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Abstract

Blind motion deblurring methods are primarily respon-

sible for recovering an accurate estimate of the blur kernel.

Non-blind deblurring (NBD) methods, on the other hand,

attempt to faithfully restore the original image, given the

blur estimate. However, NBD is quite susceptible to errors

in blur kernel. In this work, we present a convolutional neu-

ral network-based approach to handle kernel uncertainty

in non-blind motion deblurring. We provide multiple latent

image estimates corresponding to different prior strengths

obtained from a given blurry observation in order to exploit

the complementarity of these inputs for improved learning.

To generalize the performance to tackle arbitrary kernel

noise, we train our network with a large number of real

and synthetic noisy blur kernels. Our network mitigates

the effects of kernel noise so as to yield detail-preserving

and artifact-free restoration. Our quantitative and quali-

tative evaluations on benchmark datasets demonstrate that

the proposed method delivers state-of-the-art results. To

further underscore the benefits that can be achieved from

our network, we propose two adaptations of our method to

improve kernel estimates, and image deblurring quality, re-

spectively.

1. Introduction

Motion blur is a common and unpleasant corruption that

occurs in hand-held photography and is difficult to undo.

Blind image deblurring methods aim to recover the blur ker-

nel as well as the clean image. Since the dimension of the

kernel is much smaller than the image size, one can better

constrain the estimation of the blur kernel rather than the

image [21]. Hence, most existing blind deblurring (BD) ap-

proaches [10, 5, 38, 17, 40, 32, 35, 25] try to recover an

accurate motion estimate from the blurred image [19]. This

is eventually used to recover the latent image using an off-

the-shelf non-blind deblurring (NBD) method.

The objective of NBD is to recover a sharp latent im-

age from a known blurred image and a given blur estimate.

Over the last decade, there has been significant progress

in this direction. Recent works [21, 16, 44] have come

up with new image priors that can model the statistics of

natural images which helps in suppressing ringing artifacts.

Few works have even attempted to handle outliers such as

noise [6, 7, 39, 14] and saturated regions [6, 39] to improve

the quality of the deblurred result. Most of the existing

non-blind methods are tailored to perform well under the

assumption that the motion is known accurately. Conse-

quently, they tend to underperform when the motion esti-

mate is noisy. Because of the highly ill-posed nature of BD,

an approach that can deliver accurate (close to ground truth)

motion estimate is still far from reality [19]. The blur esti-

mates from BD come with varying degrees of noise which

can introduce unacceptable artifacts in the restored output.

In this paper, our focus is on improving restoration qual-

ity in the presence of noisy blur kernel. The approach

that we propose consists of a conventional non-blind de-

blurring unit followed by a deep convolutional neural net-

work (CNN) to remove undesired artifacts caused by errors

in motion estimate. Recent works on single image restora-

tion ([8, 9, 39]) have already revealed the potential of CNN

based feature learning. The fact that we need discriminatory

feature learning from multiple inputs renders CNN as a nat-

ural choice. Our approach is based on the premise that de-

blurred images obtained with different prior strengths carry

complementary information. The complementarity lies in

the fact that restored images with low prior weight pre-

serve details but suffer from artifacts. On the other hand,

a large prior weight helps in artifact removal but at the cost

of image details. Hence, we are motivated to use multiple

images obtained from the same blurred image-kernel pair,

but with different prior strengths as inputs to our network.

This we believe allows the network to perform better fea-

ture discrimination and restoration as compared to the sin-

gle input image case. To handle arbitrary kernel noise, we

also propose an approach to generate synthetic noisy ker-

nels that can closely mimic the behavior of noise in real

kernel estimates. We employ thousands of such synthetic

noise kernels to improve the performance of our network

and its generalization capability. Finally, as natural benefits

that stem from our framework we advocate two adaptations
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to improve the restoration quality further. We showcase the

potential of our network to: i) reduce residual noise present

in kernel estimate and ii) improve the performance of an

existing BD algorithm.

Our main contributions are summarized below.

• We analyze the negative impact of residual noise in

blur kernel estimates on image restoration quality, and pro-

pose an elegant solution based on CNN.

• We propose a systematic approach to synthetically gen-

erate noisy blur kernels that can closely mimic the behavior

of real kernel estimates while simultaneously circumvent-

ing alignment issues associated with the training.

• We train our CNN with large numbers of synthetic and

real noisy kernels to achieve state-of-the-art performance in

non-blind deblurring.

• We propose two different adaptations of our trained

network, both of which are intended to reduce the noise

(which in turn results in better deblurring quality) associ-

ated with the kernel estimates from existing BD methods.

