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Abstract

Deep convolutional networks have become a popular

tool for image generation and restoration. Generally, their

excellent performance is imputed to their ability to learn re-

alistic image priors from a large number of example images.

In this paper, we show that, on the contrary, the structure of

a generator network is sufficient to capture a great deal of

low-level image statistics prior to any learning. In order

to do so, we show that a randomly-initialized neural net-

work can be used as a handcrafted prior with excellent re-

sults in standard inverse problems such as denoising, super-

resolution, and inpainting. Furthermore, the same prior

can be used to invert deep neural representations to diag-

nose them, and to restore images based on flash-no flash

input pairs.

Apart from its diverse applications, our approach high-

lights the inductive bias captured by standard generator

network architectures. It also bridges the gap between

two very popular families of image restoration methods:

learning-based methods using deep convolutional networks

and learning-free methods based on handcrafted image pri-

ors such as self-similarity.

1. Introduction

Deep convolutional neural networks (ConvNets) cur-

rently set the state-of-the-art in inverse image reconstruc-

tion problems such as denoising [5, 20] or single-image

super-resolution [19, 29, 18]. ConvNets have also been used

with great success in more “exotic” problems such as recon-

structing an image from its activations within certain deep

networks or from its HOG descriptor [8]. More generally,

ConvNets with similar architectures are nowadays used to

generate images using such approaches as generative ad-

versarial networks [11], variational autoencoders [16], and

direct pixelwise error minimization [9, 3].

State-of-the-art ConvNets for image restoration and gen-

Code and supplementary material are available at https://

dmitryulyanov.github.io/deep_image_prior

(a) Ground truth (b) SRResNet [19], Trained

(c) Bicubic, Not trained (d) Deep prior, Not trained

Figure 1: Super-resolution using the deep image prior.

Our method uses a randomly-initialized ConvNet to upsam-

ple an image, using its structure as an image prior; similar

to bicubic upsampling, this method does not require learn-

ing, but produces much cleaner results with sharper edges.

In fact, our results are quite close to state-of-the-art super-

resolution methods that use ConvNets learned from large

datasets. The deep image prior works well for all inverse

problems we could test.

eration are almost invariably trained on large datasets of im-

ages. One may thus assume that their excellent performance

is due to their ability to learn realistic image priors from

data. However, learning alone is insufficient to explain the

good performance of deep networks. For instance, the au-

thors of [33] recently showed that the same image classifica-

tion network that generalizes well when trained on genuine

data can also overfit when presented with random labels.

Thus, generalization requires the structure of the network

to “resonate” with the structure of the data. However, the
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nature of this interaction remains unclear, particularly in the

context of image generation.

In this work, we show that, contrary to the belief that

learning is necessary for building good image priors, a great

deal of image statistics are captured by the structure of

a convolutional image generator independent of learning.

This is particularly true for the statistics required to solve

various image restoration problems, where the image prior

is required to integrate information lost in the degradation

processes.

To show this, we apply untrained ConvNets to the so-

lution of several such problems. Instead of following the

common paradigm of training a ConvNet on a large dataset

of example images, we fit a generator network to a single

degraded image. In this scheme, the network weights serve

as a parametrization of the restored image. The weights are

randomly initialized and fitted to maximize their likelihood

given a specific degraded image and a task-dependent ob-

servation model.

Stated in a different way, we cast reconstruction as a con-

ditional image generation problem and show that the only

information required to solve it is contained in the single

degraded input image and the handcrafted structure of the

network used for reconstruction.

We show that this very simple formulation is very com-

petitive for standard image processing problems such as de-

noising, inpainting and super-resolution. This is particu-

larly remarkable because no aspect of the network is learned

from data; instead, the weights of the network are always

randomly initialized, so that the only prior information is in

the structure of the network itself. To the best of our knowl-

edge, this is the first study that directly investigates the prior

captured by deep convolutional generative networks inde-

pendently of learning the network parameters from images.

In addition to standard image restoration tasks, we show

an application of our technique to understanding the infor-

mation contained within the activations of deep neural net-

works. For this, we consider the “natural pre-image” tech-

nique of [21], whose goal is to characterize the invariants

learned by a deep network by inverting it on the set of nat-

ural images. We show that an untrained deep convolutional

generator can be used to replace the surrogate natural prior

used in [21] (the TV norm) with dramatically improved re-

sults. Since the new regularizer, like the TV norm, is not

learned from data but is entirely handcrafted, the resulting

visualizations avoid potential biases arising form the use of

powerful learned regularizers [8].

