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Abstract

Humans effortlessly “program” one another by commu-

nicating goals and desires in natural language. In contrast,

humans program robotic behaviours by indicating desired

object locations and poses to be achieved [5], by provid-

ing RGB images of goal configurations [19], or supplying

a demonstration to be imitated [17]. None of these meth-

ods generalize across environment variations, and they con-

vey the goal in awkward technical terms. This work pro-

poses joint learning of natural language grounding and in-

structable behavioural policies reinforced by perceptual de-

tectors of natural language expressions, grounded to the

sensory inputs of the robotic agent.

Our supervision is narrated visual demonstrations

(NVD), which are visual demonstrations paired with ver-

bal narration (as opposed to being silent). We intro-

duce a dataset of NVD where teachers perform activities

while describing them in detail. We map the teachers’ de-

scriptions to perceptual reward detectors, and use them

to train corresponding behavioural policies in simulation.

We empirically show that our instructable agents (i) learn

visual reward detectors using a small number of exam-

ples by exploiting hard negative mined configurations from

demonstration dynamics, (ii) develop pick-and-place poli-

cies using learned visual reward detectors, (iii) benefit from

object-factorized state representations that mimic the syn-

tactic structure of natural language goal expressions, and

(iv) can execute behaviours that involve novel objects in

novel locations at test time, instructed by natural language.

1. Introduction

Currently, rewards or goals for behavioural policy learn-

ing are either manually coded by experts [42, 32, 31], or

are learned from human supplied demonstrations (LfD, or

inverse RL) [39, 40, 20, 54]. Manually coded rewards

are hard to generalize across variations of the environment.

Moreover, we often need a large number of demonstrations

for the right reward function to be effectively communi-
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Figure 1. Reward Learning from Narrated Demonstrations.

We begin with a narrated visual demonstration, prepared by a hu-

man (1). Our system then learns a spatial relationship detector

from the visuals and audio (2). Finally, we use the learned detec-

tors to train pick-and-place policies (3).

cated to the agent, invariant to distractors, accidental co-

incidences, view-dependent feature representations, speed

of execution, etc. In contrast, humans effortlessly program

each other’s behaviour by conveying goals and desires in

natural language, e.g. “for a CVPR submission, the mar-

gin should be one inch on each side of the page”, or “while

driving, make sure to keep a safe distance from the car in

front of you.” Interestingly, in absence of natural language

competence, understanding the goal of a behaviour is of-

ten harder than learning the behaviour itself. For example,

although macaques are excellent tree climbers, incremen-
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MPII movie descriptionYou cookFigure 2. Narrated visual demonstrations. The teacher demonstrates activities and concurrently narrates them in natural language using

a microphone. Many related tasks are demonstrated densely in time; temporal segmentation of the demonstration video into different tasks

is easy based on natural language sentences.

tally training them to pick coconuts (with RL) is extremely

laborious [34]. Humans, on the other hand, can easily un-

derstand the goal of “picking coconuts”, but are less capable

of carrying it out.

This work introduces instructable perceptual rewards,

namely, reward functions that can be both expressed in nat-

ural language and detected in the visual sensory input of the

agent. It further proposes a framework for learning these

rewards from Narrated Visual Demonstrations (NVD),

which are visual demonstrations synchronized with natural

language descriptions. Rather than struggling to discover

essential goals of human behaviour from a large number

of silent visual demonstrations, we instead consider nar-

rated visual demonstrations, where narrations describe ac-

tions being taken, objects involved, and goals achieved, as

shown in Figure 2. Given a set of NVDs, we first learn

to ground natural language utterances that express activ-

ity goals—rewards, e.g., “coca cola on top of the book,”

to modular neural visual detectors. We then use such vi-

sual detectors to reinforcement learn policies that achieve

the corresponding goals (see also Figure 1).

Narrated visual demonstrations are more data-efficient

than their silent counterparts. We empirically show that

learning instructable perceptual rewards and corresponding

policies from NVDs results in data reduction for both re-

ward and policy learning. This reduction comes from (i)

leveraging large-scale annotated static image datasets [29]

of objects and visual relationships to help ground natural

language goal descriptions, (ii) demonstration dynamics,

where similar objects appear with different attributes or re-

lationships in consecutive demonstrated tasks, which forces

our reward detectors to focus on the temporal transforma-

tion of such arrangements/attributes, as opposed to ob-

ject detection and recognition, and, (iii) object-factorized

state representations as input to reward detectors and pol-

icy networks, mimicking the syntax of natural language de-

scriptions.

Collecting narrated visual demonstrations is scalable.

We collect a dataset of pick-and-place activities using cam-

eras and microphones mounted on demonstrators (human

teachers) that perform activities while verbally narrating

them (see Figure 2). Automated speech recognizers map

the narrations to transcripts temporally synchronized with

the visual demonstrations. Each video contains multiple,

diverse demonstrations, proceeding one another closely in

time. Temporal segmentation of sequential demonstrations

[23] is easily obtained by considering the segmentation of

the transcript into verbal phrases; this alleviates the cur-

rent need for demonstrations to concern a single isolated

task at a time [23]. In terms of detail, deliberate demon-

stration and verbal narration is more scalable than post-hoc

captioning [45], and allows natural language descriptions

that are dense in time, without overwhelming the demon-

strator. The videos in our dataset are instructional in nature,

similar to instructional videos on YouTube [26, 3]. While

Youtube videos target on audience with advanced language

grounding capabilities, our dataset instead attempts to teach

such natural language grounding, alongside the demon-

strated behaviours. To the best of our knowledge, no pre-

vious work hasconsidered narrated videos for learning re-

wards and policies for the demonstrated actions.

In summary, our contributions are:

• We introduce instructable perceptual rewards as mod-

ular visual detectors of natural language expressions

of activity goals, and show how to learn them from

few NVDs by exploiting demonstration dynamics for

effective hard negative mining.

• We introduce a dataset of NVDs of daily activities.

We show that pairing visual demonstration with nat-

ural language narration permits scaling up the collec-

tion of visual demonstrations, which can now be dense

in time and depict diverse tasks, as opposed to being

structured, isolated in time, and depicting a single task.

• We demonstate that our agent effectively learns in-

structable policies using noisy instructable perceptual

reward detectors, and can execute novel behaviours at

test time, exploiting compositionality of natural lan-

guage.

• We show that object-factorized state representations

for our policy network generalize better than frame-

centric RGB input.
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2. Related Work

In the absence of a manipulation language, previous

works convey goals using RGB images [19], demonstrating

the desired activity itself [17], supplying desired 3D poses

of the objects and end-effectors in a particular scene [6], or

assuming that there is only one behaviour that can be re-

quested [53]. This work proposes expressing goals in natu-

ral language, and builds corresponding perceptual detectors

that can drive reinforcement learning for policies.

Mapping instructions to actions Numerous works have

proposed learning a mapping from instructions to high level

action sequences of the agent. For instance, paired exam-

ples of instruction and action sequences have been collected

through Amazon Mechanical Turk [8, 36, 37, 52]. Other

works attempt to learn such mapping using reinforcement

learning, from pairs of instructions with desired final goal

configurations [10, 35]. These models execute the predicted

action sequences and evaluate whether the desired goal state

is reached. Most approaches consider action sequences to

be given in the task space of the agent. Instead, we con-

sider third-person demonstrations and narrations, where the

automated visual recognition needs to infer the locations of

objects and their spatial configurations. We train our agent

with reinforcement learning using perceptual detectors of

the natural language goal expressions, as opposed to direct

imitation of the corresponding action sequences.

