̃
(k) = GI(

[

zC

z
(k)
M

]

) and

z
(k)
M ’s are from the recurrent neural network, RM. We note

that the video length K can vary for each video generation.

Both DI and DV play the judge role, providing criticisms

to GI and RM. The image discriminator DI is specialized

in criticizing GI based on individual images. It is trained to

determine if a frame is sampled from a real video clip, v,

or from ṽ. On the other hand, DV provides criticisms to GI

based on the generated video clip. DV takes a fixed length

video clip, say T frames, and decides if a video clip was

sampled from a real video or from ṽ. Different from DI,

which is based on vanilla CNN architecture, DV is based on

a spatio-temporal CNN architecture. We note that the clip

length T is a hyperparameter, which is set to 16 throughout

our experiments. We also note that T can be smaller than

the generated video length K. A video of length K can be

divided into K − T + 1 clips in a sliding-window fashion,

and each of the clips can be fed into DV.

The video discriminator DV also evaluates the generated

motion. Since GI has no concept of motion, the criticisms

on the motion part go directly to the recurrent neural net-

work, RM. In order to generate a video with realistic dy-

namics that fools DV, RM has to learn to generate a se-

quence of motion codes [z
(1)
M , ..., z

(K)
M ] from a sequence of

i.i.d. noise inputs [ǫ(1), ..., ǫ(K)] in a way such that GI can

map z
(k) = [zC, z

(k)
M ] to consecutive frames in a video.

Ideally, DV alone should be sufficient for training GI

and RM, because DV provides feedback on both static im-

age appearance and video dynamics. However, we found

that using DI significantly improves the convergence of the

adversarial training. This is because training DI is simpler,

as it only needs to focus on static appearances. Fig. 2 shows

visual representation of the MoCoGAN framework.

Learning. Let pV be the distribution of video clips of

variable lengths. Let κ be a discrete random variable denot-

ing the length of a video clip sampled from pV. (In practice,

we can estimate the distribution of κ, termed pK, by com-

puting a histogram of video clip length from training data).

To generate a video, we first sample a content vector, zC,

and a length, κ. We then run RM for κ steps and, at each

time step, RM takes a random variable ǫ as the input. A

generated video is then given by

ṽ =

[

GI(

[

zC

RM(1)

]

), ..., GI(

[

zC

RM(κ)

]

)

]

. (4)

Recall that our DI and DV take one frame and T con-

secutive frames in a video as input, respectively. In order
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to represent these sampling mechanisms, we introduce two

random access functions S1 and ST. The function S1 takes

a video clip (either v ∼ pV or ṽ ∼ pṼ) and outputs a

random frame from the clip, while the function ST takes a

video clip and randomly returns T consecutive frames from

the clip. With this notation, the MoCoGAN learning prob-

lem is

max
GI,RM

min
DI,DV

FV(DI, DV, GI, RM) (5)

where the objective function FV(DI, DV, GI, RM) is

Ev[− logDI(S1(v))] + Eṽ[− log(1−DI(S1(ṽ)))] +

Ev[− logDV(ST(v))] + Eṽ[− log(1−DV(ST(ṽ)))], (6)

where Ev is a shorthand for Ev∼pV
, and Eṽ for Eṽ∼pṼ

.

In (6), the first and second terms encourage DI to output

1 for a video frame from a real video clip v and 0 for a

video frame from a generated one ṽ. Similarly, the third

and fourth terms encourage DV to output 1 for T consec-

utive frames in a real video clip v and 0 for T consecutive

frames in a generated one ṽ. The second and fourth terms

encourage the image generator and the recurrent neural net-

work to produce realistic images and video sequences of

T-consecutive frames, such that no discriminator can dis-

tinguish them from real images and videos.

We train MoCoGAN using the alternating gradient up-

date algorithm as in [11]. Specifically, in one step, we up-

date DI and DV while fixing GI and RM. In the alternating

step, we update GI and RM while fixing DI and DV.

3.1. Categorical Dynamics

Dynamics in videos are often categorical (e.g., discrete

action categories: walking, running, jumping, etc.). To

model this categorical signal, we augment the input to RM

with a categorical random variable, zA, where each realiza-

tion is a one-hot vector. We keep the realization fixed since

the action category in a short video remains the same. The

input to RM is then given by

[

[

zA

ǫ(1)

]

, ...,

[

zA

ǫ(K)

]

]

, (7)

To relate zA to the true action category, we adopt the In-

foGAN learning [5] and augment the objective function in

(6) to FV(DI, DV, GI, RM) + λLI(GI, Q) where LI is a

lower bound of the mutual information between the gener-

ated video clip and zA, λ is a hyperparameter, and the auxil-

iary distribution Q (which approximates the distribution of

the action category variable conditioning on the video clip)

is implemented by adding a softmax layer to the last feature

layer of DV. We use λ = 1. We note that when the labeled

training data are available, we can train Q to output the cat-

egory label for a real input video clip to further improve the

performance [25].

