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Abstract

We propose to revisit knowledge transfer for training

object detectors on target classes from weakly supervised

training images, helped by a set of source classes with

bounding-box annotations. We present a unified knowledge

transfer framework based on training a single neural net-

work multi-class object detector over all source classes, or-

ganized in a semantic hierarchy. This generates proposals

with scores at multiple levels in the hierarchy, which we use

to explore knowledge transfer over a broad range of gener-

ality, ranging from class-specific (bycicle to motorbike) to

class-generic (objectness to any class). Experiments on the

200 object classes in the ILSVRC 2013 detection dataset

show that our technique (1) leads to much better perfor-

mance on the target classes (70.3% CorLoc, 36.9% mAP)

than a weakly supervised baseline which uses manually

engineered objectness [11] (50.5% CorLoc, 25.4% mAP).

(2) delivers target object detectors reaching 80% of the

mAP of their fully supervised counterparts. (3) outperforms

the best reported transfer learning results on this dataset

(+41% CorLoc and +3% mAP over [18, 46], +16.2% mAP

over [32]). Moreover, we also carry out several across-

dataset knowledge transfer experiments [27, 24, 35] and

find that (4) our technique outperforms the weakly super-

vised baseline in all dataset pairs by 1.5 × −1.9×, estab-

lishing its general applicability.

1. Introduction

Recent advances such as [17, 28, 33, 50] have resulted

in reliable object class detectors, which predict both the

class label and the location of objects in an image. Typi-

cally, detectors are trained under full supervision, which re-

quires manually drawing object bounding-boxes in a large

number of training images. This is tedious and very time-

consuming. Therefore, several research efforts have been

devoted to training object detectors under weak supervision,

i.e. using only image-level labels [2, 4, 7, 8, 21, 29, 36,

40, 41, 42, 48]. While this is substantially cheaper, the re-

sulting detectors typically perform considerably worse than

their fully supervised counterparts.

In recent years a few large datasets such as Ima-

geNet [35] and COCO [27] have appeared, which pro-

vide many bounding-box annotations for a wide variety

of classes. Since many classes share visual characteris-

tics, we can leverage these annotations when learning a

new class. In this paper we propose a technique for train-

ing object detectors in a knowledge transfer setting [15,

18, 32, 34, 38, 46]: we want to train object detectors

for a set of target classes with only image-level labels,

helped by a set of source classes with bounding-box an-

notations. We build on Multiple Instance Learning (MIL),

a popular framework for weakly supervised object localiza-

tion [29, 8, 2, 7, 10, 40, 42, 36], and extend it to incorporate

knowledge from the source classes. In standard MIL, im-

ages are decomposed into object proposals [1, 47, 11] and

the process iteratively alternates between re-localizing ob-

jects given the current detector, and re-training the detector

given the current object locations. During re-localization,

typically the highest-scoring proposal for an object class is

selected in each image containing it.

Several weakly supervised object localization tech-

niques [8, 7, 31, 37, 40, 38, 45, 49, 4] incorporate a

class-generic objectness measure [1, 11] during the re-

localization stage, to steer the selection towards objects and

away from backgrounds. These works use a manually en-

gineered objectness measure and report an improvement of

around 5% correct localizations. As [9] argued, using ob-

jectness can be seen as a (weak) form of knowledge trans-

fer, from a generic object appearance prior to the particular

target class at hand.

On the opposite end of the spectrum, several works per-

form class-specific transfer [15, 34, 18, 46], For each tar-

get class, they determine a few most related source classes

to transfer from. Some works [15, 34] use the appearance

models of the source classes to guide the localization of the

target class by scoring proposals with it, similar to the way

objectness is used above. Other works [18, 46] instead per-

form transfer directly on the parameters of a neural network.

They first train a neural network for whole-image classifi-

cation on all source and target classes, then fine-tune the
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Figure 1. Illustration of our settings and framework. The source training set is annotated with bounding-boxes. We use this set to train

a proposal generator, and then apply it to the target training set, where it produces proposals with scores at different levels of generality,

ranging from class-specific to class-generic. We use these to perform MIL with knowledge transfer (Sec. 2.2) on the target training set,

using only image-level labels (no bounding-boxes). MIL produces boxes for the target classes, which we use to train an object detector.