2. Method

Deep networks are applied to image generation by learn-

ing generator/decoder networks x = fθ(z) that map a ran-

dom code vector z to an image x. This approach can be used

to sample realistic images from a random distribution [11].
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Figure 2: Learning curves for the reconstruction task us-

ing: a natural image, the same plus i.i.d. noise, the same

randomly scrambled, and white noise. Naturally-looking

images result in much faster convergence, whereas noise is

rejected.

Here we focus on the case where the distribution is condi-

tioned on a corrupted observation x0 to solve inverse prob-

lems such as denoising [5] and super-resolution [7].

Our aim is to investigate the prior implicitly captured by

the choice of a particular generator network structure, be-

fore any of its parameters are learned. We do so by inter-

preting the neural network as a parametrization x = fθ(z)

of an image x ∈ R
3×H×W . Here z ∈ R

C
′
×H

′
×W

′

is a

code tensor/vector and θ are the network parameters. The

network itself alternates filtering operations such as convo-

lution, upsampling and non-linear activation. In particu-

lar, most of our experiments are performed using a U-Net

type “hourglass” architecture with skip-connections, where

z and x have the same spatial size. Our default architecture

has two million parameters θ (see Supplementary Material

for the details of all used architectures).

To demonstrate the power of this parametrization, we

consider inverse tasks such as denoising, super-resolution

and inpainting. These can be expressed as energy minimiza-

tion problems of the type

x∗ = min
x

E(x;x0) +R(x), (1)

where E(x;x0) is a task-dependent data term, x0 the

noisy/low-resolution/occluded image, and R(x) a regular-

izer.

The choice of data term E(x;x0) is dictated by the appli-

cation and will be discussed later. The choice of regularizer,

which usually captures a generic prior on natural images, is

more difficult and is the subject of much research. As a

simple example, R(x) can be the Total Variation (TV) of

the image, which encourages solutions to contain uniform

regions. In this work, we replace the regularizer R(x) with

the implicit prior captured by the neural network, as fol-

lows:

θ∗ = argmin
θ

E(fθ(z);x0), x∗ = fθ∗(z) . (2)
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The minimizer θ∗ is obtained using an optimizer such as

gradient descent starting from a random initialization of the

parameters. Given a (local) minimizer θ∗, the result of the

restoration process is obtained as x∗ = fθ∗(z). Note that

while it is also possible to optimize over the code z, in our

experiments we do not do that. Thus, unless noted other-

wise, z is a fixed 3D tensor with 32 feature maps and of the

same spatial size as x filled with uniform noise. We found

that additionally perturbing z randomly at every iteration

lead to better results in some experiments (c.f. Supplemen-

tary material).

In terms of (1), the prior R(x) defined by (2) is an in-

dicator function R(x) = 0 for all images that can be pro-

duced from z by a deep ConvNet of a certain architecture,

and R(x) = +∞ for all other signals. Since no aspect of

the network is pre-trained from data, such deep image prior

is effectively handcrafted, just like the TV norm. We show

that this hand-crafted prior works very well for various im-

age restoration tasks.

A parametrization with high noise impedance. One may

wonder why a high-capacity network fθ can be used as a

prior at all. In fact, one may expect to be able to find param-

eters θ recovering any possible image x, including random

noise, so that the network should not impose any restriction

on the generated image. We now show that, while indeed

almost any image can be fitted, the choice of network ar-

chitecture has a major effect on how the solution space is

searched by methods such as gradient descent. In partic-

ular, we show that the network resists “bad” solutions and

descends much more quickly towards naturally-looking im-

ages. The result is that minimizing (2) either results in a

good-looking local optimum, or, at least, the optimization

trajectory passes near one.