4. Experiments

We conducted extensive experimental validation to eval-

uate MoCoGAN. In addition to comparing to VGAN [41]

and TGAN [31], both quantitatively and qualitatively, we

evaluated the ability of MoCoGAN to generate 1) videos

of the same object performing different motions by using a

fixed content vector and varying motion trajectories and 2)

videos of different objects performing the same motion by

using different content vectors and the same motion trajec-

tory. We then compared a variant of the MoCoGAN frame-

work with state-of-the-art next frame prediction methods:

VGAN and MCNET [40]. Evaluating generative models is

known to be a challenging task [36]. Hence, we report ex-

perimental results on several datasets, where we can obtain

reliable performance metrics:

• Shape motion. The dataset contained two types of

shapes (circles and squares) with varying sizes and col-

ors, performing two types of motion: one moving from

left to right, and the other moving from top to bot-

tom. The motion trajectories were sampled from Bezier

curves. There were 4, 000 videos in the dataset; the im-

age resolution was 64× 64 and video length was 16.

• Facial expression. We used the MUG Facial Expression

Database [1] for this experiment. The dataset consisted

of 86 subjects. Each video consisted of 50 to 160 frames.

We cropped the face regions and scaled to 96 × 96. We

discarded videos containing fewer than 64 frames and

used only the sequences representing one of the six fa-

cial expressions: anger, fear, disgust, happiness, sadness,

and surprise. In total, we trained on 1, 254 videos.

• Tai-Chi. We downloaded 4, 500 Tai Chi video clips from

YouTube. For each clip, we applied a human pose esti-

mator [4] and cropped the clip so that the performer is in

the center. Videos were scaled to 64× 64 pixels.

• Human actions. We used the Weizmann Action data-

base [13], containing 81 videos of 9 people performing

9 actions, including jumping-jack and waving-hands. We

scaled the videos to 96×96. Due to the small size, we did

not conduct a quantitative evaluation using the dataset.

Instead, we provide visual results in Fig. 1 and Fig. ??.

• UCF101 [33]. The database is commonly used for video

action recognition. It includes 13, 220 videos of 101 dif-

ferent action categories. Similarly to the TGAN work

[31], we scaled each frame to 85 × 64 and cropped the

central 64× 64 regions for learning.

Implementation. The details of the network designs are

given in the supplementary materials. We used ADAM [19]

for training, with a learning rate of 0.0002 and momentums

of 0.5 and 0.999.
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(a) Generated by MoCoGAN (b) Generated by VGAN [41] (c) Generated by TGAN [31]

Figure 3: Generated video clips used in the user study. The video clips were randomly selected.

Table 1: Video generation content consistency comparison.

A smaller ACD means the generated frames in a video are

perceptually more similar. We also compute the ACD for

the training set, which is the reference.

ACD Shape Motion Facial Expressions

Reference 0 0.116

VGAN [41] 5.02 0.322

TGAN [31] 2.08 0.305

MoCoGAN 1.79 0.201

4.1. Video Generation Performance

Quantitative comparison. We compared MoCoGAN to

VGAN and TGAN1 using the shape motion and facial ex-

pression datasets. For each dataset, we trained a video

generation model and generated 256 videos for evaluation.

The VGAN and TGAN implementations can only generate

fixed-length videos (32 frames and 16 frames correspond-

ingly). For a fair comparison, we generated 16 frames us-

ing MoCoGAN, and selected every second frame from the

videos generated by VGAN, such that each video has 16

frames in total.

For quantitative comparison, we measured content con-

sistency of a generated video using the Average Content

Distance (ACD) metric. For shape motion, we first com-

puted the average color of the generated shape in each

frame. Each frame was then represented by a 3-dimensional

vector. The ACD is then given by the average pairwise L2

distance of the per-frame average color vectors. For facial

expression videos, we employed OpenFace [2], which out-

performs human performance in the face recognition task,

for measuring video content consistency. OpenFace pro-

duced a feature vector for each frame in a face video. The

ACD was then computed using the average pairwise L2 dis-

tance of the per-frame feature vectors.

1The VGAN and TGAN implementations are provided by their authors.

O
u

rs
T

G
A

N

Figure 4: Comparison with TGAN on UCF101.

Table 2: Inception score for models trained on UCF101. All

values except MoCoGAN’s are taken from [31].