Finally, we apply the object detector to the target test set (using no labels at all). The performance of our framework is measured both on

the target training set (Sec. 3.1) and the target test set (Sec. 3.2).

source classifiers into object detectors, and finally transfer

the parameter transformation between whole-image classi-

fiers and object detectors from the source to related target

classes, effectively turning them into detectors too.

Finally, YOLOv2 [32] jointly trains the source and tar-

get class detectors by combining a standard fully supervised

loss with a weakly supervised loss (i.e. the highest scored

box is considered to be the target class). During training

they use hierarchical classification [5, 23, 39], which im-

plicitly achieves knowledge transfer somewhere in-between

class-generic and class-specific.

In this paper we propose a unified knowledge transfer

framework for weakly supervised object localization which

enables us to explore the complete range of semantic speci-

ficity (Fig. 1). We train a single neural network multi-class

object detector [28] over all source classes, organized in

a semantic hierarchy [35]. This naturally provides high-

quality proposals and proposal scoring functions at multi-

ple levels in the hierarchy, which we use during MIL on the

target classes. The top-level scoring function for ‘entity’

conceptually corresponds to the objectness measure [1, 11],

but it is stronger, as provided by a neural network prop-

erly trained on thousands of images. Compared to previous

works using objectness [8, 7, 31, 37, 40, 38, 45, 49, 4], this

leads to much larger performance improvements on the tar-

get classes. Compared to other transfer works [15, 32, 34,

18, 46], our framework enables to explore a broad range of

generality of transfer: from the class-generic ‘entity’ class,

from intermediate-level categories such as ‘animal’ and ‘ve-

hicle’, and from specific classes such as ‘tiger’ and ‘car’.

We achieve this in a simple unified framework, using a sin-

gle SSD model as source knowledge, where we select the

proposal scoring function to be used depending on the tar-

get class and the desired level of generality of transfer.

Through experiments on the 200 object classes in the

ILSVRC 2013 detection dataset, we demonstrate that: (1)

knowledge transfer at any level of generality substantially

improve results, with class-generic transfer working best.

This is excellent news for practitioners, as they can get

strong improvements with a relatively simple modification

to standard MIL pipelines. (2) our class-generic knowl-

edge transfer leads to large improvements over a weakly

supervised object localization baseline using manually en-

gineered objectness [11]: 70.3% CorLoc vs 50.5% CorLoc

on the target training set, 36.9% mAP vs 25.4% mAP on

the target test set. (3) our method delivers detectors for

the target classes which reach 80% of the mAP of their

fully supervised counterparts, trained from manually drawn

bounding-boxes. (4) we outperform the best reported trans-

fer learning results on this dataset: +41% CorLoc and +3%

mAP over [18, 46], +16.2% mAP over [32]. Moreover, we

also carry out several across-dataset [27, 24, 35] knowledge

transfer experiments and find that (5) our technique outper-

forms the weakly supervised baseline in all dataset pairs by

a factor 1.5×−1.9×, establishing its general applicability.

2. Method

We now present our technique for training object detec-

tors in a knowledge transfer setting (Fig. 1). In this set-

ting we have a training set T of target classes with only

image-level labels, and a training set S of source classes

with bounding-box annotations. The goal is to train object

detectors for the target classes, helped by knowledge from

the source classes.

We start in Section 2.1 by introducing a reference Mul-

tiple Instance Learning (MIL) framework, typically used in

weakly supervised object localization (WSOL), i.e. when

given only the target set T . In Section 2.2 we then explain

how we incorporate knowledge from the source classes S
into this framework. Finally, Section 2.3 discusses the

broad range of levels of transfer that we explore.
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2.1. Reference Multiple Instance Learning (MIL)

General scheme. For simplicity, we explain here MIL for

one target class t ∈ T . The process can be repeated for

each target class in turn. The input is a training set I with

positive images, which contain the target class, and nega-

tive images, which do not. Each image is represented as

a bag of object proposals B extracted by a generator such

as [1, 11, 47]. A negative image contains only negative pro-

posals, while a positive image contains at least one positive

proposal, mixed in with a majority of negative ones. The

goals are to find the true positive proposals and to learn an

appearance model At for class t (the object detector). This

is solved in an iterative fashion, by alternating between two

steps until convergence:

1. Re-localization: in each positive image I , select the

proposal b∗ with the highest score given by the current

appearance model At:

b∗ ≡ argmax
b∈B

At(b, I) (1)

2. Re-training: re-train At using the current selection of

proposals from the positive images, and all proposals

from negative images.