Visual imitation learning Visual imitation learning

(VIL) considers the problem of acquiring skills by observ-

ing visual demonstrations [50]. It requires inference of the

“reward” (i.e., the goal of the behaviour) that the agent will

attempt to match by self-practice, and adapting the demon-

strations to its own degrees of freedom and workspace.

Numerous works circumvent the difficult visual perception

problem in VIL using special instrumentation of the en-

vironment to read off object and hand poses during video

demonstrations [30], or use rewards based on known goal

3D object configurations. A notable exception is the work

of Sermanet, Xu, and Levine [48], which learned perceptual

rewards for a pouring task, using a large number of visual

demonstrations. In this work, we instead propose narrated

visual demonstrations for joint learning of natural language

grounding and reward detectors. Natural language casts at-

tention to the relevant parts of the video (e.g., the relevant

objects), and facilitates the mapping of natural language de-

scriptions to visual reward detectors. At test time, we can

easily program novel behaviours by composing novel natu-

ral language goal descriptions.

Perceptually-grounded natural language Language

grounding has recently attracted a lot of attention, with

the introduction of large-scale image captioning, video

summarization [46, 18] and visual question answering

datasets [7, 51]. Captioning models describe images and

videos using natural language sentences [15] and visual

question answering models answer queries about an image

[4]. Such vision/language models are supervised by image

captions or question/answer pairs collected from AMTurk-

ers [45], subtitles from movies [44], or movie descriptions

for the blind [43]. This paper has an orthogonal goal to

the aforementioned works: we are interested in learning to

ground natural language descriptions of goal configurations

to visual input, and use this mapping as a reward detector

for policy search. This replaces manually-coded rewards

with natural language instructions.

Object-factorized state representations The recent

work of Kansky et al. [28] showed how object-factorized

state representations and dynamics can generalize across

environmental variations, in contrast to frame-centric poli-

cies. In that work, it was assumed that the object identi-

ties were known beforehand. Here, we use natural language

as weak supervision to focus attention to relevant objects,

and use object detectors to learn reward configurations, and

also during policy training and testing, to supply object-

factorized states as input to out policy network. Other works

[21, 9] have considered object-centric predictive models of

motion under close-by interactions, and showed they gener-

alize better than frame-centric models.

3. Instructable Reward and Policy Learning

from Narrated Visual Demonstrations

3.1. Collecting Narrated Visual Demonstrations

We collect narrated visual demonstrations using GoPro

cameras and microphones mounted on the head of the hu-

man demonstrator. The demonstrator names objects in the

scene, describes their relationships, indicates the activities

performed, explains the outcomes, and gesticulates deliber-

ately so as to guide the learner towards the correct interpre-

tation of the natural language description. Verbal narrations

are automatically transcribed into textual descriptions using

the Google speech recognition API [24]. Mistakes of the

speech recognizer are rare and are corrected by hand. The

sync of the narration to the video, along with the present-

tense descriptions, provide a natural alignment of the se-

mantic content to the visual stream, e.g., “I am placing

the cup on the opening of the bottle”. Consecutive demon-

strations are temporally segmented using their alignment to

natural language utterances. This convenient segmentation

method is only possible with narrated (rather than silent)

demonstrations. In terms of human effort, the scalability

of verbal narrations far surpasses annotation methods con-

sidered in previous works, such as video post-transcription
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[45] or scene graph annotations [29]. Each video is between

three and five minutes long and contains 14 to 30 individual

demonstrations of short activities. We have thus far col-

lected two hours of densely annotated videos. This paper

uses the pick-and-place activities of the dataset (around 10

minutes in total) to learn reward detectors and train corre-

sponding pick-and-place policies in simulation. Many more

diverse activities are contained in the dataset, which we will

make publicly available. We are not aware of a dataset

of paired videos and natural language descriptions that ad-

dresses natural language grounding for skill policy learning,

which is a gap our work attempts to cover.

3.2. Learning Instructable Perceptual Rewards
through Natural Language Grounding

We learn visual reward detectors by grounding natural

language descriptions of goals of pick-and-place activities

(e.g., “the coke can is on top of the book”) to modular neural

programs that take an image and description as input, and

output a score of how well the image matches the descrip-

tion. These reward reward detectors are used to train pick-

and-place policies to achieve the configuration instructed by

the natural language expression.

Our visual detectors combine object detector modules

and pairwise relation modules, assembled based on the syn-

tactic structure of the natural language description, provided

by a syntactic parser [12]. The architecture is depicted in

Figure 3. It is comprised of two object detectors for the

subject and object in the natural language expression, and

a relation neural module for scoring their spatial configura-

tion.

The object detectors build upon the state-of-the-art faster

RCNN architecture [27], and have been pretrained in Vi-

sual Genome [29] and COCO datasets [13] to detect objects

from 3000 categories. We use the Stanford syntactic parser

[12] to parse the natural language expression into subject

and object strings, and use the appropriate outputs of the

object detectors to localize the mentioned object categories

in the image. If the objects do not have a high enough de-

tection score, we discard the corresponding frame. The rela-

tion module takes as input (i) a word embedding of the spa-

tial relationship vs, computed using a weighted average of

the hidden states of a Bidirectional LSTM (BiLSTM) over

the natural language expression’s words, where the weight

distribution is predicted by the same BiLSTM, and, (ii) spa-

tial locations of the object and subject, encoded as normal-

ized pixel coordinates, and the width and height of the de-

tected bounding boxes. This module outputs a score for the

corresponding spatial relationship, as shown in Figure 3-

left. The relation module is pre-trained to localize referen-

tial expressions in the Visual Genome image dataset [29], as

part of the model of [25]. Although a referential expression,

such as “the orange in the bowl”, is not identical in meaning

to a description, such as “the orange is in the bowl”, or to a

desired post-condition, such as “the orange should be in the

bowl”, in practice their learned embeddings are similar.

Our model is a variation of the referential expression de-

tector of [25]. The difference between the two is that, in-

stead of object detectors, their model uses two localization

modules, which, take as input a weighted average of the hid-

den state of the BiLSTM for the subject and object, and the

visual features aggregated within a bounding box proposal,

and score the probability that the bounding box proposal

captures the referred subject or object, respectively. Their

expression detector sums the scores of the two localization

modules and the relation module to score how well the two

considered object proposals convey the referential expres-

sion. We instead use object detectors that take visual fea-

tures as input, and predict an object category within a prede-

fined set of categories. Linguistic variability can be handled

by considering the inner product of the word embedding of

the detectable object categories with the word embedding

of the subject and object of the utterance, considered in the

model of [25]. Thanks to its modularity, the detector gener-

alizes better than a monolithic network trained to map a sin-

gle frame or bounding box to spatial configurations scores.

Weakly-supervised metric learning with hard negative

mining In our NVD dataset, video frames are paired

with corresponding pieces of transcript, as generated by

the speech recognizer. We temporally segment a video se-

quence into individual demonstrations whenever two con-

secutive natural language utterances are different. Our re-

ward detector is trained from such automatically aligned

utterance-frame pairs, the same utterance covers all frames

of the demonstration. We consider only the frames paired

with exactly one natural language utterance and finetune the

relation module of our reward detector using metric learn-

ing. Specifically, we ask our relation module to score higher

in the frames paired with the considered utterance at the end

of each demonstration (input to our relation module) and

lower at the frames in the beginning of the demonstration.