VGAN TGAN MoCoGAN

UCF101 8.18± .05 11.85± .07 12.42 ± .03

Table 3: User preference score on video generation quality.

User preference, % Facial Exp. Tai-Chi

MoCoGAN / VGAN 84.2 / 15.8 75.4 / 24.6

MoCoGAN / TGAN 54.7 / 45.3 68.0 / 32.0

We computed the average ACD scores for the 256 videos

generated by the competing algorithms for comparison. The

results are given in Table 1. From the table, we found

that the content of the videos generated by MoCoGAN was

more consistent, especially for the facial expression video

generation task: MoCoGAN achieved an ACD score of

0.201, which was almost 40% better than 0.322 of VGAN

and 34% better than 0.305 of TGAN. Fig. 3 shows gener-

ated videos for competing algorithms.

Furthermore, we compared with TGAN and VGAN by

training on the UCF101 database and computing the incep-

tion score as in Saito et al. [31]. Table 2 shows compar-

ison results. In this experiment we used the same MoCo-

GAN model as in all other experiments. We noted that

TGAN reached the inception score of 11.85 with WGAN

training and Singular Value Clipping (SVC), while MoCo-

GAN showed a higher inception score of 12.42 without

these tricks. Fig. 4 shows random samples generated by

TGAN and MoCoGAN for this challenging task.
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(a) Weizmann database

(b) Tai-Chi database

Figure 5: Examples of changing the motion code while fix-

ing the content code. For (a) and (b) every row has fixed

content, every column has fixed motion.

User study. We conducted a user study to quantitatively

compare MoCoGAN to VGAN and TGAN using the facial

expression and Tai-Chi datasets. For each algorithm, we

used the trained model to randomly generate 80 videos for

each task. We then randomly paired the videos generated

by the MoCoGAN with the videos from one of the compet-

ing algorithms to form 80 questions. These questions were

sent to the workers on Amazon Mechanical Turk (AMT)

for evaluation. The videos from different algorithms were

shown in random order for a fair comparison. Each ques-

tion was answered by 3 different workers. The workers

were instructed to choose the video that looks more real-

istic. Only the workers with a lifetime HIT (Human Intel-

ligent Task) approval rate greater than 95% participated in

the user study.

We report the average preference scores (the average

number of times, a worker prefers an algorithm) in Table 3.

From the table, we find that the workers considered the

videos generated by MoCoGAN more realistic most of the

times. Compared to VGAN, MoCoGAN achieved a prefer-

ence score of 84.2% and 75.4% for the facial expression and

Tai-Chi datasets, respectively. Compared to TGAN, MoCo-

GAN achieved a preference score of 54.7% and 68.0% for

the facial expression and Tai-Chi datasets, respectively. In

Fig. 3, we visualize the facial expression and Tai-Chi videos

generated by the competing algorithms. We find that the

videos generated by MoCoGAN are more realistic and con-

tained less content and motion artifacts.

Qualitative evaluation. We conducted a qualitative ex-

periment to demonstrate our motion and content decom-

posed representation. We sampled two content codes and

seven motion codes, giving us 14 videos. Fig. 5 shows two

examples randomly selected from this experiment. Every

two rows share the same motion code while have different

content codes. We observed that MoCoGAN generated the

same motion sequences for two different content samples.

Table 4: Performance on categorical facial expression video

generation with various MoCoGAN settings.

Settings MCS ACD

DI zA → GI 0.472 1.115

DI zA → RM 0.491 1.073

DI zA → GI 0.355 0.738

DI zA → RM 0.581 0.606

4.2. Categorical Video Generation

We augmented MoCoGAN with categorical variables

and trained it for facial expression video generation as de-

scribed in Section 3.1. The MUG dataset contains 6 differ-

ent facial expressions and hence zA is realized as a 6 dimen-

sional one-hot vector. We then generated 96 frames of fa-

cial expression videos. During generation, we changed the

action category, zA, every 16 frames to cover all 6 expres-

sions. Hence, a generated video corresponded to a person

performing 6 different facial expressions, one after another.

To evaluate the performance, we computed the ACD of

the generated videos. A smaller ACD means the generated

faces over the 96 frames were more likely to be from the

same person. Note that the ACD reported in this subsec-

tion are generally larger than the ACD reported in Table 1,

because the generated videos in this experiment are 6 times

longer and contain 6 facial expressions versus 1. We also

used the motion control score (MCS) to evaluate MoCo-

GAN’s capability in motion generation control. To compute

MCS, we first trained a spatio-temporal CNN classifier for

action recognition using the labeled training dataset. During

test time, we used the classifier to verify whether the gener-

ated video contained the action. The MCS is then given by

testing accuracy of the classifier. A model with larger MCS

offers better control over the action category.