Features and appearance model. Typical MIL imple-

mentations use as appearance model a linear SVM trained

on CNN-features extracted from the object proposals [14,

7, 2, 3, 41, 48].

Initialization In the first iteration many works train the

appearance model by using complete images minus a small

boundary as positive training examples [6, 7, 30, 36, 29, 22].

Multi-folding. In a high dimensional feature space the

SVM separates positive and negative training examples

well, placing most positive samples far from the decision

hyperplane. Hence, during re-localization the detector is

likely to score the highest on the object proposals which

were used as positive training samples in the previous iter-

ation. This leads MIL to get stuck on some incorrect selec-

tion in early iterations. To prevent this, [7] proposed multi-

folding: the training set is split into 10 subsets, and then

the re-localization on each subset is done using detectors

trained on the union of all other subsets.

Objectness. Objectness was proposed in [1] to measure

how likely it is that a proposal tightly encloses an object

of any class (e.g. bird, car, sheep), as opposed to back-

ground (e.g. sky, water, grass). Since [8], many WSOL

techniques [4, 7, 31, 37, 40, 38, 45, 49] have used an object-

ness measure [1, 11] to steer the re-localization process to-

wards objects and away from background. Following stan-

dard practice, incorporating objectness into Eq (1) leads to:

b∗ ≡ argmax
b∈B

λ ·At(b, I) + (1− λ) ·O(b, I) (2)

Re-training target detector Re-localizing objects 

Source detector
for knowledge transfer

vehicle

bicycle

entity

...

Figure 2. Illustration of MIL + knowledge transfer for the target

class ‘motorbike’. Standard MIL consists of a re-training stage

and a re-localization stage (Sec. 2.1). We add knowledge transfer

to this scheme by training SSD [28] on the hierarchy H defined by

the source set S. We use its proposals and a knowledge transfer

function (Sec. 2.3) in the re-localization stage.

where λ is a weight controlling the trade-off between the

class-generic objectness score O and the appearance model

At of the target class t being learned during MIL. Using the

objectness score in this manner, previous works typically

report an improvement around 5% in correct localizations

of the target objects [4, 8, 7, 31, 37, 40, 38, 45, 49].

2.2. MIL with knowledge transfer

Overview. In the strandard WSOL setting, MIL is applied

only on the training set T of target classes with image-level

labels. In our setting we also have a training set of source

classes S with bounding-box annotations. Therefore we in-

corporate knowledge from the source classes into MIL and

help learning detectors for the target classes (Fig. 1). We

train a multi-class object detector over all source classes S
organized in a semantic hierarchy, and then apply it to T as

a proposal generator. This naturally provides high-quality

proposals, as well as proposal scoring functions at multiple

levels in the hierarchy. We use these scoring functions dur-

ing the re-localization stage of MIL on T (Fig. 2), which

greatly helps localizing target objects correctly (Sec. 3).

Our scheme improves over previous usage of manually

engineered object proposals and their associated objectness

score [1, 11] in WSOL in two ways: (1) by using trained

proposals and objectness scoring function trained on source

classes; (2) generalizing the common use of a single class-

agnostic objectness score to a family of proposal scoring

functions at multiple levels of semantic specificity. This en-

ables exploring using scoring functions tailored to particular

target classes, and at various degrees of relatedness between

source and target classes (Sec. 2.3). Below we explain the

elements of our approach in more detail.

Training a proposal generator on the source set. We

use the Single Shot Detection (SSD) network [28]. SSD
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Figure 3. Illustration of part of the ImageNet hierarchy, with our

source and target classes inside it. Source classes in S are the leaf

nodes in green. Target classes in T are leaf nodes in blue. For

other nodes the color shows whether it has only source classes as

leaves under it, only target classes, or a mixture of both.

starts from a dense grid of ‘anchor boxes’ covering the im-

age, and then adjusts their coordinates to match objects us-

ing regression. This in turn enables substituting Region-

of-Interest pooling [16, 13, 33] with convolutions, yielding

considerable speed-ups at a small loss of performance [19].

The SSD implementation we use has Inception-V3 [44] as

base network and outputs 1296 boxes per image.