Let fk
s and fk

o be the spatial features (normalized pixel

coordinates, width and height) of the detected boxes for the

subject and the object of the paired natural language utter-

ance in frame k, respectively, and let vs denote the relation

embedding vector produced by the BiLSTM, given natural

language expression s. For each video segment paired with

natural language utterance s, let X−

s denotes the indices for

the first few frames (negative examples) and X+
s denotes

the indices of the last few frames, (positive examples for

the goal configuration), as shown in Figure 3 right. Then,

the contrastive loss function for each video segment reads:

L(s) =
∑

k∈X
+
s

∑

m∈X
−

s

max(0,S(vs, f
k
s , f

k
o )−S(vs, f

m
s , fm

o )),
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<latexit sha1_base64="nwba50h19ji/b+DKHStANw9s0RY=">AAAB6XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsatSPaWGL0hAQuZG/Zgw17e5fdORNC+Ak2Fmps/Ud2/hsXuELBl0zy8t5MZuaFqRQGXffbKaytb2xuFbdLO7t7+wflw6NHk2SacZ8lMtHtkBouheI+CpS8nWpO41DyVji6mfmtJ66NSNQDjlMexHSgRCQYRSvdV021V664NXcOskq8nFQgR7NX/ur2E5bFXCGT1JiO56YYTKhGwSSflrqZ4SllIzrgHUsVjbkJJvNTp+TMKn0SJdqWQjJXf09MaGzMOA5tZ0xxaJa9mfif18kwugwmQqUZcsUWi6JMEkzI7G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4yy+vEr9eu6q5d/VK4zpPowgncArn4MEFNOAWmuADgwE8wyu8OdJ5cd6dj0VrwclnjuEPnM8fA4iNJA==</latexit><latexit sha1_base64="nwba50h19ji/b+DKHStANw9s0RY=">AAAB6XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsatSPaWGL0hAQuZG/Zgw17e5fdORNC+Ak2Fmps/Ud2/hsXuELBl0zy8t5MZuaFqRQGXffbKaytb2xuFbdLO7t7+wflw6NHk2SacZ8lMtHtkBouheI+CpS8nWpO41DyVji6mfmtJ66NSNQDjlMexHSgRCQYRSvdV021V664NXcOskq8nFQgR7NX/ur2E5bFXCGT1JiO56YYTKhGwSSflrqZ4SllIzrgHUsVjbkJJvNTp+TMKn0SJdqWQjJXf09MaGzMOA5tZ0xxaJa9mfif18kwugwmQqUZcsUWi6JMEkzI7G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4yy+vEr9eu6q5d/VK4zpPowgncArn4MEFNOAWmuADgwE8wyu8OdJ5cd6dj0VrwclnjuEPnM8fA4iNJA==</latexit><latexit sha1_base64="nwba50h19ji/b+DKHStANw9s0RY=">AAAB6XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsatSPaWGL0hAQuZG/Zgw17e5fdORNC+Ak2Fmps/Ud2/hsXuELBl0zy8t5MZuaFqRQGXffbKaytb2xuFbdLO7t7+wflw6NHk2SacZ8lMtHtkBouheI+CpS8nWpO41DyVji6mfmtJ66NSNQDjlMexHSgRCQYRSvdV021V664NXcOskq8nFQgR7NX/ur2E5bFXCGT1JiO56YYTKhGwSSflrqZ4SllIzrgHUsVjbkJJvNTp+TMKn0SJdqWQjJXf09MaGzMOA5tZ0xxaJa9mfif18kwugwmQqUZcsUWi6JMEkzI7G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4yy+vEr9eu6q5d/VK4zpPowgncArn4MEFNOAWmuADgwE8wyu8OdJ5cd6dj0VrwclnjuEPnM8fA4iNJA==</latexit><latexit sha1_base64="C39OhB+IczRcjLNINXH29e9lt8M=">AAAB2HicbZDNSgMxFIXv1L86Vq1rN8EiuCpTN+pOcOOygmML7VAymTttaCYzJHeEMvQFXLhRfDB3vo3pz0KtBwIf5yTk3hMXSloKgi+vtrW9s7tX3/cPGv7h0XGz8WTz0ggMRa5y04+5RSU1hiRJYb8wyLNYYS+e3i3y3jMaK3P9SLMCo4yPtUyl4OSs7qjZCtrBUmwTOmtowVqj5ucwyUWZoSahuLWDTlBQVHFDUiic+8PSYsHFlI9x4FDzDG1ULcecs3PnJCzNjTua2NL9+aLimbWzLHY3M04T+zdbmP9lg5LS66iSuigJtVh9lJaKUc4WO7NEGhSkZg64MNLNysSEGy7INeO7Djp/N96E8LJ90w4eAqjDKZzBBXTgCm7hHroQgoAEXuDNm3iv3vuqqpq37uwEfsn7+Aap5IoM</latexit><latexit sha1_base64="ADEZj+G784rw5V+sKoQfilplP/Y=">AAAB3nicbZDNSgMxFIXv1L9aq1a3boKt4Kpk3Kg7wY3Lio4ttEPJpHfa0ExmSDJCGfoIblyo+FjufBvTn4W2Hgh8nJOQe0+USWEspd9eaWNza3unvFvZq+4fHNaOqk8mzTXHgKcy1Z2IGZRCYWCFldjJNLIkktiOxrezvP2M2ohUPdpJhmHChkrEgjPrrIeGafRrddqkc5F18JdQh6Va/dpXb5DyPEFluWTGdH2a2bBg2goucVrp5QYzxsdsiF2HiiVowmI+6pScOWdA4lS7oyyZu79fFCwxZpJE7mbC7MisZjPzv6yb2/gqLITKcouKLz6Kc0lsSmZ7k4HQyK2cOGBcCzcr4SOmGbeunYorwV9deR2Ci+Z1k95TKMMJnMI5+HAJN3AHLQiAwxBe4A3ePem9eh+LtkresrZj+CPv8wfuCYvS</latexit><latexit sha1_base64="ADEZj+G784rw5V+sKoQfilplP/Y=">AAAB3nicbZDNSgMxFIXv1L9aq1a3boKt4Kpk3Kg7wY3Lio4ttEPJpHfa0ExmSDJCGfoIblyo+FjufBvTn4W2Hgh8nJOQe0+USWEspd9eaWNza3unvFvZq+4fHNaOqk8mzTXHgKcy1Z2IGZRCYWCFldjJNLIkktiOxrezvP2M2ohUPdpJhmHChkrEgjPrrIeGafRrddqkc5F18JdQh6Va/dpXb5DyPEFluWTGdH2a2bBg2goucVrp5QYzxsdsiF2HiiVowmI+6pScOWdA4lS7oyyZu79fFCwxZpJE7mbC7MisZjPzv6yb2/gqLITKcouKLz6Kc0lsSmZ7k4HQyK2cOGBcCzcr4SOmGbeunYorwV9deR2Ci+Z1k95TKMMJnMI5+HAJN3AHLQiAwxBe4A3ePem9eh+LtkresrZj+CPv8wfuCYvS</latexit><latexit sha1_base64="fVvY9JQxOpoaY2KzLdMH56Vzfok=">AAAB6XicbVBNT8JAEJ36ifiFevSyEUw8kdaLeiN68YjRCgk0ZLtMYcN22+xuTUjDT/DiQY1X/5E3/40L9KDgSyZ5eW8mM/PCVHBtXPfbWVldW9/YLG2Vt3d29/YrB4ePOskUQ58lIlHtkGoUXKJvuBHYThXSOBTYCkc3U7/1hErzRD6YcYpBTAeSR5xRY6X7mq71KlW37s5AlolXkCoUaPYqX91+wrIYpWGCat3x3NQEOVWGM4GTcjfTmFI2ogPsWCppjDrIZ6dOyKlV+iRKlC1pyEz9PZHTWOtxHNrOmJqhXvSm4n9eJzPRZZBzmWYGJZsvijJBTEKmf5M+V8iMGFtCmeL2VsKGVFFmbDplG4K3+PIy8c/rV3X3zq02ros0SnAMJ3AGHlxAA26hCT4wGMAzvMKbI5wX5935mLeuOMXMEfyB8/kDAuiNIg==</latexit><latexit sha1_base64="nwba50h19ji/b+DKHStANw9s0RY=">AAAB6XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsatSPaWGL0hAQuZG/Zgw17e5fdORNC+Ak2Fmps/Ud2/hsXuELBl0zy8t5MZuaFqRQGXffbKaytb2xuFbdLO7t7+wflw6NHk2SacZ8lMtHtkBouheI+CpS8nWpO41DyVji6mfmtJ66NSNQDjlMexHSgRCQYRSvdV021V664NXcOskq8nFQgR7NX/ur2E5bFXCGT1JiO56YYTKhGwSSflrqZ4SllIzrgHUsVjbkJJvNTp+TMKn0SJdqWQjJXf09MaGzMOA5tZ0xxaJa9mfif18kwugwmQqUZcsUWi6JMEkzI7G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4yy+vEr9eu6q5d/VK4zpPowgncArn4MEFNOAWmuADgwE8wyu8OdJ5cd6dj0VrwclnjuEPnM8fA4iNJA==</latexit><latexit sha1_base64="nwba50h19ji/b+DKHStANw9s0RY=">AAAB6XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsatSPaWGL0hAQuZG/Zgw17e5fdORNC+Ak2Fmps/Ud2/hsXuELBl0zy8t5MZuaFqRQGXffbKaytb2xuFbdLO7t7+wflw6NHk2SacZ8lMtHtkBouheI+CpS8nWpO41DyVji6mfmtJ66NSNQDjlMexHSgRCQYRSvdV021V664NXcOskq8nFQgR7NX/ur2E5bFXCGT1JiO56YYTKhGwSSflrqZ4SllIzrgHUsVjbkJJvNTp+TMKn0SJdqWQjJXf09MaGzMOA5tZ0xxaJa9mfif18kwugwmQqUZcsUWi6JMEkzI7G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4yy+vEr9eu6q5d/VK4zpPowgncArn4MEFNOAWmuADgwE8wyu8OdJ5cd6dj0VrwclnjuEPnM8fA4iNJA==</latexit><latexit sha1_base64="nwba50h19ji/b+DKHStANw9s0RY=">AAAB6XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsatSPaWGL0hAQuZG/Zgw17e5fdORNC+Ak2Fmps/Ud2/hsXuELBl0zy8t5MZuaFqRQGXffbKaytb2xuFbdLO7t7+wflw6NHk2SacZ8lMtHtkBouheI+CpS8nWpO41DyVji6mfmtJ66NSNQDjlMexHSgRCQYRSvdV021V664NXcOskq8nFQgR7NX/ur2E5bFXCGT1JiO56YYTKhGwSSflrqZ4SllIzrgHUsVjbkJJvNTp+TMKn0SJdqWQjJXf09MaGzMOA5tZ0xxaJa9mfif18kwugwmQqUZcsUWi6JMEkzI7G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4yy+vEr9eu6q5d/VK4zpPowgncArn4MEFNOAWmuADgwE8wyu8OdJ5cd6dj0VrwclnjuEPnM8fA4iNJA==</latexit><latexit sha1_base64="nwba50h19ji/b+DKHStANw9s0RY=">AAAB6XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsatSPaWGL0hAQuZG/Zgw17e5fdORNC+Ak2Fmps/Ud2/hsXuELBl0zy8t5MZuaFqRQGXffbKaytb2xuFbdLO7t7+wflw6NHk2SacZ8lMtHtkBouheI+CpS8nWpO41DyVji6mfmtJ66NSNQDjlMexHSgRCQYRSvdV021V664NXcOskq8nFQgR7NX/ur2E5bFXCGT1JiO56YYTKhGwSSflrqZ4SllIzrgHUsVjbkJJvNTp+TMKn0SJdqWQjJXf09MaGzMOA5tZ0xxaJa9mfif18kwugwmQqUZcsUWi6JMEkzI7G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4yy+vEr9eu6q5d/VK4zpPowgncArn4MEFNOAWmuADgwE8wyu8OdJ5cd6dj0VrwclnjuEPnM8fA4iNJA==</latexit><latexit sha1_base64="nwba50h19ji/b+DKHStANw9s0RY=">AAAB6XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsatSPaWGL0hAQuZG/Zgw17e5fdORNC+Ak2Fmps/Ud2/hsXuELBl0zy8t5MZuaFqRQGXffbKaytb2xuFbdLO7t7+wflw6NHk2SacZ8lMtHtkBouheI+CpS8nWpO41DyVji6mfmtJ66NSNQDjlMexHSgRCQYRSvdV021V664NXcOskq8nFQgR7NX/ur2E5bFXCGT1JiO56YYTKhGwSSflrqZ4SllIzrgHUsVjbkJJvNTp+TMKn0SJdqWQjJXf09MaGzMOA5tZ0xxaJa9mfif18kwugwmQqUZcsUWi6JMEkzI7G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4yy+vEr9eu6q5d/VK4zpPowgncArn4MEFNOAWmuADgwE8wyu8OdJ5cd6dj0VrwclnjuEPnM8fA4iNJA==</latexit>