In order to study this effect quantitatively, we consider

the most basic reconstruction problem: given a target im-

age x0, we want to find the value of the parameters θ∗ that

reproduce that image. This can be setup as the optimization

of (2) using a data term comparing the generated image to

x0:

E(x;x0) = ‖x− x0‖
2 (3)

Plugging this in eq. (2) leads us to the optimization problem

min
θ

‖fθ(z)− x0‖
2 (4)

Figure 2 shows the value of the energy E(x;x0) as a

function of the gradient descent iterations for four different

choices for the image x0: 1) a natural image, 2) the same

image plus additive noise, 3) the same image after randomly

permuting the pixels, and 4) white noise. It is apparent from

the figure that optimization is much faster for cases 1) and

2), whereas the parametrization presents significant “iner-

tia” for cases 3) and 4).

Thus, although in the limit the parametrization can fit un-

structured noise, it does so very reluctantly. In other words,

the parametrization offers high impedance to noise and low

impedance to signal. Therefore for most applications, we

restrict the number of iterations in the optimization process

(2) to a certain number of iterations. The resulting prior

then corresponds to projection onto a reduced set of images

that can be produced from z by ConvNets with parameters

θ that are not too far from the random initialization θ0.

3. Applications

We now show experimentally how the proposed prior

works for diverse image reconstruction problems. Due to

space limitations, we present a few examples and numbers

and include many more in the Supplementary material and

the project webpage [30].

Denoising and generic reconstruction. As our

parametrization presents high impedance to image noise,

it can be naturally used to filter out noise from an image.

The aim of denoising is to recover a clean image x from a

noisy observation x0. Sometimes the degradation model is

known: x0 = x+ǫ where ǫ follows a particular distribution.

However, more often in blind denoising the noise model is

unknown.

Here we work under the blindness assumption, but the

method can be easily modified to incorporate information

about noise model. We use the same exact formulation

as eqs. (3) and (4) and, given a noisy image x0, recover

a clean image x∗ = fθ∗(z) after substituting the minimizer

θ∗ of eq. (4).

Our approach does not require a model for the image

degradation process that it needs to revert. This allows it

to be applied in a “plug-and-play” fashion to image restora-

tion tasks, where the degradation process is complex and/or

unknown and where obtaining realistic data for supervised

training is difficult. We demonstrate this capability by sev-

eral qualitative examples in fig. 4 and in the supplementary

material, where our approach uses the quadratic energy (3)

leading to formulation (4) to restore images degraded by

complex and unknown compression artifacts. Figure 3 (top

row) also demonstrates the applicability of the method be-

yond natural images (a cartoon in this case).

We evaluate our denoising approach on the standard

dataset1, consisting of 9 colored images with noise strength

of σ = 25. We achieve a PSNR of 29.22 after 1800 op-

timization steps. The score is improved up to 30.43 if we

additionally average the restored images obtained in the last

iterations (using exponential sliding window). If averaged

over two optimization runs our method further improves up

to 31.00 PSNR. For reference, the scores for the two pop-

ular approaches CMB3D [6] and Non-local means [4] that

do not require pretraining are 31.42 and 30.26 respectively.

1http://www.cs.tut.fi/˜foi/GCF-BM3D/index.html#

ref_results

9448

http://www.cs.tut.fi/~foi/GCF-BM3D/index.html#ref_results
http://www.cs.tut.fi/~foi/GCF-BM3D/index.html#ref_results


Corrupted 100 iterations 600 iterations 2400 iterations 50K iterations

Figure 3: Blind restoration of a JPEG-compressed image. (electronic zoom-in recommended) Our approach can restore an

image with a complex degradation (JPEG compression in this case). As the optimization process progresses, the deep image

prior allows to recover most of the signal while getting rid of halos and blockiness (after 2400 iterations) before eventually

overfitting to the input (at 50K iterations).

(a) GT (b) Input (c) Ours (d) CBM3D

Figure 4: Blind image denoising. The deep image prior

is successful at recovering both man-made and natural pat-

terns. For reference, the result of a state-of-the-art non-

learned denoising approach [6] is shown.

Super-resolution. The goal of super-resolution is to take a

low resolution (LR) image x0 ∈ R
3×H×W and upsampling

factor t, and generate a corresponding high resolution (HR)

version x ∈ R
3×tH×tW . To solve this inverse problem, the

data term in (2) is set to:

E(x;x0) = ‖d(x)− x0‖
2 (5)

where d(·) : R3×tH×tW → R
3×H×W is a downsampling

operator that resizes an image by a factor t. Hence, the

problem is to find the HR image x that, when downsam-

pled, is the same as the LR image x0. Super-resolution is

an ill-posed problem because there are infinitely many HR

images x that reduce to the same LR image x0 (i.e. the op-

erator d is far from surjective). Regularization is required

in order to select, among the infinite minimizers of (5), the

most plausible ones.