We train SSD on the source set S . For each anchor box,

SSD regresses to a single output box, along with one confi-

dence score for each source class. Therefore, the proposal

set B generated for an image is class-generic. Before train-

ing SSD, we first position the source classes S into the Ima-

geNet semantic hierarchy H [35] and expand the label space

to include all ancestor classes up to the top-level class ‘en-

tity’ (Fig. 3). After this expansion, each object bounding-

box has multiple class labels, including its original label

from S (e.g. ‘bear’) and all its ancestors up to ‘entity’ (e.g.

‘placental’, ‘vertebrate’, ‘entity’). Hence, we train SSD in

a multi-label setting, and we use a sigmoid cross entropy

loss for each class separately, instead of the common log

softmax loss across classes (which is suited for standard 1-

of-K classification, e.g. [13, 28, 33]). Note how this entails

that ancestor classes use as training samples the set union

of all samples over their descendants in S .

We stress that we use SSD instead of Fast- or Faster-

RCNN detectors [13, 33] because these detectors perform

class-specific bounding-box regression. That leads to differ-

ent sets of boxes for each source class, which complicates

experiments in our knowledge transfer setting. SSD instead

delivers a single set of class-generic boxes, and attaches to

each box multiple scores (one per source class).

Knowledge transfer during re-localization. After train-

ing SSD on S , we apply it to each image I in the target

set T . It produces a set of proposals B and assigns to

each proposal b ∈ B scores Fs(b, I) at all levels of the hi-

erarchy. More precisely, it assigns a score for each class

s ∈ H, including scores for the original leaf classes S , the

intermediate-level classes, and the top-level ‘entity’ class.

This top-level score corresponds conceptually to traditional

objectness [1, 11], but is now properly trained.

We use this family of scoring functions Fs to compose

one particular knowledge transfer function Kt(b, I) tailored

to each target class t ∈ T . We discuss in Sec. 2.3 four

strategies for composing Kt. As illustrated in Fig. 2, we use

Kt inside the re-localization stage of MIL by generalizing

Eq (2) to become:

b∗ ≡ argmax
b∈B

λ ·At(b, I) + (1− λ) ·Kt(b, I) (3)

Note how the special case of Kt(b, I) = O (using a stan-

dard objectness score [11, 1]) and B coming from a stan-

dard object proposal generator corresponds to WSOL with

the reference MIL algorithm (sec. 2.1).

2.3. Knowledge transfer functions Kt

In this paper we explore knowledge transfer at different

levels of semantic generality. For a given target class t, we

use the proposal scoring functions Fs to compose a knowl-

edge transfer function Kt at a desired levels of generality,

out of four possible options: class-generic, closest source

classes, closest common ancestor, and closest common an-

cestor with at least n sources.

Class-generic objectness. The most generic way of trans-

ferring knowledge is to use the scoring function Fentity(b, I)
from the top-level class ‘entity’ in the hierarchy. The

idea is that such a generic measure generalizes beyond the

source classes it was trained on, and it helps steer the re-

localization process towards objects and away from back-

ground in the target dataset. This corresponds to the tradi-

tional use of objectness in WSOL [8, 7, 31, 37, 40, 38, 45,

49, 4], but done with a stronger objectness measure trained

in a neural network:

Kt(b, I) ≡ Fentity(b, I) (4)

In our main experiments, this scoring function is trained on

the set union over the training samples of all 100 source

classes in the dataset we use (Sec. 3).

Closest source classes. On the other end of the spectrum,

we can transfer knowledge from the most similar source

classes to the target t, the most common scenario in a

knowledge transfer setting [15, 18, 34, 38, 46]. To find

these source classes, we consider the position of t in the

semantic hierarchy H. We find the closest ancestor a1 of

t whose descendants include at least one source class from

S , and then take all leaf-most source classes among its de-

scendants. Often these closest sources are the siblings of t

(e.g. lemon for apple in Fig. 3), but if t has no siblings in

S the procedure backtracks to a higher-level ancestor and

takes its descendants instead (e.g. bear and camel for lizard

in Fig. 3). In practice, a target class has a median number of

3 closest source classes in our main experiments (Sec. 3).
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We combine the scoring functions of the closest source

classes Nt into the knowledge transfer function as:

Kt(b, I) ≡
1

|Nt|

∑

s∈Nt

Fs(b, I) (5)

Closest common ancestor. A different way to use the

training data from the closest source classes is to directly

use the scoring function Fa1
of the closest ancestor a1 of t

who has descendants in S:

Kt(b, I) ≡ Fa1
(b, I) (6)

The scoring function Fa1
is trained from the set union of

the training data over all closest source classes Nt (instead

of averaging the scoring function outputs in Eq. (5)).