2. Related works

Classical methods such as Wiener filter [36] and

Richardson-Lucy deconvolution [27] are known to cause

ringing artifacts. Most of the works on NBD resort to maxi-

mum a posteriori (MAP) estimation, with differences in the

type of the image prior they employ. While most existing

works use global image priors [20, 33, 16] (typically in the

form of ||▽l||α, where ▽l represents image gradient), the

use of local (patch-based) priors [44] has been more ef-

fective in non-blind deconvolution. The work in [33] has

shown that Laplacian prior (α = 1) is more effective than

a Gaussian prior (α = 2), and can produce good results

in reasonable time. However, according to recent studies

[20, 16], the gradients of natural images are actually well-

modeled by a hyper-Laplacian [20, 16] (0.5 ≤ α ≤ 0.8).

The work in [44] is based on expected patch log likelihood

(EPLL), a form of patch prior learned from natural images

to yield state-of-the-art results.

Few other works have tried to handle the effects of out-

liers. The works in [6, 35] account for the presence of sat-

uration in images. Works in [7, 14] have tried to remove

deconvolution artifacts introduced by image noise, but the

restored results are significantly affected by ringing artifacts

induced by kernel errors. [13] proposes a new regularization

method for removing artifacts produced by kernel errors but

fails to retain high-frequency details.

Recent works using deep neural networks have shown

promising results. [39] trained a deep CNN to perform in-

version of a single kernel in the presence of non-linearities

in the blurred image. The work in [30] has used multi-

layer perceptron to perform outlier-robust image restora-

tion by learning to predict the latent image from an ini-

tial estimate obtained using L2 norm prior. But the scope

of their network is limited to a single specific blur kernel.

Some of the recent works on NBD employ machine learn-

ing frameworks such as Gaussian conditional random fields

[29], shrinkage fields [28], whereas the most recent work

in [18] uses CNN based regularization. However, none of

these methods can handle noisy blur kernels.

3. Non-blind deblurring: Role of image prior

In a convolutional model, the latent image l is related to

the blurred image b through blur kernel k as

b = l ∗ k + n (1)

where ‘*’ refers to the convolution operation and n is Ad-

ditive White Gaussian (AWG) noise. Most of the existing

NBD methods adopt a MAP formulation, where an estimate

of the latent image is obtained from kernel estimate k̂ by

solving an optimization framework of the form

l̂ = argmin
l

λ

2
||l ∗ k̂ − b||2 + P (l) (2)

where P determines prior on the latent image, and λ is the

weight of the data cost over the prior term. One of the most

commonly adopted approaches is to enforce global priors as

P (l) = ||▽l||α (3)

where ▽l represents image gradient. Recent studies shows

that the distribution of natural image gradients can be well-

modeled by a hyper-Laplacian [20, 16] (0.5 ≤ α ≤ 0.8).

Apart from the use of global image priors, the state-of-the-

art work in [44] uses a local patch based prior given by

P (l) =
∑

i

log p(Eil) (4)

where Ei is a matrix which extracts the ith patch from the

image, and log p(Eil) is the likelihood of the ith patch un-

der the prior defined by p.

Our proposed approach is built on the observation that

irrespective of the nature of prior employed in Eq. 2, λ has

a crucial role to play in the final image restoration quality.

3.1. Prior weight and restoration quality

In this section, we will discuss the impact on the restora-

tion results from Eq. 2 with respect to variations in λ. For

noisy blur kernels, existing prior based NBD works deliver

artifact-free images by keeping the prior weight high (i.e., a

low λ in Eq. 2). However, this comes at the cost of loss of

details. To illustrate this impact, we will consider the cases

of 3 different priors: Eq. 3 with α = 2 and α = 2/3, and

Eq. 4. To differentiate, we denote the weight of the data

cost for each method as λ2, λ2/3, and λp, respectively. Fig.

1 illustrates the differences in the restored images while we
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)
Figure 1. Impact on the restored image quality with varying λ. (a) Latent image. (b) Ground truth kernel. (c) Blurred image generated

using (a) and (b). (d) Noisy kernel obtained from [32]. Estimated images using kernel in (d) with λ2/3 = (e) 2e4, (f) 2e3, and (g) 2e2, with

λ2 = (h) 1e4, (i) 1e3, and (j) 1e2, and with λp = (k) 64e5, (l) 64e4, and (m) 64e3. (n) Average MSE of restored images for varying λ values.

vary the value of λ. The restored images using the noisy

kernel in Fig. 1(d) corresponding to the three NBD meth-

ods are shown in Figs. 1(e-m). For all the methods, while

a higher value of λ results in more details, it also intro-

duces artifacts. Decreasing λ increases the influence of the

prior term, reduces ringing artifacts but results in loss of

high-frequency details. When the prior weight goes high,

while Gaussian prior (Figs. 1 (f-g)) results in blurry edges,

α = 2/3 and [44] preserve sharpness of strong gradients.

