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Abstract

Unlike its image based counterpart, point cloud based

retrieval for place recognition has remained as an unex-

plored and unsolved problem. This is largely due to the dif-

ficulty in extracting local feature descriptors from a point

cloud that can subsequently be encoded into a global de-

scriptor for the retrieval task. In this paper, we propose the

PointNetVLAD where we leverage on the recent success of

deep networks to solve point cloud based retrieval for place

recognition. Specifically, our PointNetVLAD is a combi-

nation/modification of the existing PointNet and NetVLAD,

which allows end-to-end training and inference to extract

the global descriptor from a given 3D point cloud. Fur-

thermore, we propose the “lazy triplet and quadruplet” loss

functions that can achieve more discriminative and gener-

alizable global descriptors to tackle the retrieval task. We

create benchmark datasets for point cloud based retrieval

for place recognition, and the experimental results on these

datasets show the feasibility of our PointNetVLAD. Our

code and datasets are publicly available on the project web-

site 1.

1. Introduction

Localization addresses the question of “where am I in a

given reference map”, and it is of paramount importance

for robots such as self-driving cars [13] and drones [11]

to achieve full autonomy. A common method for the lo-

calization problem is to first store a map of the environ-

ment as a database of 3D point cloud built from a collection

of images with Structure-from-Motion (SfM) [15], or Li-

DAR scans with Simultaneous Localization and Mapping

(SLAM) [44]. Given a query image or LiDAR scan of a

local scene, we then search through the database to retrieve

the best match that will tell us the exact pose of the query

image/scan with respect to the reference map.

A two-step approach is commonly used in image based

localization [34, 33, 37, 50] - (1) place recognition [9, 8,

25, 46, 12], followed by (2) pose estimation [14]. In place

1https://github.com/mikacuy/pointnetvlad.git
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Figure 1. Two pairs of 3D LiDAR point clouds (top row) and im-

ages (bottom row) taken from two different times. It can be seen

that the pair of 3D LiDAR point cloud remain largely invariant to

the lighting and seasonal changes that made it difficult to match

the pair of images. Data from [24].

recognition, a global descriptor is computed for each of the

images used in SfM by aggregating local image descriptors,

e.g. SIFT, using the bag-of-words approach [26, 41]. Each

global descriptor is stored in the database together with the

camera pose of its associated image with respect to the 3D

point cloud reference map. Similar global descriptor is ex-

tracted from the query image and the closest global descrip-

tor in the database can be retrieved via an efficient search.

The camera pose of the closest global descriptor would give

us a coarse localization of the query image with respect to

the reference map. In pose estimation, we compute the ex-

act pose of the query image with the Perspective-n-Point

(PnP) [14] and geometric verification [21] algorithms.

The success of image based place recognition is largely

attributed to the ability to extract image feature descriptors

e.g. SIFT, that are subsequently aggregated with bag-of-

words to get the global descriptor. Unfortunately, there is

no algorithm to extract local features similar to SIFT for

LiDAR scans. Hence, it becomes impossible to compute

global descriptors from the bag-of-word approach to do Li-
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DAR based place recognition. Most existing approaches

circumvent this problem by using readings from the Global

Positioning System (GPS) to provide coarse localization,

followed by point cloud registration, e.g. the iterative clos-

est point (ICP) [39] or autoencoder based registration [10],

for pose-estimation. As a result, LiDAR based localization

is largely neglected since GPS might not be always avail-

able, despite the fact that much more accurate localization

results can be obtained from LiDAR compared to images

due to the availability of precise depth information. Further-

more, in comparison to images, the geometric information

from LiDARs are invariant to drastic lighting changes, thus

making it more robust to perform localization on queries

and databases taken from different times of the day, e.g. day

and night, and/or different seasons of the year. Fig. 1 shows

an example of a pair of 3D LiDAR point clouds and images

that are taken from the same scene over two different times

(daytime in winter on the left column, and nighttime in fall

on the right column). It is obvious that the lighting (day and

night) and seasonal (with and without snow) changes made

it difficult even for human eye to tell that the pair of images

(bottom row) are from the same scene. In contrast, the ge-

ometric structures of the LiDAR point cloud remain largely

unchanged.