Closest common ancestor with at least n sources. The

extreme cases above present a trade-off. The ‘entity’ class

is trained from a lot of samples, but is very generic. In con-

trast, the closest source classes are more specific to the tar-

get, but have less training data to form strong detectors.

Here we propose an intermediate approach: we control

the degree of generality of transfer by setting a minimum

to the number of source classes an ancestor should have.

We define an as the closest ancestor of t who has at least n

source classes as descendants. This generalizes Eq. (6) to:

Kt(b, I) ≡ Fan
(b, I) (7)

Note that setting n = |S| leads to to selecting the entity

class as ancestor, matching Eq. (4). In our experiments in

Sec. 3 we set n = 5, resulting in a median of 10 source

classes under the ancestor selected for each target class.

3. Results on ILSVRC 2013

Dataset. We use ILSVRC 2013 [35], following exactly

the same settings as [18, 46] to enable direct comparisons.

We split the ILSVRC 2013 validation set into two sub-

sets val1 and val2, and augment val1 with images from the

ILSVRC 2013 training set such that each class has 1000

annotated bounding-boxes in total [14]. ILSVRC 2013 has

200 object classes: we use the first 100 as sources S and

second 100 as targets T (classes are alphabetically sorted).

As our source training set we use all images of the

augmented val1 set which have bounding-box annotations

for 100 source classes, resulting in 63k images with 81k

bounding-boxes. As target training set we use all images of

the augmented val1 set which contain the 100 target classes

and remove all bounding-box annotations, resulting in 65k

images with 93k image-level labels. In Sec. 3.1 we report

results for MIL applied to the target training set. As target

test set we use all 10k images of val2 and remove all anno-

tations. In Sec. 3.2 we train a detector from the output of

MIL on the target training set, and evaluate it on the target

test set. Finally, in Sec. 3.3 we compare to three previous

works [18, 46, 32] on knowledge transfer on ILSVRC 2013.

3.1. Knowledge transfer to the target training set

We first explore the effects of knowledge transfer for lo-

calizing objects in the target training set.

Settings for MIL with knowledge transfer. We train

SSD [28] on the source training set and apply it to the target

training set to produce object proposals and corresponding

scores (Sec. 2.2). Then we apply MIL on the target training

set (Sec. 2.2) while varying the knowledge transfer function

Kt (Sec. 2.3) during re-localization (Eq. (3)).

Following [2, 3, 7, 41, 48] during MIL we describe

each object proposals with a 4096-dimensional feature vec-

tor using the Caffe implementation [20] of the AlexNet

CNN [25]. As customary, we use weights from [20] re-

sulting from training on ILSVRC classification [35] using

only image-level labels (no bounding-box annotations). As

appearance model we use a linear SVM on these features.

For each knowledge transfer function, we optimize λ in

Eq.(3) on the source training set in a cross-validation man-

ner: we subdivide this set in 80 source classes and 20 target

classes, run our knowledge transfer framework, and choose

the λ which leads to the highest localization performance

(CorLoc, see below).

Evaluation measure. We quantify localization perfor-

mance with Correct Localization (CorLoc) [8] averaged

over the target classes T . CorLoc is the percentage of im-

ages of class t where the method correctly localizes one

of its instances. We consider two Intersection-over-Union

(IoU) [12] thresholds: we report CorLoc at IoU > 0.5 (com-

monly used in the WSOL literature [4, 7, 8, 45]) and IoU

> 0.7 (stricter criterion requiring tight localizations).

Quantitative results. The first two rows of Table 1 report

CorLoc on the target training set. As a baseline we use no

knowledge transfer function at all. This leads to 41.4% Cor-

Loc at IoU > 0.5.

All the forms of knowledge transfer we explore yield

massive improvements over the baseline: 27-29% CorLoc

increase. Interestingly, simply transferring from the top-

level ‘entity’ class works best and yields 70.3% CorLoc.