However, loss of details is a common issue with all prior-

based methods. This is due to the fundamental limitation of

image priors in representing the contents of natural images

in their full generality. Often, this leads to partial restoration

i.e., the restored contents will be close to the ground truth

only for those areas which respect the prior distribution.

4. Proposed approach

In this paper, we propose an elegant approach for detail-

preserving restoration of blurry images under the assump-

tion of a noisy blur kernel. Our approach for image restora-

tion consists of two modules: a conventional NBD unit to

obtain multiple initial estimates of the latent image followed

by the use of a deep CNN to remove any undesired artifacts

present in the initial estimates, and to provide enhanced de-

tails. We use multiple initial estimates as inputs to the net-

work since the complementarity among the inputs leads to

improved restoration performance. In this paper, our pri-

mary focus is on training the CNN by initializing from re-

stored results of [16] (i.e., Eq. 3 with α = 2/3). We use

[16] for initialization since among the works that employ

global priors, [16] gives the best restoration results, and as

compared to the state-of-the-art work of [44], the perfor-

mance of [16] is the closest (among all existing prior-driven

NBD methods) while being much faster. For the hyper-

Laplacian prior, we use α = 2/3, the value at which the

restoration quality was found to be the best as reported in

[16]. Our approach can be applied to initial estimates from

other weight dependent prior based NBD approaches too.

To assess the performance improvement when our approach

is used in conjunction with other NBD methods, we also in-

clude analysis for the case when the inputs to our network

come from a Gaussian prior-based NBD approach (i.e., Eq.

3 with α = 2).

Non-blind
Deblurring 

Blurred image

Noisy kernel

Network inputs Feature extraction Feature discrimination and recombination Network output

Figure 2. Our network structure. We use the deblurred images

obtained from a standard NBD scheme corresponding to different

prior strengths as inputs to our FCN.

4.1. Motivation

Our idea of using deep CNN to improve the output from

a deconvolution unit is motivated by the fact that λ plays a

crucial role in deciding the restoration quality. As depicted

in Fig. 2, instead of giving the blurry observation, we pro-

vide as input the restored images obtained from an existing

NBD approach. The network is then trained to learn kernel-

independent features. However, this alone does not solve

the problem entirely. This is because, unlike the type of ar-

tifacts addressed in previous works on denoising [3, 37] or

dirt removal [9], the variability of the artifacts introduced by

blur kernel noise is much more complicated. Hence, direct

use of deep networks designed for afore-mentioned appli-

cations does not work for our scenario.

To analyze this point further, let us consider different

cases that are possible in our scenario. If we use a single

restored image (refer to Figs. 1(g,j,m)) obtained using low

λ alone as input, the role of the network will be to restore

the lost details. While this appears similar to single image

3274



super-resolution [8], ours is a more difficult task since the

degradation is relatively complicated for NBD. This is also

reflected in our attempts to improve restoration by training

on such inputs, which did not lead to any significant im-

provements in the restoration quality. On the other hand,

we observed that using as input the restored image obtained

with high λ leads to better restoration. This is because the

objective of the network is then limited to removing unde-

sirable artifacts present in the image. Our key finding is that

the restored outputs corresponding to low and high values

of λ contain complimentary information.

4.2. Network architecture

The proposed network structure for NBD is shown in

Fig. 2. First, we use the blurry image and noisy kernel es-

timate to generate multiple estimates (corresponding to dif-

ferent values of λ) of the latent image using a conventional

NBD scheme. These multiple image estimates are passed

through individual feature extraction units formed from two

convolutional layers. The extracted features are then com-

bined and passed through a number of convolutional layers

which act as a feature discrimination unit using which the

desired artifact-free features are integrated to yield the final

restored image. Since CNN can learn feature discrimination

as well as patch specific priors from the training data, our

approach also attempts to restore enhanced details in output.

The feature extraction unit corresponding to each input

consists of two convolutional layers, with 64 and 128 fil-

ters in the first and second layer, respectively. Thus when

we train with m inputs, the feature discrimination unit takes

128m feature maps from the feature extraction unit as input.

Our feature discrimination unit consists of 7 convolutional

layers with the number of filters in each layer being 512,

512, 512, 512, 128, 64, and 1, respectively. At the output of

every convolution layer, we apply batch-normalization fol-

lowed by ReLu [11]. For all the layers, we use filters of size

3 × 3 with a stride of 1 and zero-padding by 1, to main-

tain spatial resolution over the entire network. The hyper-

parameter settings that we use are partially motivated from

the encoder-decoder architecture used in [12], although our

network has significant differences in terms of structure. A

detailed discussion on the various architectures that were

attempted has been provided in the supplementary material.