In view of the potential that LiDAR point clouds could

be better in the localization task, we propose the Point-

NetVLAD - a deep network for large-scale 3D point cloud

retrieval to fill in the gap of place recognition in the 3D

point cloud based localization. Specifically, our Point-

NetVLAD is a combination of the existing PointNet [27]

and NetVLAD [3], which allows end-to-end training and

inference to extract the global descriptor from a given 3D

point cloud. We provide the proof that NetVLAD is a sym-

metric function, which is essential for our PointNetVLAD

to achieve permutation invariance on the 3D point cloud

input. We apply metric learning [7] to train our Point-

NetVLAD to effectively learn a mapping function that maps

input 3D point clouds to discriminative global descriptors.

Additionally, we propose the “lazy triplet and quadruplet”

loss functions that achieve more generalizable global de-

scriptors by maximizing the differences between all training

examples from their respective hardest negative. We cre-

ate benchmark datasets for point cloud based retrieval for

place recognition based on the open-source Oxford Robot-

Car dataset [24] and three additional datasets collected from

three different areas with a Velodyne-64 LiDAR mounted

on a car. Experimental results on the benchmark datasets

verify the feasibility of our PointNetVLAD.

2. Related Work

Unlike the maturity of handcrafted local feature extrac-

tion for 2D images [23, 5], no similar methods proposed

for 3D point cloud have reached the same level of matu-

rity. In NARF [42], Steder et. al. proposed an interest point

extraction algorithm for object recognition. In SHOT [45],

Tombari et. al. suggested a method to extract 3D descrip-

tors for surface matching. However, both [42, 45] rely on

stable surfaces for descriptor calculation and are more suit-

able for dense rigid objects from 3D range images but not

for outdoor LiDAR scans. A point-wise histogram based

descriptor - FPFH was proposed in [30, 31] for registration.

It works on outdoor 3D data but requires high data density,

thus making it not scalable to large-scale environments.

In the recent years, handcrafted features have been in-

creasingly replaced by deep networks that have shown

amazing performances. The success of deep learning has

been particularly noticeable on 2D images where convo-

lution kernels can be easily applied to the regular 2D lat-

tice grid structure of the image. However, it is more chal-

lenging for convolution kernels to work on 3D points that

are orderless. Several deep networks attempt to mitigate

this challenge by transforming point cloud inputs into reg-

ular 3D volumetric representations. Some of these works

include: 3D ShapeNets [49] for recognition, volumetric

CNNs [28] and OctNet [29] for classification. Addition-

ally, 3DMatch [51] that learns local descriptors for small-

scale indoor scenes and Vote3D [48] for object detection

on the outdoor KITTI dataset. Instead of volumetric rep-

resentation, MVCNN [43] projects the 3D point cloud into

2D image planes across multiple views to solve the shape

recognition problem. Unfortunately, volumetric represen-

tations and 2D projections based deep networks that work

well on object and small-scale indoor levels do not scale

well for our large-scale outdoor place recognition problem.

It is not until the recent PointNet [27] that made it possi-

ble for direct input of 3D point cloud. The key to its success

is the symmetric max pooling function that enables the ag-

gregation of local point features into a latent representation

which is invariant to the permutation of the input points.

PointNet focuses on the classification task: shape classifi-

cation and per-point classification (i.e. part segmentation,

scene semantic parsing) on rigid objects and enclosed in-

door scenes. PointNet is however not shown to do large-

scale point cloud based place recognition. Kd-network [19]

also works for unordered point cloud inputs by transforming

them into kd-trees. However, it is non-invariant/partially-

invariant to rotation/noise that are both present in large-

scale outdoor LiDAR point clouds.