This shows that the trade-off between semantic generality

and number of source training samples is skewed towards

the former. We believe this is excellent news for the prac-

titioner: our experiments show that a simple modification

to standard MIL pipelines can lead to dramatic improve-

ments in localization performance (i.e. just change the scor-

ing function used during re-localization to include a strong

objectness function trained on the source set).
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Knowledge transfer results EdgeBoxes baseline Full supervision

Knowledge transfer function Kt none closest sources closest ancestor ancestor a5 class-generic none objectness -

CorLoc IoU > 0.5 41.4 68.5 68.4 68.6 70.3 39.4 50.5 -

CorLoc IoU > 0.7 20.0 56.4 56.4 56.6 58.8 18.4 28.5 -

mAP IoU > 0.5 23.2 35.3 34.8 35.9 36.9 20.7 25.4 46.2

mAP IoU > 0.7 7.0 25.7 25.5 25.9 27.2 6.7 11.0 31.7

Table 1. Results for various knowledge transfer functions and full supervision on the target training set (CorLoc) and target test set (mAP).

Knowledge transfer results significantly outperform the MIL baseline (EdgeBoxes). Class-generic knowledge transfer works best.

When measuring CorLoc at the stricter IoU> 0.7 thresh-

old, the benefits of knowledge transfer are even more pro-

nounced. The baseline without knowledge transfer only

brings 20% CorLoc, while class-generic transfer achieves

58.8% CorLoc, almost 3× higher. This suggests that

knowledge transfer enables localizing objects with tighter

bounding-boxes.

Reference MIL with manually engineered proposals.

In the previous experiments we transferred knowledge from

the source classes not only via the knowledge transfer func-

tions, but also by using trained object proposals: the loca-

tions of the proposals produced by SSD on the target train-

ing set are influenced by the locations of the objects in the

source training set.

To eliminate all forms of knowledge transfer, we perform

here experiments using the same MIL framework as be-

fore, but now using untrained, manually engineered Edge-

Box proposals [11]. Without using any objectness function

during re-localization (Eq. (1)), this baseline obtains 39.4%

CorLoc at IoU > 0.5. In contrast, our SSD proposals with-

out any knowledge transfer function yields 41.4% CorLoc.

This shows that trained object proposal locations helps only

a little. Furthermore, using also the untrained, class-generic

objectness of Edgeboxes during re-localization (Eq. (2)) re-

sults in 50.5% CorLoc, an improvement of 11%. In con-

trast, our trained class-generic knowledge transfer yields

70.3% CorLoc, a much higher improvement of 29%. This

system (MIL with EdgeBoxes and Objectness) is the refer-

ence MIL of Sec. 2.1, which represents a standard WSOL

method without learned knowledge transfer functions.

The above experiments demonstrate that the major rea-

son for the performance improvement brought by our

knowledge transfer scheme is the knowledge transfer func-

tions, not the trained proposals.

A closer look at closest sources. The previous sec-

tion showed that class-generic transfer outperforms class-

specific transfer in our experiments. As this may seem

counter-intuitive, we investigate here whether our closest

source strategy could be improved.

Above we used distance in the WordNet hierarchy to find

the closest source classes to a target, which reflects seman-

tic similarity rather than visual similarity. Here we perform

an additional experiment using visual similarity instead. We

extract whole-image features on the source and target train-

ing sets using an AlexNet [25] classification network pre-

trained on ILSVRC classification [35]. For each class, we

closest source strategy CorLoc IoU > 0.5

WordNet hierarchy 68.5

Visual similarity 68.0

Best source upper-bound 69.6

class-generic 70.3

Table 2. Knowledge Transfer using different ways to determine the

closest source class. Even the upper-bound does not outperform

class-generic knowledge transfer.

average the features of all its training images. For each tar-

get class, the closest source class is the one with the most

similar averaged features, measured in Euclidean distance.

We also compute an upper-bound performance by select-

ing for each target class the source class that leads to the

highest CorLoc on the target training set. This is the best

possible source. Note how this experiment needs ground-

truth bounding-boxes on the target training set to select a

source class, and so it is not a valid strategy in practice. It

is only intended to reveal the upper-bound that any way of

selecting a source specific to a target cannot exceed.

The results in Tab. 2 show that using either semantic

similarity or visual similarity yields similar results: 68.5%

and 68.0% CorLoc respectively. Using the best source class

improves moderately over both automatic ways to select a

source class (69.6% CorLoc). Interestingly, even the best

source class does not outperform class-generic knowledge

transfer (70.3% CorLoc). This is likely due to the fact

that individual source classes have too little training data to

form strong detectors, whereas the class-generic objectness

model benefits from a very large training set (effectively the

set union of all sources).