vs

fs
<latexit sha1_base64="e/QoDPZcO5zrVcCMpwqvVCH/+Bo=">AAAB63icbVBNT8JAEJ3iF+IX6tHLRjDxRFou6o3oxSMmVkmgIdtlChu222Z3a0IafoMXD2q8+oe8+W9coAcFXzLJy3szmZkXpoJr47rfTmltfWNzq7xd2dnd2z+oHh496CRTDH2WiER1QqpRcIm+4UZgJ1VI41DgYzi+mfmPT6g0T+S9maQYxHQoecQZNVby61Ff1/vVmttw5yCrxCtIDQq0+9Wv3iBhWYzSMEG17npuaoKcKsOZwGmll2lMKRvTIXYtlTRGHeTzY6fkzCoDEiXKljRkrv6eyGms9SQObWdMzUgvezPxP6+bmegyyLlMM4OSLRZFmSAmIbPPyYArZEZMLKFMcXsrYSOqKDM2n4oNwVt+eZX4zcZVw71r1lrXRRplOIFTOAcPLqAFt9AGHxhweIZXeHOk8+K8Ox+L1pJTzBzDHzifP3lujf0=</latexit><latexit sha1_base64="e/QoDPZcO5zrVcCMpwqvVCH/+Bo=">AAAB63icbVBNT8JAEJ3iF+IX6tHLRjDxRFou6o3oxSMmVkmgIdtlChu222Z3a0IafoMXD2q8+oe8+W9coAcFXzLJy3szmZkXpoJr47rfTmltfWNzq7xd2dnd2z+oHh496CRTDH2WiER1QqpRcIm+4UZgJ1VI41DgYzi+mfmPT6g0T+S9maQYxHQoecQZNVby61Ff1/vVmttw5yCrxCtIDQq0+9Wv3iBhWYzSMEG17npuaoKcKsOZwGmll2lMKRvTIXYtlTRGHeTzY6fkzCoDEiXKljRkrv6eyGms9SQObWdMzUgvezPxP6+bmegyyLlMM4OSLRZFmSAmIbPPyYArZEZMLKFMcXsrYSOqKDM2n4oNwVt+eZX4zcZVw71r1lrXRRplOIFTOAcPLqAFt9AGHxhweIZXeHOk8+K8Ox+L1pJTzBzDHzifP3lujf0=</latexit><latexit sha1_base64="e/QoDPZcO5zrVcCMpwqvVCH/+Bo=">AAAB63icbVBNT8JAEJ3iF+IX6tHLRjDxRFou6o3oxSMmVkmgIdtlChu222Z3a0IafoMXD2q8+oe8+W9coAcFXzLJy3szmZkXpoJr47rfTmltfWNzq7xd2dnd2z+oHh496CRTDH2WiER1QqpRcIm+4UZgJ1VI41DgYzi+mfmPT6g0T+S9maQYxHQoecQZNVby61Ff1/vVmttw5yCrxCtIDQq0+9Wv3iBhWYzSMEG17npuaoKcKsOZwGmll2lMKRvTIXYtlTRGHeTzY6fkzCoDEiXKljRkrv6eyGms9SQObWdMzUgvezPxP6+bmegyyLlMM4OSLRZFmSAmIbPPyYArZEZMLKFMcXsrYSOqKDM2n4oNwVt+eZX4zcZVw71r1lrXRRplOIFTOAcPLqAFt9AGHxhweIZXeHOk8+K8Ox+L1pJTzBzDHzifP3lujf0=</latexit>