In [3], Arandjelović et. al. proposed the NetVLAD - a

deep network that models after the successful bag-of-words

approach VLAD [17, 4]. The NetVLAD is an end-to-end

deep network made up of the VGG/Alexnet [40, 20] for lo-

cal feature extraction, followed by the NetVLAD aggrega-

tion layer for clustering the local features into VLAD global

descriptor. NetVLAD is trained on images obtained from

the Google Street View Time Machine, a database consist-
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Figure 2. Network architecture of our PointNetVLAD.

ing of multiple instances of places taken at different times,

to perform the image based place recognition tasks. Results

in [3] show that using the NetVLAD layer significantly out-

performed the original non-deep learning based VLAD and

its deep learning based max pooling counterpart. Despite

the success of NetVLAD for image retrieval, it does not

work for our task of point cloud based retrieval since it is

not designed to take 3D points as input.

Our PointNetVLAD leverages on the success of Point-

Net [27] and NetVLAD [3] to do 3D point cloud based

retrieval for large-scale place recognition. Specifically,

we show that our PointNetVLAD, which is a combina-

tion/modification of the PointNet and NetVLAD, originally

used for point based classification and image retrieval re-

spectively, is capable of doing end-to-end 3D point cloud

based place recognition.

3. Problem Definition

Let us denote the reference map M as a database of 3D

points defined with respect to a fixed reference frame. We

further define that the reference map M is divided into a

collection of M submaps {m1, ...,mM} such that M =
⋃M

i=1
mi. The area of coverage (AOC) of all submaps are

made to be approximately the same, i.e. AOC(m1) ≈
... AOC(mM ), and the number of points in each submap

is kept small, i.e. |mi| ≪ |M|. We apply a downsampling

filter G(.) to ensure that the number of points of all down-

sampled submaps are the same, i.e. |G(m1)| = ... |G(mM )|.
The problem of large-scale 3D point cloud based retrieval

can be formally defined as follows:

Definition 1 Given a query 3D point cloud denoted as q,

where AOC(q) ≈ AOC(mi) and |G(q)| = |G(mi)|, our

goal is to retrieve the submap m∗ from the database M that

is structurally most similar to q.

Towards this goal, we design a deep network to learn

a function f(.) that maps a given downsampled 3D

point cloud p̄ = G(p), where AOC(p) ≈ AOC(mi),

to a fixed size global descriptor vector f(p̄) such that

d(f(p̄), f(p̄r)) < d(f(p̄), f(p̄s)), if p is structurally sim-

ilar to pr but dissimilar to ps. d(.) is some distance func-

tion, e.g. Euclidean distance function. Our problem then

simplifies to finding the submap m∗ ∈ M such that its

global descriptor vector f(m̄∗) gives the minimum distance

with the global descriptor vector f(q̄) from the query q, i.e.

d(f(q̄), f(m̄∗)) < d(f(q̄), f(m̄i)), ∀i 6= ∗. In practice, this

can be done efficiently by a simple nearest neighbor search

through a list of global descriptors {f(m̄i) | i ∈ 1, 2, ..,M}
that can be computed once offline and stored in memory,

while f(q̄) is computed online.

4. Our PointNetVLAD

In this section, we will describe the network architec-

ture of PointNetVLAD and the loss functions that we de-

signed to learn the function f(.) that maps a downsampled

3D point cloud to a global descriptor. We also show the

proof that the NetVLAD layer is permutation invariant, thus

suitable for 3D point cloud.

4.1. The Network Architecture

Fig. 2 shows the network architecture of our Point-

NetVLAD, which is made up of three main components -

(1) PointNet [27], (2) NetVLAD [3] and (3) a fully con-

nected network. Specifically, we take the first part of Point-

Net, cropped just before the maxpool aggregation layer.

The input to our network is the same as PointNet, which

is a point cloud made up of a set of 3D points, P =
{

p1, ..., pN | pn ∈ R
3
}

. Here, we denote P as a fixed size

point cloud after applying the filter G(.); we drop the bar

notation on P for brevity. The role of PointNet is to map

each point in the input point cloud into a higher dimen-

sional space, i.e. P =
{

p1, ..., pN | pn ∈ R
3
}

7−→ P ′ =
{

p′1, ..., p
′

N | p′n ∈ R
D
}

, where D ≫ 3. Here, PointNet

can be seen as the component that learns to extract a D-

dimensional local feature descriptor from each of the input

3D points.