Correlation between semantic similarity and improve-

ment. We now investigate whether there is a relation

between the improvements brought by our class-generic

knowledge transfer on a particular target class, and its se-

mantic similarity to the source classes. We measure se-

mantic similarity by the widely used Lin similarity [26] on

WordNet (same hierarchy as ImageNet). For each target

class in T , the horizontal axis in Fig. 4 reports the simi-

larity of the most similar source class in S . The vertical

axis reports the absolute CorLoc improvement on the target

training set, over the no-transfer baseline.

Interestingly, we observe no significant correlation be-

tween CorLoc improvement and semantic similarity. This

suggests that this knowledge transfer function, trained on a

large set of 100 diverse source classes, is truly class generic.
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baseball(S) → punching bag(T)

chime(S) → remote control(T) lesser panda(S) → 
giant panda(T)

car(S) → plate rack(T)

Figure 4. Absolute CorLoc improvement brought by our class-

generic knowledge transfer, as a function of semantic similar-

ity [26] between a target class and the most similar source class.

Each point represents one target class. For several points we show

which source class (S) it represents, and its most similar class (T).

3.2. Object detection on the target test set

We now train an object detector from the bounding-

boxes produced on the target training set by MIL. We train

a Faster-RCNN detector [33] with Inception-ResNet [43] as

base network. We apply it to the target test set and report

mean Average Precision (mAP) [12, 35].

As Tab. 1 shows, mAP on the test set correlates very

well with CorLoc on the training set. At IoU> 0.5,

the best results are brought by our class-generic transfer

method (36.9% mAP), strongly improving over the no-

transfer baseline (23.2%) and the EdgeBoxes + objectness

baseline (25.4%). Results at IoU> 0.7 reveal an interesting

phenomenon: both baselines fail to train an object detector

that localizes objects accurately enough (7.0% mAP for no-

transfer, 11.0% mAP for EdgeBoxes + objectness). Instead,

our class-generic knowledge transfer scheme succeeds even

at this strict threshold. Its mAP (27.2%) is around 4× and

2.5× higher than the baselines. To put our results in con-

text, we also report mAP when training on the target train-

ing set with ground-truth bounding-boxes, which acts as an

upper-bound (‘full supervision’ in Tab. 1). At IoU > 0.5
and IoI > 0.7, our scheme reaches 80% and 86% of this

upper-bound, respectively.

These experiments consolidates our findings and shows

that our simple class-generic transfer strategy is effective

in improving the performance of object detectors for target

classes for which only image-level labels are available.

3.3. Comparison to [18, 46, 32]

We now compare our technique to two transfer learning

works [18, 46] using the exact same dataset with the same

source and target training splits as in [18, 46] (see Sec. 3).

In terms of CorLoc on the target training set, LSDA [18]

reports 28.8% at IoU > 0.5 while our method delivers

70.3%, more than twice higher (Tab. 3). Note that [18,

CorLoc IoU > 0.5 mAP IoU > 0.5

LSDA [18] 28.8 18.1

Tang et al. [46] - 20.0

our method 70.3 23.3

Table 3. Comparison of our results to [18, 46] at IoU > 0.5. All

numbers presented in this table use AlexNet [25] as base network.

Tang et al. [46] does not report CorLoc.

46] and our MIL method all use the same base network

(AlexNet [25]) to produce feature descriptors for proposals.

Hence, they are directly comparable.

In terms of performance on the target test set, in order

to make a fair comparison to [18, 46], we train a Fast-

RCNN detector model [13] using the same base network:

AlexNet [25] (as opposed to the results in Tab. 1, which use

a stronger detector). Our method leads to detectors perform-

ing at 23.3 mAP on the target test set, improving over the

20.0 by [46] and 18.1 by [18]. Moreover, our method is also

much simpler: just insert a properly trained class-generic

objectness scoring function into standard MIL pipelines.

We also compare to YOLOv2 following their settings

(Section 4 in [32]): COCO train as the source training

set, ImageNet-classification as the target training set, and

ILSVRC-detection validation as the target test set. In our

setup we subsample ImageNet-classification by randomly

selecting up to 1K images for each of the 200 target classes.

In the spirit of knowledge transfer, [32] report results

over the 156 target classes that are not present in COCO.

On those classes, our method yields 32.2 mAP, substantially

better than the 16.0 mAP of [32].

We note that the object detection model that we use

seems approximately comparable to YOLOv2 (Table 3

of [32]). This shows that our improvement is due to bet-

ter transfer learning.