fo
<latexit sha1_base64="cN0a/czILm8Z3Rr2qCGEVG+bl24=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsatSPaWGLiKQlcyN6yBxv247K7Z0Iu/AYbCzW2/iE7/40LXKHgSyZ5eW8mM/PilDNjff/bK62tb2xulbcrO7t7+wfVw6MHozJNaEgUV7oTY0M5kzS0zHLaSTXFIub0MR7fzPzHJ6oNU/LeTlIaCTyULGEEWyeF9aSv6v1qzW/4c6BVEhSkBgXa/epXb6BIJqi0hGNjuoGf2ijH2jLC6bTSywxNMRnjIe06KrGgJsrnx07RmVMGKFHalbRorv6eyLEwZiJi1ymwHZllbyb+53Uzm1xGOZNpZqkki0VJxpFVaPY5GjBNieUTRzDRzN2KyAhrTKzLp+JCCJZfXiVhs3HV8O+atdZ1kUYZTuAUziGAC2jBLbQhBAIMnuEV3jzpvXjv3seiteQVM8fwB97nD3Nejfk=</latexit><latexit sha1_base64="cN0a/czILm8Z3Rr2qCGEVG+bl24=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsatSPaWGLiKQlcyN6yBxv247K7Z0Iu/AYbCzW2/iE7/40LXKHgSyZ5eW8mM/PilDNjff/bK62tb2xulbcrO7t7+wfVw6MHozJNaEgUV7oTY0M5kzS0zHLaSTXFIub0MR7fzPzHJ6oNU/LeTlIaCTyULGEEWyeF9aSv6v1qzW/4c6BVEhSkBgXa/epXb6BIJqi0hGNjuoGf2ijH2jLC6bTSywxNMRnjIe06KrGgJsrnx07RmVMGKFHalbRorv6eyLEwZiJi1ymwHZllbyb+53Uzm1xGOZNpZqkki0VJxpFVaPY5GjBNieUTRzDRzN2KyAhrTKzLp+JCCJZfXiVhs3HV8O+atdZ1kUYZTuAUziGAC2jBLbQhBAIMnuEV3jzpvXjv3seiteQVM8fwB97nD3Nejfk=</latexit><latexit sha1_base64="cN0a/czILm8Z3Rr2qCGEVG+bl24=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsatSPaWGLiKQlcyN6yBxv247K7Z0Iu/AYbCzW2/iE7/40LXKHgSyZ5eW8mM/PilDNjff/bK62tb2xulbcrO7t7+wfVw6MHozJNaEgUV7oTY0M5kzS0zHLaSTXFIub0MR7fzPzHJ6oNU/LeTlIaCTyULGEEWyeF9aSv6v1qzW/4c6BVEhSkBgXa/epXb6BIJqi0hGNjuoGf2ijH2jLC6bTSywxNMRnjIe06KrGgJsrnx07RmVMGKFHalbRorv6eyLEwZiJi1ymwHZllbyb+53Uzm1xGOZNpZqkki0VJxpFVaPY5GjBNieUTRzDRzN2KyAhrTKzLp+JCCJZfXiVhs3HV8O+atdZ1kUYZTuAUziGAC2jBLbQhBAIMnuEV3jzpvXjv3seiteQVM8fwB97nD3Nejfk=</latexit>

S
<latexit sha1_base64="g63TEsFSf9CaAEnr8I1jtnofRTI=">AAAB83icbVA9T8MwFHwpX6V8BRhZLFokpirpAmwVLIxFEFqpjSrHdVqrjhNsp1IV9XewMABi5c+w8W9w2gzQcpKl0917eucLEs6Udpxvq7S2vrG5Vd6u7Ozu7R/Yh0ePKk4loR6JeSw7AVaUM0E9zTSnnURSHAWctoPxTe63J1QqFosHPU2oH+GhYCEjWBvJr/UirEcE8+x+VuvbVafuzIFWiVuQKhRo9e2v3iAmaUSFJhwr1XWdRPsZlpoRTmeVXqpogskYD2nXUIEjqvxsHnqGzowyQGEszRMazdXfGxmOlJpGgZnMM6plLxf/87qpDi/9jIkk1VSQxaEw5UjHKG8ADZikRPOpIZhIZrIiMsISE216qpgS3OUvrxKvUb+qO3eNavO6aKMMJ3AK5+DCBTThFlrgAYEneIZXeLMm1ov1bn0sRktWsXMMf2B9/gCyApGW</latexit><latexit sha1_base64="g63TEsFSf9CaAEnr8I1jtnofRTI=">AAAB83icbVA9T8MwFHwpX6V8BRhZLFokpirpAmwVLIxFEFqpjSrHdVqrjhNsp1IV9XewMABi5c+w8W9w2gzQcpKl0917eucLEs6Udpxvq7S2vrG5Vd6u7Ozu7R/Yh0ePKk4loR6JeSw7AVaUM0E9zTSnnURSHAWctoPxTe63J1QqFosHPU2oH+GhYCEjWBvJr/UirEcE8+x+VuvbVafuzIFWiVuQKhRo9e2v3iAmaUSFJhwr1XWdRPsZlpoRTmeVXqpogskYD2nXUIEjqvxsHnqGzowyQGEszRMazdXfGxmOlJpGgZnMM6plLxf/87qpDi/9jIkk1VSQxaEw5UjHKG8ADZikRPOpIZhIZrIiMsISE216qpgS3OUvrxKvUb+qO3eNavO6aKMMJ3AK5+DCBTThFlrgAYEneIZXeLMm1ov1bn0sRktWsXMMf2B9/gCyApGW</latexit><latexit sha1_base64="g63TEsFSf9CaAEnr8I1jtnofRTI=">AAAB83icbVA9T8MwFHwpX6V8BRhZLFokpirpAmwVLIxFEFqpjSrHdVqrjhNsp1IV9XewMABi5c+w8W9w2gzQcpKl0917eucLEs6Udpxvq7S2vrG5Vd6u7Ozu7R/Yh0ePKk4loR6JeSw7AVaUM0E9zTSnnURSHAWctoPxTe63J1QqFosHPU2oH+GhYCEjWBvJr/UirEcE8+x+VuvbVafuzIFWiVuQKhRo9e2v3iAmaUSFJhwr1XWdRPsZlpoRTmeVXqpogskYD2nXUIEjqvxsHnqGzowyQGEszRMazdXfGxmOlJpGgZnMM6plLxf/87qpDi/9jIkk1VSQxaEw5UjHKG8ADZikRPOpIZhIZrIiMsISE216qpgS3OUvrxKvUb+qO3eNavO6aKMMJ3AK5+DCBTThFlrgAYEneIZXeLMm1ov1bn0sRktWsXMMf2B9/gCyApGW</latexit>