Following eq. (2), we regularize the problem by consid-

ering the reparametrization x = fθ(z) and optimizing the

resulting energy w.r.t. θ. Optimization still uses gradient

descent, exploiting the fact that both the neural network and

the most common downsampling operators, such as Lanc-

zos, are differentiable.

We evaluate super-resolution ability of our approach us-

ing Set5 [2] and Set14 [32] datasets. We use a scaling fac-

tor of 4 to compare to other works, and show results with

scaling factor of 8 in supplementary materials. We fix the

number of optimization steps to be 2000 for every image.

Qualitative comparison with bicubic upsampling and

state-of-the art learning-based methods SRResNet [19],

LapSRN [29] is presented in fig. 5. Our method can be

fairly compared to bicubic, as both methods never use other

data than a given low-resolution image. Visually, we ap-

proach the quality of learning-based methods that use the

MSE loss. GAN-based [11] methods SRGAN [19] and En-

hanceNet [28] (not shown in the comparison) intelligently

hallucinate fine details of the image, which is impossible

with our method that uses absolutely no information about

the world of HR images.

We compute PSNRs using center crops of the generated

images. Our method achieves 29.90 and 27.00 PSNR on

Set5 and Set14 datasets respectively. Bicubic upsampling

gets a lower score of 28.43 and 26.05, while SRResNet has

PSNR of 32.10 and 28.53. While our method is still outper-

formed by learning-based approaches, it does considerably

better than bicubic upsampling. Visually, it seems to close

most of the gap between bicubic and state-of-the-art trained

ConvNets (c.f. fig. 1,fig. 5 and suppmat).

Inpainting. In image inpainting, one is given an image

x0 with missing pixels in correspondence of a binary mask

m ∈ {0, 1}H×W ; the goal is to reconstruct the missing data.

The corresponding data term is given by

E(x;x0) = ‖(x− x0)⊙m‖2, (6)

where ⊙ is Hadamard’s product. The necessity of a data

prior is obvious as this energy is independent of the values

of the missing pixels, which would therefore never change

after initialization if the objective was optimized directly

over pixel values x. As before, the prior is introduced by

optimizing the data term w.r.t. the reparametrization (2).

In the first example (fig. 7, top row) inpainting is used to

remove text overlaid on an image. Our approach is com-

pared to the method of [27] specifically designed for in-

painting. Our approach leads to an almost perfect results

with virtually no artifacts, while for [27] the text mask re-

mains visible in some regions.

Next, fig. 7 (bottom) considers inpainting with masks

randomly sampled according to a binary Bernoulli distri-
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(a) Original image (b) Bicubic, Not trained (c) Ours, Not trained (d) LapSRN, Trained (e) SRResNet, Trained

Figure 5: 4x image super-resolution. Similarly to e.g. bicubic upsampling, our method never has access to any data other

than a single low-resolution image, and yet it produces much cleaner results with sharp edges close to state-of-the-art super-

resolution methods (LapSRN [18], SRResNet [19]) which utilize networks trained from large datasets.

(a) Corrupted image (b) Global-Local GAN [15] (c) Ours, LR = 0.01 (d) Ours, LR = 10
−4

Figure 6: Region inpainting. In many cases, deep image prior is sufficient to successfully inpaint large regions. Despite

using no learning, the results may be comparable to [15] which does. The choice of hyper-parameters is important (for

example (d) demonstrates sensitivity to the learning rate), but a good setting works well for most images we tried.

bution. First, a mask is sampled to drop 50% of pixels at

random. We compare our approach to a method of [25]

based on convolutional sparse coding. To obtain results for

[25] we first decompose the corrupted image x0 into low

and high frequency components similarly to [12] and run

their method on the high frequency part. For a fair compar-

ison we use the version of their method, where a dictionary

is built using the input image (shown to perform better in

[25]). The quantitative comparison on the standard data set

[14] for our method is given in table 1, showing a strong

quantitative advantage of the proposed approach compared

to convolutional sparse coding. In fig. 7 (bottom) we present

a representative qualitative visual comparison with [25].