We feed the output local feature descriptors from Point-
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Net as input to the NetVLAD layer. The NetVLAD layer

is originally designed to aggregate local image features

learned from VGG/AlexNet into the VLAD bag-of-words

global descriptor vector. By feeding the local feature de-

scriptors of a point cloud into the layer, we create a machin-

ery that generates the global descriptor vector for an input

point cloud. The NetVLAD layer learns K cluster centers,

i.e. the visual words, denoted as {c1, ..., cK | ck ∈ R
D},

and outputs a (D × K)-dimensional vector V (P ′). The

output vector V (P ′) = [V1(P
′), ..., VK(P ′)] is an aggre-

gated representation of the local feature vectors, where

Vk(P
′) ∈ R

D is given by:

Vk(P
′) =

n
∑

i=1

ew
T
k p′

i+bk

∑

k′ e
wT

k′
p′

i
+bk′

(p′i − ck). (1)

{wk} and {bk} are the weights and biases that determine

the contribution of local feature vector p′i to Vk(p
′). All the

weight and bias terms are learned during training.

The output from the NetVLAD layer is the VLAD de-

scriptor [17, 4] for the input point cloud. However, the

VLAD descriptor is a high dimensional vector, i.e. (D×K)-

dimensional vector, that makes it computationally expen-

sive for nearest neighbor search. To alleviate this problem,

we use a fully connected layer to compress the (D × K)
vector into a compact output feature vector, which is then

L2-normalized to produce the final global descriptor vector

f(P ) ∈ R
O, where O ≪ (D ×K), for point cloud P that

can be used for efficient retrieval.

4.2. Metric Learning

We train our PointNetVLAD end-to-end to learn the

function f(.) that maps an input point cloud P to a dis-

criminative compact global descriptor vector f(P ) ∈ R
O,

where ‖f(P )‖2 = 1. To this end, we propose the “Lazy

Triplet” and “Lazy Quadruplet” losses that can learn dis-

criminative and generalizable global descriptors. We obtain

a set of training tuples from the training dataset, where each

tuple is denoted as T = (Pa, Ppos, {Pneg}). Pa, Ppos and

{Pneg} denote an anchor point cloud, a structurally similar

(“positive”) point cloud to the anchor and a set of struc-

turally dissimilar (“negative”) point clouds to the anchor,

respectively. The loss functions are designed to minimize

the distance between the global descriptor vectors of Pa

and Ppos, i.e. δpos = d(f(Pa), f(Ppos)), and maximize the

distance between the global descriptor vectors of Pa and

some Pnegj ∈ {Pneg}, i.e. δnegj = d(f(Pa), f(Pnegj )).
d(.) is a predefined distance function, which we take to be

the squared Euclidean distance in this work.

Lazy triplet: For each training tuple T , our lazy triplet loss

focuses on maximizing the distance between f(Pa) and the

global descriptor vector of the closest/hardest negative in

{Pneg}, denoted as f(P−
negj

). Formally, the lazy triplet loss

is defined as

LlazyTrip(T ) = max
j

([α+ δpos − δnegj ]+), (2)

where [. . .]+ denotes the hinge loss and α is a constant

parameter giving the margin. The max operator selects

the closest/hardest negative P−
negj

in {Pneg} that gives

the smallest δnegj value in a particular iteration. Note

that P−
negj

of each training tuple changes because the

parameters of the network that determine f(.) get updated

during training, hence a different point cloud in {Pneg}
might get mapped to a global descriptor that is nearest to

f(Pa) at each iteration. Our choice to iteratively use the

closest/hardest negatives over all training tuples ensures

that the network learns from all the hardest examples to get

a more discriminative and generalizable function f(.).