S(vs1 , f
A
s , fA

o ) < S(vs1 , f
B
s , fB

o )
<latexit sha1_base64="6spnwEpGyl4sgnVYeR+6C5nIlHQ=">AAACMHicdVDLTgIxFO34RHyNunTTCCaQGDLDRk1cAG5YYhQhgWHSKR1o6DzSdkjIhF9y458YNyzUuPUr7MAsFPQmTU/OOTf33uOEjAppGDNtbX1jc2s7s5Pd3ds/ONSPjh9FEHFMmjhgAW87SBBGfdKUVDLSDjlBnsNIyxndJnprTLiggf8gJyGxPDTwqUsxkoqy9Xq+6yE5xIjF99PC2I6FbU4voGuLXjX5gl61CG/+9dQWnloxb+s5o2TMC64CMwU5kFbD1l+6/QBHHvElZkiIjmmE0ooRlxQzMs12I0FChEdoQDoK+sgjwornF0/huWL60A24er6Ec/ZnR4w8ISaeo5zJ6mJZS8i/tE4k3Ssrpn4YSeLjxSA3YlAGMIkP9iknWLKJAghzqnaFeIg4wlKFnFUhmMsnr4JmuXRdMu7KuUotTSMDTsEZKAATXIIKqIMGaAIMnsAreAPv2rM20z60z4V1TUt7TsCv0r6+AdwEp7o=</latexit><latexit sha1_base64="6spnwEpGyl4sgnVYeR+6C5nIlHQ=">AAACMHicdVDLTgIxFO34RHyNunTTCCaQGDLDRk1cAG5YYhQhgWHSKR1o6DzSdkjIhF9y458YNyzUuPUr7MAsFPQmTU/OOTf33uOEjAppGDNtbX1jc2s7s5Pd3ds/ONSPjh9FEHFMmjhgAW87SBBGfdKUVDLSDjlBnsNIyxndJnprTLiggf8gJyGxPDTwqUsxkoqy9Xq+6yE5xIjF99PC2I6FbU4voGuLXjX5gl61CG/+9dQWnloxb+s5o2TMC64CMwU5kFbD1l+6/QBHHvElZkiIjmmE0ooRlxQzMs12I0FChEdoQDoK+sgjwornF0/huWL60A24er6Ec/ZnR4w8ISaeo5zJ6mJZS8i/tE4k3Ssrpn4YSeLjxSA3YlAGMIkP9iknWLKJAghzqnaFeIg4wlKFnFUhmMsnr4JmuXRdMu7KuUotTSMDTsEZKAATXIIKqIMGaAIMnsAreAPv2rM20z60z4V1TUt7TsCv0r6+AdwEp7o=</latexit><latexit sha1_base64="6spnwEpGyl4sgnVYeR+6C5nIlHQ=">AAACMHicdVDLTgIxFO34RHyNunTTCCaQGDLDRk1cAG5YYhQhgWHSKR1o6DzSdkjIhF9y458YNyzUuPUr7MAsFPQmTU/OOTf33uOEjAppGDNtbX1jc2s7s5Pd3ds/ONSPjh9FEHFMmjhgAW87SBBGfdKUVDLSDjlBnsNIyxndJnprTLiggf8gJyGxPDTwqUsxkoqy9Xq+6yE5xIjF99PC2I6FbU4voGuLXjX5gl61CG/+9dQWnloxb+s5o2TMC64CMwU5kFbD1l+6/QBHHvElZkiIjmmE0ooRlxQzMs12I0FChEdoQDoK+sgjwornF0/huWL60A24er6Ec/ZnR4w8ISaeo5zJ6mJZS8i/tE4k3Ssrpn4YSeLjxSA3YlAGMIkP9iknWLKJAghzqnaFeIg4wlKFnFUhmMsnr4JmuXRdMu7KuUotTSMDTsEZKAATXIIKqIMGaAIMnsAreAPv2rM20z60z4V1TUt7TsCv0r6+AdwEp7o=</latexit>

+++ +++--- ---

* *
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binary  
threshold

Binary  
Reward  

(  ) R
<latexit sha1_base64="gshPoEiwImV3uZGU8ba0GHenwIs=">AAAB8XicbVBNSwMxFHxbv2r9qnr0EiyCp7IrgnorevFYxbWF7VKyabYNzSZLkhXK0p/hxYOKV/+NN/+N2XYP2joQGGbeI/MmSjnTxnW/ncrK6tr6RnWztrW9s7tX3z941DJThPpEcqm6EdaUM0F9wwyn3VRRnEScdqLxTeF3nqjSTIoHM0lpmOChYDEj2Fgp6CXYjAjm+f20X2+4TXcGtEy8kjSgRLtf/+oNJMkSKgzhWOvAc1MT5lgZRjid1nqZpikmYzykgaUCJ1SH+SzyFJ1YZYBiqewTBs3U3xs5TrSeJJGdLCLqRa8Q//OCzMSXYc5EmhkqyPyjOOPISFTcjwZMUWL4xBJMFLNZERlhhYmxLdVsCd7iycvEP2teNd2780brumyjCkdwDKfgwQW04Bba4AMBCc/wCm+OcV6cd+djPlpxyp1D+APn8wf0FpE7</latexit><latexit sha1_base64="gshPoEiwImV3uZGU8ba0GHenwIs=">AAAB8XicbVBNSwMxFHxbv2r9qnr0EiyCp7IrgnorevFYxbWF7VKyabYNzSZLkhXK0p/hxYOKV/+NN/+N2XYP2joQGGbeI/MmSjnTxnW/ncrK6tr6RnWztrW9s7tX3z941DJThPpEcqm6EdaUM0F9wwyn3VRRnEScdqLxTeF3nqjSTIoHM0lpmOChYDEj2Fgp6CXYjAjm+f20X2+4TXcGtEy8kjSgRLtf/+oNJMkSKgzhWOvAc1MT5lgZRjid1nqZpikmYzykgaUCJ1SH+SzyFJ1YZYBiqewTBs3U3xs5TrSeJJGdLCLqRa8Q//OCzMSXYc5EmhkqyPyjOOPISFTcjwZMUWL4xBJMFLNZERlhhYmxLdVsCd7iycvEP2teNd2780brumyjCkdwDKfgwQW04Bba4AMBCc/wCm+OcV6cd+djPlpxyp1D+APn8wf0FpE7</latexit><latexit sha1_base64="gshPoEiwImV3uZGU8ba0GHenwIs=">AAAB8XicbVBNSwMxFHxbv2r9qnr0EiyCp7IrgnorevFYxbWF7VKyabYNzSZLkhXK0p/hxYOKV/+NN/+N2XYP2joQGGbeI/MmSjnTxnW/ncrK6tr6RnWztrW9s7tX3z941DJThPpEcqm6EdaUM0F9wwyn3VRRnEScdqLxTeF3nqjSTIoHM0lpmOChYDEj2Fgp6CXYjAjm+f20X2+4TXcGtEy8kjSgRLtf/+oNJMkSKgzhWOvAc1MT5lgZRjid1nqZpikmYzykgaUCJ1SH+SzyFJ1YZYBiqewTBs3U3xs5TrSeJJGdLCLqRa8Q//OCzMSXYc5EmhkqyPyjOOPISFTcjwZMUWL4xBJMFLNZERlhhYmxLdVsCd7iycvEP2teNd2780brumyjCkdwDKfgwQW04Bba4AMBCc/wCm+OcV6cd+djPlpxyp1D+APn8wf0FpE7</latexit>
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Figure 3. Left: Visual detection of natural language spatial expressions comprised of two object detectors and a relation module that