We also apply our method to inpainting of large holes.

Being non-trainable, our method is not expected to work

correctly for “highly-semantical” large-hole inpainting (e.g.

face inpainting). Yet, it works surprisingly well for other

situations. We compare to a learning-based method of [15]

in fig. 6. The deep image prior utilizes context of the image

and interpolates the unknown region with textures from the

known part. Such behaviour highlights the relation between

the deep image prior and traditional self-similarity priors.

In fig. 8, we compare deep priors corresponding to sev-

eral architectures. Our findings here (and in other simi-

lar comparisons) seem to suggest that having deeper archi-

tecture is beneficial, and that having skip-connections that

work so well for recognition tasks (such as semantic seg-

mentation) is highly detrimental.
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(a) Original image (b) Corrupted image (c) Shepard networks [27] (d) Deep Image Prior

(e) Original image (f) Corrupted image (g) [25], PSNR = 28.1 (h) Deep Img. Prior, PSNR = 32.22

Figure 7: Comparison with two recent inpainting approaches. Top – comparison with Shepard networks [27] on text

inpainting example. Bottom – comparison with convolutional sparse coding [25] on inpainting 50% of missing pixels. In

both cases, our approach performs better on the images used in the respective papers.

Barbara Boat House Lena Peppers C.man Couple Finger Hill Man Montage

Papyan et al. 28.14 31.44 34.58 35.04 31.11 27.90 31.18 31.34 32.35 31.92 28.05

Ours 32.22 33.06 39.16 36.16 33.05 29.8 32.52 32.84 32.77 32.20 34.54

Table 1: Comparison between our method and the algorithm in [25]. See fig. 7 bottom row for visual comparison.

Natural pre-image. The natural pre-image method of [21]

is a diagnostic tool to study the invariances of a lossy func-

tion, such as a deep network, that operates on natural im-

ages. Let Φ be the first several layers of a neural network

trained to perform, say, image classification. The pre-image

is the set Φ−1(Φ(x0)) = {x ∈ X : Φ(x) = Φ(x0)} of im-

ages that result in the same representation Φ(x0). Looking

at this set reveals which information is lost by the network,

and which invariances are gained.

Finding pre-image points can be formulated as minimiz-

ing the data term E(x;x0) = ‖Φ(x) − Φ(x0)‖
2. However,

optimizing this function directly may find “artifacts”, i.e.

non-natural images for which the behavior of the network

Φ is in principle unspecified and that can thus drive it arbi-

trarily. More meaningful visualization can be obtained by

restricting the pre-image to a set X of natural images, called

a natural pre-image in [21].

In practice, finding points in the natural pre-image can

be done by regularizing the data term similarly to the other

inverse problems seen above. The authors of [21] prefer to

use the TV norm, which is a weak natural image prior, but

is relatively unbiased. On the contrary, papers such as [8]

learn to invert a neural network from examples, resulting

in better looking reconstructions, which however may be

biased towards learning data-driven inversion prior. Here,

we propose to use the deep image prior (2) instead. As this

is handcrafted like the TV-norm, it is not biased towards

a particular training set. On the other hand, it results in

inversions at least as interpretable as the ones of [8].

For evaluation, our method is compared to the ones

of [22] and [8]. Figure 9 shows the results of invert-

ing representations Φ obtained by considering progres-

sively deeper subsets of AlexNet [17]: conv1, conv2, ...,

conv5, fc6, fc7, and fc8. Pre-images are found either
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(a) Input (white=masked) (b) Encoder-decoder, depth=6 (c) Encoder-decoder, depth=4

(d) Encoder-decoder, depth=2 (e) ResNet, depth=8 (f) U-net, depth=5

Figure 8: Inpainting using different depths and architectures. The figure shows that much better inpainting results can be

obtained by using deeper random networks. However, adding skip connections to ResNet in U-Net is highly detrimental.

Image conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8

Inversion with deep image prior

Inversion with TV prior [21]

Pre-trained deep inverting network [8]

Figure 9: AlexNet inversion. Given the image on the left, we show the natural pre-image obtained by inverting different

layers of AlexNet (trained for classification on ImageNet ISLVRC) using three different regularizers: the Deep Image prior,

the TV norm prior of [21], and the network trained to invert representations on a hold-out set [8]. The reconstructions

obtained with the deep image prior are in many ways at least as natural as [8], yet they are not biased by the learning process.

by optimizing (2) using a structured prior.