Lazy quadruplet: The choice to maximize the distance be-

tween f(Pa) and f(P−
negj

) might lead to an undesired re-

duction of the distance between f(P−
negj

) and another point

cloud f(Pfalse), where Pfalse is structurally dissimilar to

P−
negj

. To alleviate this problem, we maximize an additional

distance δneg∗

k
= d(f(Pneg∗), f(Pnegk)), where Pneg∗ is

randomly sampled from the training dataset at each itera-

tion and is dissimilar to all point clouds in T . The lazy

quadruplet loss is defined as

LlazyQuad(T , Pneg∗) =max
j

([α+ δpos − δnegj ]+)

+max
k

([β + δpos − δneg∗

k
]+),

(3)

where β is a another constant parameter giving the margin.

The max operator of the second term selects the hardest

negative P−
negk

in {Pneg} that give the smallest δnegk value.

Discussion: Original triplet and quadruplet losses use the

sum instead of the max operator proposed in our “lazy”

variants. These losses have been shown to work well for dif-

ferent applications such as facial recognition [38, 6]. How-

ever, maximizing δnegj for all {Pneg} leads to a compound-

ing effect where the contribution of each negative training

data diminishes as compared to the contribution from a sin-

gle hardest negative training data. As a result, the origi-

nal triplet and quadruplet losses tend to take longer to train,

and lead to a less discriminative function f(.) that produces

inaccurate retrieval results. Experimental results indeed

show that both our “lazy” variants outperform the original

losses by a competitive margin with the lazy quadruplet loss

slightly outperforming the lazy triplet loss.

4.3. Permutation Invariance

Unlike its image counterpart, a set of points in a point

cloud are unordered. Consequently, a naive design of the
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Figure 3. Dataset preprocessing: (a) A full route from the Oxford RobotCar dataset. (b) Zoomed-in region of the 3D point cloud in the

red box shown in (a). (c) An example of submap with the detected ground plane shown as red points. (d) A downsampled submap that is

centered at origin and all points within [-1,1]m.

network could produce different results from different or-

derings of the input points. It is therefore necessary for the

network to be input order invariant for it to be suitable for

point clouds. This means that the network will output the

same global descriptor f(P ) for point cloud P regardless

of the order in which the points in P are arranged. We rig-

orously show that this property holds for PointNetVLAD.

Given an input point cloud P = {p1, p2, . . . , pN}, the

layers prior to NetVLAD, i.e. PointNet, transform each

point in P independently into P ′ = {p′1, p
′
2, . . . , p

′

N},

hence it remains to show that NetVLAD is a symmetric

function, which means that its output V (P ′) would be in-

variant to the order of the points in P ′ leading to an output

global descriptor f(P ′) that is order invariant.

Lemma 1 NetVLAD is a symmetric function

Proof: Given the feature representation of input point cloud

P as {p′1, p
′
2, . . . , p

′
n}, we have the output vector V =

[V1, V2, . . . , VK ] of NetVLAD such that ∀k,

Vk = hk(p
′

1)+hk(p
′

2)+ . . .+hk(p
′

K) =
K
∑

t=1

hk(p
′

t), (4)

where

hk(p
′) =

ew
T
k p′

+bk

∑

k′ e
wT

k′
p′+bk′

(p′ − ck). (5)

Suppose we have another point cloud P̃ =
{p1, . . . , pi−1, pj , pi+1, . . . , pj−1, pi, pj+1, . . . , pN} that

is similar to P except for reordered points pi and pj .

Then the feature representation of P̃ is given by

{p′1, . . . , p
′
i−1, p

′
j , p

′
i+1, . . . , p

′
j−1, p

′
i, p

′
j+1, . . . , p

′

N}.

Hence ∀k, we have

Ṽk =hk(p
′

1) + . . .+ hk(p
′

i−1)+

hk(p
′

j) + hk(p
′

i+1) + . . .+ hk(p
′

j−1)+

hk(p
′

i) + hk(p
′

j+1) + . . .+ hk(p
′

N )

=

K
∑

t=1

hk(p
′

t) = Vk.

(6)

Thus, f(P ) = f(P̃ ) and completes our proof for symmetry.