In this experiment, we also evaluated the impact of dif-

ferent conditioning schemes to the categorical video gener-

ation performance. The first scheme is our default scheme

where zA → RM. The second scheme, termed zA → GI,

was to feed the category variable directly to the image gen-

erator. In addition, to show the impact of the image discrim-

inative network DI, we considered training the MoCoGAN

framework without DI.

Table 4 shows experimental results. We find that the

models trained with DI consistently yield better perfor-

mances on various metrics. We also find that zA → RM

yields better performance. Fig. 6 shows two videos from

the best model in Table 4. We observe that by fixing the

content vector but changing the expression label, it gener-

ates videos of the same person performing different expres-

sions. And similarly, by changing the content vector and

providing the same motion trajectory, we generate videos
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Figure 6: Generated videos of changing facial expressions. We changed the expression from smile to fear through surprise.

(dC, dM)

(10, 20)

(20, 40)

(30, 30)

(40, 20)

(50, 10)

Average Content Distance (ACD)

0 0.25 0.5 0.75 1

0.563

0.621

0.9

0.903

0.829

Motion Control Score (MCS)

0 0.15 0.3 0.45 0.6

0.581

0.525

0.425

0.141

0.245

Figure 7: MoCoGAN models with varying (dC, dM) set-

tings on facial expression generation.

Table 5: User preference score on the quality of the image-

to-video-translation results.

User preference, % Tai-Chi

MoCoGAN / C-VGAN 66.9 / 33.1

MoCoGAN / MCNET 65.6 / 34.4

of different people showing the same expression sequence.

We conducted an experiment to empirically analyze the

impact of the dimensions of the content and motion vectors

zC and z
(t)
M (referred to as dC and dM) to the categorical

video generation performance. In the experiment, we fixed

the sum of the dimensions to 60 (i.e., dC + dM = 60) and

changed the value of dC from 10 to 50, with a step size of

10. Fig. 7 shows the results.

We found when dC was large, MoCoGAN had a small

ACD. This meant a video generated by the MoCoGAN re-

sembled the same person performing different expressions.

We were expecting a larger zM would lead to a larger MCS

but found the contrary. Inspecting the generated videos, we

found when dM was large (i.e. dC was small), MoCoGAN

failed to generate recognizable faces, resulting in a poor

MCS. In this case, given poor image quality, the facial ex-

pression recognition network could only perform a random

guess on the expression and scored poorly. Based on this,

we set dC = 50 and dM = 10 in all the experiments.

4.3. Image­to­video Translation

We trained a variant of the MoCoGAN framework, in

which the generator is realized as an encoder-decoder archi-

tecture [21], where the encoder produced the content code

zC and the initial motion code z
(0)
m . Subsequent motion

codes were produced by RM and concatenated with the con-

tent code to generate each frame. That is the input was an

image and the output was a video. We trained a MoCo-

O
u

rs
M

C
N

E
T

Figure 8: Comparison with MCNET on image-to-video

translation.

GAN model using the Tai-Chi dataset. In test time, we

sampled random images from a withheld test set to gener-

ate video sequences. In addition to the loss in (6), we have

added the L1 reconstruction loss for training the encoder-

decoder architecture similar to Liu et al. [21]. Under this

setting, MoCoGAN generated a video sequence starting

from the first frame. We conducted a user study com-

paring our method with two state-of-the-art approaches: a

Conditional-VGAN (C-VGAN) and Motion Content Net-

work (MCNET) [40]. We note that MCNET used 4 frames

to predict a video, while C-VGAN and MoCoGAN required

a single frame only. The results are given in Table 5, which

shows that the videos generated by our method were two-

times more favored by the users. Fig. 8 shows that the

videos generated by our method are temporally more con-

sistent than those generated by MCNET.

5. Conclusion

We presented the MoCoGAN framework for motion and

content decomposed video generation. Given sufficient

video training data, MoCoGAN automatically learns to dis-

entangle motion from content in an unsupervised manner.

For instance, given videos of people performing different

facial expressions, MoCoGAN learns to separate a person’s

identity from their expression, thus allowing us to synthe-

size a new video of a person performing different expres-

sions, or fixing the expression and generating various iden-

tities. This is enabled by a new generative adversarial net-

work, which generates a video clip by sequentially gener-

ating video frames. Each video frame is generated from

a random vector, which consists of two parts, one signify-

ing content and one signifying motion. The content sub-

space is modeled with a Gaussian distribution, whereas the

motion subspace is modeled with a recurrent neural net-

work. We sample this space in order to synthesize each

video frame. Our experimental evaluation supports that the

proposed framework is superior to current state-of-the-art

video generation and next frame prediction methods.
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