As seen in fig. 9, our method results in dramatically

improved image clarity compared to the simple TV-norm.

The difference is particularly remarkable for deeper layers

such as fc6 and fc7, where the TV norm still produces

noisy images, whereas the structured regularizer produces

images that are often still interpretable. Our approach also

produces more informative inversions than a learned prior

of [8], which have a clear tendency to regress to the mean.

Flash-no flash reconstruction. While in this work we fo-

cus on single image restoration, the proposed approach can

be extended to the tasks of the restoration of multiple im-

ages, e.g. for the task of video restoration. We therefore

conclude the set of application examples with a qualitative

example demonstrating how the method can be applied to
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(a) Flash (b) No flash (c) Joint bilateral [26] (d) Deep image prior

Figure 10: Reconstruction based on flash and no-flash image pair. The deep image prior allows to obtain low-noise

reconstruction with the lighting very close to the no-flash image. It is more successful at avoiding “leaks” of the lighting

patterns from the flash pair than joint bilateral filtering [26] (c.f. blue inset).

perform restoration based on pairs of images. In partic-

ular, we consider flash-no flash image pair-based restora-

tion [26], where the goal is to obtain an image of a scene

with the lighting similar to a no-flash image, while using

the flash image as a guide to reduce the noise level.

In general, extending the method to more than one image

is likely to involve some coordinated optimization over the

input codes z that for single-image tasks in our approach

was most often kept fixed and random. In the case of flash-

no-flash restoration, we found that good restorations were

obtained by using the denoising formulation (4), while us-

ing flash image as an input (in place of the random vector

z). The resulting approach can be seen as a non-linear gen-

eralization of guided image filtering [13]. The results of the

restoration are given in the fig. 10.

4. Related work

Our method is obviously related to image restoration and

synthesis methods based on learnable ConvNets and refer-

enced above. At the same time, it is as much related to

an alternative group of restoration methods that avoid train-

ing on the hold-out set. This group includes methods based

on joint modeling of groups of similar patches inside cor-

rupted image [4, 6, 10], which are particularly useful when

the corruption process is complex and highly variable (e.g.

spatially-varying blur [1]). Also in this group are methods

based on fitting dictionaries to the patches of the corrupted

image [23, 32] as well as methods based on convolutional

sparse coding [31], which can also fit statistical models sim-

ilar to shallow ConvNets to the reconstructed image [25].

The work [20] investigates the model that combines Con-

vNet with a self-similarity based denoising and thus also

bridges the two groups of methods, but still requires train-

ing on a hold-out set.

Overall, the prior imposed by deep ConvNets and in-

vestigated in this work seems to be highly related to self-

similarity-based and dictionary-based priors. Indeed, as the

weights of the convolutional filters are shared across the

entire spatial extent of the image this ensures a degree of

self-similarity of individual patches that a generative Con-

vNet can potentially produce. The connections between

ConvNets and convolutional sparse coding run even deeper

and are investigated in [24] in the context of recognition

networks, and more recently in [25], where a single-layer

convolutional sparse coding is proposed for reconstruction

tasks. The comparison of our approach with [25] (fig. 7

and table 1) however suggests that using deep ConvNet

architectures popular in modern deep learning-based ap-

proaches may lead to more accurate restoration results at

least in some circumstances.

5. Discussion

We have investigated the success of recent image gener-

ator neural networks, teasing apart the contribution of the

prior imposed by the choice of architecture from the con-

tribution of the information transferred from external im-

ages through learning. As a byproduct, we have shown that

fitting a randomly-initialized ConvNet to corrupted images

works as a “Swiss knife” for restoration problems. While

practically slow (taking several minutes of GPU computa-

tion per image), this approach does not require modeling of

the degradation process or pre-training.

Our results go against the common narrative that explain

the success of deep learning in image restoration to the abil-

ity to learn rather than hand-craft priors; instead, random

networks are better hand-crafted priors, and learning builds

on this basis. This also validates the importance of develop-

ing new deep learning architectures.
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