5. Experiments

5.1. Benchmark Datasets

We create four benchmark datasets suitable for LiDAR-

based place recognition to train and evaluate our network:

one from the open-source Oxford RobotCar [24] and three

in-house datasets of a university sector (U.S.), a residential

area (R.A.) and a business district (B.D.). These are cre-

ated using a LiDAR sensor mounted on a car that repeatedly

drives through each of the four regions at different times

traversing a 10km, 10km, 8km and 5km route on each round

of Oxford, U.S., R.A. and B.D., respectively. For each run

of each region, the collected LiDAR scans are used to build

a unique reference map of the region. The reference map is

then used to construct a database of submaps that represent

unique local areas of the region for each run. Each refer-

ence map is built with respect to the UTM coordinate frame

using GPS/INS readings.

Submap preprocessing The ground planes are removed in

all submaps since they are non-informative and repetitive

structures. The resulting point cloud is then downsampled

to 4096 points using a voxel grid filter [32]. Next, it is

shifted and rescaled to be zero mean and inside the range of

[-1, 1]. Each downsampled submap is tagged with a UTM

coordinate at its respective centroid, thus allowing super-

vised training and evaluation of our network. To generate

training tuples, we define structurally similar point clouds

to be at most 10m apart and those structurally dissimilar to

be at least 50m apart. Fig. 3 shows an example of a refer-

ence map, submap and downsampled submap.

Data splitting and evaluation We split each run of each

region of the datasets into two disjoint reference maps used

for training and testing. We further split each reference map

into a set of submaps at regular intervals of the trajectory in

the reference map. Refer to the supplementary material for

more details on data splitting. We obtain a total of 30,153

submaps for training and 7572 submaps for test from the

Oxford and in-house datasets. To test the performance of

our network, we use a submap from a testing reference map

as a query point cloud and all submaps from another refer-

ence map of a different run that covers the same region as
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the database. The query submap is successfully localized if

it retrieves a point cloud within 25m.

Oxford Dataset We use 44 sets of full and partial runs from

the Oxford RobotCar dataset [24], which were collected

at different times with a SICK LMS-151 2D LiDAR scan-

ner. Each run is geographically split into 70% and 30% for

the training and testing reference maps, respectively. We

further split each training and testing reference map into

submaps at fixed regular intervals of 10m and 20m, respec-

tively. Each submap includes all 3D points that are within

a 20m trajectory of the car. This resulted in 21,711 training

submaps, which are used to train our baseline network, and

3030 testing submaps (∼ 120-150 submaps/run).

In-house Datasets The three in-house datasets are con-

structed from Velodyne-64 LiDAR scans of five different

runs of each of the regions U.S., R.A. and B.D. that were

collected at different times. These are all used as testing

reference maps to test the generalization of our baseline

network trained only on Oxford. Furthermore, we also geo-

graphically split each run of U.S. and R.A. into training and

testing reference maps, which we use for network refine-

ment. Submaps are taken at regular intervals of 12.5m and

25m for each training and testing reference maps, respec-

tively. All 3D points within a 25m×25m bounding box cen-

tered at each submap location are taken. Table 1 shows the

breakdown on the number of training and testing submaps

used in the baseline and refined networks.

Training+ Test×

Baseline Refine Baseline Refine

Oxford 21711 21711 3030 3030

U.S. -
}

8442
400∗







4542

80∗






1766R.A. - 320∗ 75∗

B.D. - - 200∗ 200∗

Table 1. Number of training and testing submaps for our baseline

and refined networks. ∗approximate number of submaps/run is

given because the number of submaps differ slightly between each

run; +overlapping and ×disjoint submaps.

5.2. Results

We present results to show the feasibility of our Point-

NetVLAD (PN VLAD) for large-scale point cloud based

place recognition. Additionally, we compare its perfor-

mance to the original PointNet architecture with the max-

pool layer (PN MAX) and a fully connected layer to pro-

duce a global descriptor with output dimension equal to

ours; this is also trained end-to-end for the place recogni-

tion task. Moreover, we also compare our network with the

state-of-the-art PointNet trained for object classification on

rigid objects in ModelNet (PN STD) to investigate whether

the model trained on ModelNet can be scaled to large-scale

environments. We cut the trained network just before the

softmax layer hence producing a 256-dim output vector.