computes a relation word embedding vector and given the spatial features extracted from the detected boxes, outputs a score for the spatial

configuration. The score can be further transformed into a binary reward using predicted threshold. Right: Hard negative mining using

spatial configurations of adjacent in time video frames, demonstrating related natural language expressions. Related in time demonstrations

provide hard negative examples to our relation module, free of static image biases, that allow it to improve from very few examples.

where S(vs, f
k
s , f

k
o ) is the score output by our relation neu-

ral module in frame k. The score is further threshold into

a binary reward R(vs, f
k
s , f

k
o ) ∈ {0, 1} indicating a hard

decision on whether the visual inputs match with the nat-

ural language utterance. The threshold is predicted from a

two-layer neural network that takes as input the relation em-

bedding. This threshold predicting branch is trained using

standard cross entropy loss for binary classification.

Natural language grounding from narrated visual

demonstrations benefits from hard negative mining of the

demonstrated natural language concepts: example frames

of spatial configurations that portray the same pair of ob-

jects, but in different spatial configurations. This char-

acteristic comes for free from the way people demonstrate

concepts: as suggested by psychologists [49], related or op-

posite concepts are demonstrated/explained in temporal se-

quence, which much helps their disentanglement via pro-

viding hard negative examples to the learner. In contrast,

in static images, due to photographic biases, many configu-

rations come at stylized poses, with stylized objects, which

makes it hard for the learner to disentangle the individual

characteristics of the relation. As a result, even with a hand-

ful of video demonstrations (14), our relation module much

improves over the pretrained model of [25], as we show in

Section 4, while using similar unsupervised metric learning

losses.

3.3. Policy learning with perceptual rewards

We use the learned visual reward detectors to train pick-

and-place policies in simulation, replacing manually coded

rewards, typically used in previous works [47, 5].

Object-factorized state representations Our reward de-

tectors decompose the scoring of a spatial referential ex-

pression over an object-centric graph, where nodes repre-

sent object detections and edges represent their spatial rela-

tionships. We use the same object-factorized input for our

policy network and show empirically that it generalizes bet-

ter than frame-centric representations considered in previ-

ous works [41], where the whole frame is provided as input

to a policy network. Some recent works do also consider

object-centric input [14, 16]. Unlike these works, however,

we additionally distinguish the roles of the objects in the

scene (by mapping the subject and object in our natural lan-

guage description to corresponding box hypotheses), mak-

ing our object-factorized state ordered, as opposed to un-

ordered.

Reward shaping via analysis-by-synthesis Our learned

reward detectors from Section 3.2 take as input an RGB

image and a spatial natural language expression and out-

put a binary score, R, of whether the image matches the

spatial configuration. Model-free policy search with binary
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rewards has notoriously high sample complexity due to the

lack of informative gradients for the overwhelming majority

of the sampled actions [22]. Efficient policy search requires

shaped rewards, either explicitly [33], or more recently, im-

plicitly [5], by encoding the goal configuration in a contin-

uous space where similarity can be measured against alter-

native goals achieved during training.

If we were able to visually picture the desired 3D object

configuration to be achieved by our pick-and-place policies,

then Euclidean distances to the pictured objects would pro-

vide an effective (approximate) shaping of the true rewards.

We do so using analysis-by-synthesis, where our trained

detector is used to select or discard sampled hypotheses.

Given an initial configuration of two objects that we are

supposed to manipulate towards a desired configuration, we

seek a physically-plausible 3D object configuration which

renders to an image that scores high with our correspond-

ing reward detector. Using the subject and object categories

extracted from the natural language utterance, we retrieve

corresponding 3D models from external 3D databases (3D

Shapenet [11] and 3D Warehouse [2]) and import them in

a physics simulator (Bullet). We sample 3D locations for

the objects, render the scene and evaluate the score of our

detector. Note that since we know the object identities, the

relation module is the only one that needs to be considered

for this scoring. We pick the highest scoring 3D configu-

ration as our goal configuration. It is used at training time

to provide effective shaping using 3D Euclidean distances

between desired and current object locations and drastically

reduces the number of samples needed for policy learning.

However, our policy network takes 2D bounding box infor-

mation as input, and does not need any 3D lifting, but rather

operates reactively given the RGB images.

4. Experiments

We evaluate the accuracy of our reward detectors and

their effectiveness for learning instructable pick-and-place

policies in simulation, in place of manually coded rewards.

Our experiments aim to answer the following questions:

1. How much does weak supervision from narrated visual

demonstrations benefit the grounding of natural lan-

guage spatial expressions, over a baseline of strongly-

supervised labelled (static) image datasets?

2. How does the accuracy of learned—as opposed

to manually coded—reward detectors affect the

training speed and accuracy of the corresponding

reinforcement-learned policies?

3. How do object-factorized policy networks compare to

their frame-centric counter-parts?

4. How much does reward shaping via analysis-by-

synthesis help over binary rewards for efficient policy

in behind left right avg.

Pretrained 0.89 0.43 0.35 0.35 0.51

RandomNeg 0.50 0.50 0.50 0.50 0.50

HardNeg 0.95 0.96 0.88 0.88 0.92

Table 1. Classification accuracy of visual reward detectors of

natural language spatial expressions trained in static images (pre-

trained), finetuned with images using randomly selected negative

examples (RandomNeg), finetuned with videos using hard mining

negative examples (HardNeg) for various spatial relations.

Query: The orange is behind the bowl

Query: The orange is in the bowl

Query: The orange is on the left of the bowl

Query: The orange is behind the bowl

Query: The orange is in the bowl

Query: The orange is on the left of the bowl

Pertained model on visual genome dataset

Model fine-tuned on Teach-a-Toddler datasetNVD dataset

Query: The orange is behind the bowl

Query: The orange is behind the bowl

Query: The orange is in the bowl

Query: The orange is in the bowl

Query: The orange is on the left of the bowl

Query: The orange is on the left of the bowl

Model Pretrained

Figure 4. Reward detectors trained on static images alone (top)

and on static images and narrated video demonstrations (bottom).

We show the five highest scoring images for the two models for

three spatial configurations. Red borders indicate incorrect detec-

tions. Video demonstrations improve visual detection of natural

language expressions.

search?

4.1. Visual detection of natural language expres­
sions

We generate a synthetic benchmark with 100 images for

each spatial relationship. The relationships we consider are

in, behind, left, and right. Each set of 100 images has 50
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The the cupthe left ofapple to

The the cupbelowapple is

Sub.

Obj.

Rel.

Sub.

Obj.

Rel.

The is the cupon the left ofapple

Sub.