4. Generalization across datasets

The experiments in Sec. 3 suggest a relatively easy recipe

for knowledge transfer for WSOL: train a strong class-

generic proposal generator on a source training set with ob-

ject bounding-boxes, and use its proposals and scores in-

side MIL on a target set with only image-level labels. We

demonstrate here this recipe in several cross-dataset ex-

periments, going beyond within-dataset transfer typically

shown in previous works [15, 18, 34, 38, 46].

For these experiments, we switch to a stronger object

proposal generator than SSD with Inception-V3: Faster-

RCNN [33] with Inception-ResNet[43]. Note that consider-

ing a single class-generic ‘entity’ class avoids the technical

problem raised in Sec. 2.2, as Faster-RCNN will now out-

put a single set of proposals, along with a single score (for

objectness). The rest of our framework remains unaltered.

As source training sets we use: (1) the ILSVRC 2013

source training set as defined in Sec. 3 (100 classes, 63k im-

ages), (2) the COCO 2014 training set [27] (80 classes, 83k

images), and (3) the PASCAL VOC 2007 trainval set [12]
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Figure 5. Example localizations produced by our class-generic knowledge transfer scheme (yellow) and by the EdgeBox+objectness

baseline (red) on the target training set. Our technique steers localization towards complete objects and away from backgrounds. Labels

are shown on the images.

source set

target set ILSVRC target COCO 2014 train OID V2 val

> 0.5 > 0.7 > 0.5 > 0.7 > 0.5 > 0.7

ILSVRC source 74.2 61.7 34.5 26.8 62.0 51.8

COCO 2014 train 67.7 58.5 - - 59.5 49.8

PASCAL 2007 trainval 59.5 47.2 26.2 20.8 55.3 42.2

EdgeBox + objectness 50.5 28.5 20.6 10.2 32.4 16.3

Table 4. MIL + Knowledge transfer across datasets: CorLoc re-

sults for IoU > 0.5 and > 0.7 on target datasets. Even knowledge

transfer from the small PASCAL 2007 trainval works better than

the baseline of EdgeBoxes with objectness. Generally, transfer

works better when the source training set contains more classes.

Note that CorLoc when transferring from ILSVRC 2013 source

train to ILSVRC 2013 target train is higher than in Tab. 1 due to

using a stronger proposal generator.

(20 classes, 5011 images). As target training sets we use (1)

the ILSVRC 2013 target training set as defined in Sec. 3

(100 classes, 65k images), (2) the COCO 2014 training

set [27] (80 classes, 83k images), and (3) the Open Images

V2 dataset [24], combining the validation and test set [24]

(600 classes, 167k images). In this experiment we do not

try to remove source classes from the target training sets.

Tab. 4 presents our across-dataset results and the MIL

baseline using EdgeBoxes [11] with objectness (Sec. 2.1).

We observe that the knowledge transfer method consider-

ably outperform the baseline for all dataset pairs. This is es-

pecially true at IoU > 0.7, where even using the small PAS-

CAL VOC 2007 dataset as source yields 1.6-2.6× higher

CorLoc than the baseline. Furthermore, using more source

classes is consistently better for all target datasets: ILSVRC

2013 (100 classes) is the best source, followed by COCO

2014 (80 classes), and then by PASCAL VOC 2007 (20

classes). This is despite COCO 2014 train having many

more object instances (605k boxes) than the ILSVRC 2013

source train set (81k boxes). We conclude that our knowl-

edge transfer strategy works much better than the weakly

supervised baseline and generalizes well across datasets.

5. Conclusions

We proposed a unified knowledge transfer framework for

weakly supervised object localisation, which enabled ex-

ploring knowledge transfer functions ranging from class-

specific to class-generic. Our experiments on ILSVRC [35]

demonstrate: (1) knowledge transfer at any level of general-

ity substantially improve results, with class-generic knowl-

edge transfer working best. (2) class-generic knowledge

transfer leads to large improvements over a weakly super-

vised baseline using manually engineering objectness [11]:

+19.8% CorLoc and +11.5% mAP. (3) our method delivers

target class detectors reaching 80% of the accuracy of their

fully supervised counterparts. (4) we outperform the best

reported transfer learning results on this dataset: +41% Cor-

Loc and +3% mAP over [18, 46], +16.2% mAP over [32].

Moreover, across-dataset [27, 24, 35] experiments demon-

strate (5) the general applicability of our technique.
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