Figure 4. Sample point clouds from (a) Oxford, (b) U.S., (c) R.A.

and (d) B.D., respectively: left shows the query submap and right

shows the successfully retrieved corresponding point cloud.

PN VLAD PN MAX PN STD

Oxford 80.31 73.44 46.52

U.S. 72.63 64.64 61.12

R.A. 60.27 51.92 49.07

B.D. 65.30 54.74 53.02

Table 2. Baseline results showing the average recall (%) at top 1%

for each of the models.

Baseline Networks We train the PN STD, PN MAX and

our PN VLAD using only the Oxford training dataset. The

network configurations of PN STD and PN MAX are set to

be the same as [27]. The dimension of the output global de-

scriptor of PN MAX is set to be same as our PN VLAD, i.e.

256-dim. Both PN MAX and our PN VLAD are trained

with the lazy quadruplet loss, where we set the margins

α = 0.5 and β = 0.2. Furthermore, we set the num-

ber of clusters in our PN VLAD to be K = 64. We test

the trained networks on Oxford. The Oxford RobotCar

dataset is a challenging dataset due to multiple roadworks

that caused some scenes to change almost completely. We

verify the generalization of our network by testing on com-

pletely unseen environments with our in-house datasets. Ta-

ble 2 shows the top1% recall of the different models on each

of the datasets. It can be seen that PN STD does not gener-

alize well for large scale place retrieval, and PN MAX does

not generalize well to the new environments as compared to

our PN VLAD. Fig. 5 (top row) shows the recall curves of

each model for the top 25 matches from each database pair

for the four test datasets, where our network outperforms

the rest. Note that the recall rate is the average recall rate of

all query results from each submap in the test data.
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Figure 5. Average recall of the networks. Top row shows the average recall when PN VLAD and PN MAX were only trained on Oxford.

Bottom row shows the average recall when PN VLAD and PN MAX were trained on Oxford, U.S. and R.A.

PN VLAD PN MAX

D-128 D-256 D-512 D-128 D-256 D-512

Ox. 74.60 80.31 80.33 71.93 73.44 74.79

U.S. 66.03 72.63 76.24 61.15 64.64 65.79

R.A. 53.86 60.27 63.31 49.25 51.92 52.32

B.D. 59.84 65.30 66.75 53.25 54.74 56.63

Table 3. Average recall (%) at top1% on the different datasets for

output dimensionality analysis of PN VLAD and PN MAX. All

models were trained on Oxford. Here, D- refers to global descrip-

tors with output length D-dim.

Average recall

Triplet Loss 71.20

Quadruplet Loss 74.13

Lazy Triplet Loss 78.99

Lazy Quadruplet Loss 80.31

Table 4. Results representing the average recall (%) at top1% of

PN VLAD tested and trained using different losses on Oxford.

Output dimensionality analysis We study the discrimi-

native ability of our network over different output dimen-

sions of global descriptor f for both our PN VLAD and

PN MAX. As show in Table 3, the performance of our

PN VLAD with output length of 128-dim is on par with

PN MAX with output length of 512-dim on Oxford, and

marginally better on our in-house datasets. The perfor-

mance of our network increases from the output dimension

of 128-dim to 256-dim, but did not increase further from

256-dim to 512-dim. Hence, we chose to use an output

Ave recall @1% Ave recall@1

PN PN PN PN PN PN

VLAD MAX STD VLAD MAX STD

Ox. 80.09 73.87 46.52 63.33 54.16 31.87

U.S. 90.10 79.31 56.95 86.07 62.16 45.67

R.A. 93.07 75.14 59.81 82.66 60.21 44.29

B.D. 86.49 69.49 53.02 80.11 58.95 44.54

Table 5. Final results showing the average recall (%) at top 1%

(@1%) and at top 1 (@1) after training on Oxford, U.S. and R.A.

global descriptor of 256-dim in most of our experiments.