Obj.

Rel.

Baseline trained on VisualGenome Fine-tuned model on our dataset

The is the cupon the left ofapple

Sub.

Obj.

Rel.

The the cupthe left ofapple to

Sub.

Obj.

Rel.

The the cupbelowapple is

Sub.

Obj.

Rel.

Figure 5. BiLSTM attention weights on language representa-

tion on unseen natural language descriptions. The detector trained

from video demonstrations places weight on more informative

keywords and generalizes to unseen sentences.

positive and 50 negative images. Ground truth annotations

are generated by a hard-coded function in the simulator. In

Table 1, we show classification error of the learned visual

detectors. We compare the reward detector described in

Section 3.2 trained on Visual Genome and finetuned on the

video demonstration dataset, against the network of Hu et

al. [25] trained on Visual Genome [29].

In Figure 4, we show the top retrieved images in a pool

of 75 images that depict diverse spatial configurations of the

same two objects (orange and bowl) using the (unthresh-

olded) scores of our detectors. In both the classification

task and the retrieval task, finetuning in our small video

dataset helps the detector, despite using only 14 demonstra-

tion videos.

Finetuning in our NVD dataset clearly improves upon

the pretrained model. Our video demonstrations often

show multiple spatial configurations of the same pair

of objects, and the data therefore have less biases regard-

ing configuration-category correlations than static images.

We further compare the hard negative mining from our

NVD dataset against random sampling for negative exam-

ples from Visual Genome [29] in Table 1. Hard negative

mining in NVD helps over random negative examples from

the static image dataset (random in the absence of any infor-

mation for sampling more informative negative examples).

In Figure 5, we visualize BiLSTM attention weights over

the hidden states of the language representation from the

pretrained and finetuned model. The finetuned model is

placing weights on more informative keywords for rela-

tions, e.g., “right” and “left”, and is able to generalize to

unseen (novel) natural language descriptions. Despite the

fact that our model does not use the word embedding of the

object or the subject, those also improve through the gra-

dients on the relationship. In Figure 6, we show detector

scores on real video sequences.

frame 0 frame 40 frame 60

frame 80 frame 90

… … …

… …

frame 120

Figure 6. Reward detection on real test videos.

4.2. Policy learning with Perceptual Reward Detec­
tors

We use our learned detectors to train instructable pick-

and-place policies in the Bullet physics simulator [1]. Our

policy always starts by grasping the subject of the natural

language utterance as detected by our object detector. We

use deep Q learning [38] over a discrete action set of {‘move

forward,’ ‘move backward,’ ‘move right,’ ‘move left’} to

learn a model-free policy that moves the end-effector of the

Kuka IIWA robotic arm so that after an episode length of

T = 5 action steps, the gripper opens, the object is released,

and the desired configuration is achieved. Our policy net-

work is a convolutional neural network that takes an RGB

frame as input and produces a distribution over our action

set. We will call this policy network RGBPolicyNet, to dis-

tinguish it from ObjectPolicyNet, which takes the spatial

configuration of two objects, instead of the RGB.

Implementation details RGBPolicyNet has 5 convolu-

tional layers and 3 fully connected layers with filter size

5 × 5 (stride 2), 5 × 5 (stride 2), 3 × 3 (stride 1), 5 × 5
(stride 2), and 3 × 3 (stride 1), respectively. Channel sizes

are set to 32, 32, 32, 16, and 16, respectively. We use ReLU

as the activation function. To reduce memory usage, we

shrink the input image to 72 × 72. The ObjectPolicyNet

consists of three fully connected layers with size of 512,

512, and 4. We use ReLU as activation function after the

first two layers. We train both networks starting from ran-

dom weights using the Adam optimizer and learning rate

of 0.001. The batch size in both models is set to 512. In

each episode (trial), with exploration rate α, DQN takes

randomly-selected actions with probability α and the action

with highest score with probability (1−α). The exploration
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rate for DQN training is set to 0.8 and decays with the rate

of 0.1 every 1000 action selections. For every five action

selections, we take one gradient descent step for the DQN.

Task The task is putting an object inside a container. The

containers are always facing up and initialized in a 15cm
× 40cm region with randomly selected orientation. The

size of the container is roughly 5cm × 5cm. The subject

indicated by our parser is initialized to be grasped by the

gripper and hanging 20cm above the table.

Reward shaping We found that binary (oracle) rewards

were not able to train successful policies with episode

length larger than T = 2. When shaped rewards are com-

bined with binary rewards, in terms of Euclidean distance

between current and desired object 3D locations, effective

policies were learned even when starting far away from the

desired end-effector position. Thus, all our policy learning

results in this section are obtained by combining (i) oracle

shaping with oracle binary rewards (Rgt), or (ii) predicted

shaping using analysis-by-synthesis with predicted binary

rewards from our learned reward detectors (Rd).

Noisy rewards We show in Figure 7 plots of test policy

accuracy against the number of episodes for RGBPolicyNet

and ObjectPolicyNet using (i) oracle rewards (Rgt), and (ii)

learned rewards (Rd) for the instruction “put the orange in-

side the bowl” . In a synthetic dataset of balanced successful

and unsuccessful configurations, our reward detector has a

classification accuracy of 95%. Table 2 shows that policy

learning from noisy visual rewards for ObjectPolicyNet has

8% lower training accuracy, and much lower test perfor-

mance than a policy trained with oracle rewards.

RGBPolicyNet is not strongly affected by whether the

rewards are provided by an oracle or predicted by percep-

tion.

Object-factorized state representations In Figure 7 and

in Table 2, we compare RGBPolicyNet and ObjectPoli-

cyNet in their performance on seen and unseen objects.

RGBPolicyNet does considerably worse, especially on un-

seen objects. RGBPolicyNet does not have a way to gen-

eralize to new object appearances at test time. Its worse

performance during training can be explained as underfit-

ting. It is severely hurt by resolution, since we wildly vary

the configuration of the two objects during training.

5. Conclusion

In this work we introduce a paradigm for learning in-

structable pick-and-place policies through reinforcement

from perceptual reward detectors trained through ground-

ing narrations in narrated visual demonstrations. We show

Figure 7. Policy learning with/wo noisy rewards, with/wo

object-factorized input.

accuracy accuracy

(seen objects) (unseen objects)

ObjectPolicyNet(Rgt) 0.96 0.78

ObjectPolicyNet(Rd) 0.88 0.50

RGBPolicyNet(Rgt) 0.71 0.27

RGBPolicyNet(Rd) 0.71 0.40

Table 2. Train/test policy accuracy (% of successful trials) for

learning the task “place objects inside containers.” We consider

two different policy network structures: (i) object bounding boxes

and their spatial features as input (ObjectPolicyNet), and (ii) RGB

image as input (RGBPolicyNet). We compare policies learned by

manually-coded rewards in the simulator (Rgt) and by our learned

reward detector (Rd). We compare policies on objects seen during

training (but in novel positions), and on novel objects.

how the accuracy of the reward detectors affects the accu-

racy of the learned policies, and how object-factorized state

representations that follow the syntactic structure of natu-

ral language help generalization of rewards and policies to

novel scenes. We further show how goals instructed in nat-

ural language allow the description of novel goals and pro-

gramming of corresponding novel behaviours at test time.

Future work involves scaling up the vocabulary acquired

for describing goals of activities, and also the correspond-

ing skill library. Additionally, the training currently done in

simulation can be done on a robotic platform. Finally, we

plan to use more of the narrated demonstrations, rather than

merely the final goal configurations.
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