Comparison between losses We compared our network’s

performance when trained on different losses. As shown in

Table 4, our network performs better when trained on our

lazy variants of the losses. Hence we chose to use the lazy

quadruplet loss to train our PN VLAD and PN MAX.

Network refinement We further trained our network with

U.S. and R.A. in addition to Oxford. This improves the

generalizability of our network on the unseen data B.D. as

can be seen from the last row of Table 5 and second row of

Fig. 5-(d). We have shown the feasibility and potential of

our PointNetVLAD for LiDAR based place recognition by

achieving reasonable results despite the smaller database

size compared to established databases for image based

place recognition (e.g. Google Street View Time Machine

and Tokyo 24/7 [46]). We believe that given more publicly

available LiDAR datasets suitable for place recognition our

network can further improve its performance and bridge

the gap of place recognition in LiDAR based localization.
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Figure 6. (a) Average recall @N for retrieval from all reference

areas. (b) Average recall at B.D. with varying distance thresholds.

(c) Average recall @N with point clouds (pc) and images (img)

as queries under various scene conditions, and retrieving from an

overcast database in Oxford dataset.

Extended evaluation Fig. 6-(a) shows the average recall

when queries from Oxford, U.S., R.A. and B.D. are re-

trieved from an extended database containing all four areas

(∼ 33km). Moreover, Fig. 6-(b) shows the top 1 recall

on unseen data B.D. with varying distance thresholds. It

can be seen that on these extended evaluation metrics, our

PN VLAD still outperforms PN MAX.

Image based comparisons under changing scene con-

ditions We compare the performance of our point cloud

based approach to the image based counterpart. We train

NetVLAD according to the specifications specified in [3]

with images from the center stereo camera of [24]. These

images are taken at the corresponding location of each

point cloud submap used to train our PN VLAD. Fig. 6-(c)

shows retrieval results when query was taken from various

scene conditions against an overcast database in the Oxford

dataset. The performance of image based NetVLAD is

comparable to our point cloud based PN VLAD in all

cases, except for overcast (day) to night retrieval (a well-

known difficult problem for image based methods) where

our PN VLAD significantly outperforms NetVLAD. It can

be seen that the use of point clouds makes the performance

more robust to scene variations as they are more invariant

to illumination and weather changes.

Qualitative Analysis Fig. 1 and 4 show some of the suc-

cessfully recognized point clouds, and it can be seen that

our network has learned to ignore irrelevant noise such as

ground snow and cars (both parked and moving). Fig. 7

shows examples of unsuccessfully retrieved point clouds,

and we can see that our network struggles on continuous

roads with very similar features (top row) and heavily oc-

cluded areas (bottom row).

Usability We further studied the usability of our network

for place recognition. Fig. 8 shows heat maps of correctly

recognized submaps for a database pair in B.D. before

and after network refinement. The chosen database pair
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Figure 7. Network limitations: These are examples of unsuccess-

fully retrieved point clouds by our network, where (a) shows the

query, (b) shows the incorrect match to the query and (c) shows

the true match.
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Figure 8. Figure shows the retrieved map of our PointNetVLAD

for a randomly selected database-query pair of the unseen B.D.

for (a) baseline model and (b) refined model.

is the pair with the lowest initial recall before network

refinement. It is shown that our network indeed has the

ability to recognize places almost throughout the entire ref-

erence map. Inference through our network implemented

on Tensorflow[2] on an NVIDIA GeForce GTX 1080Ti

takes ∼ 9ms and retrieval through a submap database

takes O(log n) making this applicable to real-time robotics

systems.

6. Conclusion
We proposed the PointNetVLAD that solves large scale

place recognition through point cloud based retrieval. We

showed that our deep network is permutation invariant

to its input. We applied metric learning for our network

to learn a mapping from an unordered input 3D point

cloud to a discriminative and compact global descriptor

for the retrieval task. Furthermore, we proposed the “lazy

triplet and quadruplet” loss functions that achieved more

discriminative and generalizable global descriptors. Our

experimental results on benchmark datasets showed the

feasibility and usability of our network to the largely

unexplored problem of point cloud based retrieval for place

recognition.
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