5. Training

We use L2 norm of the difference between the network

output and the ground truth sharp image to define the loss

for training. For optimization, we used ADAM [15] with

learning rate 0.0002 and momentum 0.5.

5.1. Data generation

As we have already discussed, we use the images ob-

tained with different values of λ as inputs to our network.

Images from the BSD 500 dataset [1] are used as latent im-

ages for generation of training and test data. While the first

400 images were used for training, the remaining 100 im-

ages were used for testing. In order to learn a network which

can generalize well to arbitrary noises in the kernels, we

need to use a large number of realistic noisy kernels to gen-

erate the training data. As noisy kernel estimates, we used

3200 kernels returned by 5 BD methods ([17, 22, 32, 4],

[32] has 2 BD methods) while deblurring 640 blurry images

(formed using 80 sharp images and 8 ground truth (GT) ker-

nels) from [32]. Of these, we use 1.6K from the first 4 GT

kernels for training and the remaining for testing (mutually

exclusive). We followed patch-wise training in which ran-

domly cropped patches of size 101×101 from the estimated

images were used as inputs to our network. More details on

our training is provided in the supplementary material.

6. Optimal input identification

In order to identify the input images that can deliver best

restoration quality, we trained our network with different

input combinations. We began our experiments by training

with single image inputs and then proceeded to add more in-

puts to the network. To find the set of input parameters that

can be used for this analysis, we quantitatively measured

the restoration accuracy of a set of test images for different

values of λ. We used the images from set14 dataset of [41]

as latent images, and eight ground truth kernels from [22]

to generate 100 blurred images. These images were then

restored using kernel estimates returned by the BD methods

in [10] and [22] to obtain a set of 200 restored images corre-

sponding to α = 2 as well as α = 2/3, while varying λ over

a suitable range. For each value of λ, we compute the aver-

age mean squared error (MSE) for all the restored images.

A plot of the average MSE over this test set is shown in Fig.

1(n). As expected, for both methods the MSE achieves a

minimum value at an intermediate value of λ and gradually

increases as λ starts to move away from this point.

Based on visual inspection of image quality and our

quantitative evaluation in Fig. 1(n), we chose λ2/3 = 2e4,

2e3, and 2e2 to generate multiple inputs corresponding to

[16]. This is because: (i) [16] has shown that λ2/3 = 2e3
yields optimal restoration quality, which is also supported

by the results from our experiments (as in Fig. 1(n)), and

(ii) the restored results corresponding to λ2/3 = 2e2 and

2e4 had significant quantitative and qualitative differences

with respect to the optimal λ2/3 which is 2e3.

Fig. 3 illustrates differences in the restoration quality

when we train the network with the best performing 1, 2,

and 3 input cases. Fig. 4 displays the average peak signal-

to-noise ratio (PSNR) value (averaged over all images in

the test data) of the network outputs while training with dif-

ferent input combinations. Out of all possible single-input

cases, the output of network trained with input correspond-
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(a) (b) (c) (d) (e) (f)
Figure 3. Performance of our network with different input combinations. Inputs to the network with (a) λ2/3 = 2e2, (b) λ2/3 = 2e3, and

(c) λ2/3 = 2e4. Output of the network trained using (d) λ2/3 = 2e4, (e) λ2/3 = 2e3, 2e4, and (f) λ2/3 = 2e2, 2e3, 2e4.
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Figure 4. Network performance as a function of inputs.

ing to λ2/3 = 2e4 yielded the highest PSNR. Among all the

input pairs, it was found that 2e2+2e3 performed the worst

(mainly due to lack of details in both the inputs) whereas

2e3+2e4 performed the best with a marginal improvement

over 2e2 + 2e4. When we use a single input correspond-

ing to λ2/3 = 2e4, the network was able to achieve only

partial artifact removal (Fig. 3(d)). Whereas with 2 inputs

(2e3 + 2e4) most of the artifacts went away (Fig. 3(e)).

While the PSNR improvement for the 2-input case was sig-

nificant, this was not true when we moved from 2 to 3 in-

puts. Fig. 3(f) reveals the importance of the third input

(λ2/3 = 2e2) in removing artifacts in Fig. 3(e). We also

conducted experiments by adding more inputs to the net-

work. However, it was observed that further addition of

inputs yields only a marginal improvement in PSNR. This

is evident from Fig. 4, where the network output PSNR

corresponding to 5 inputs (2e2 + 5e2 + 2e3 + 5e3 + 2e4)

can be observed to be very close to that of the 3-input case.

Among all possible input combinations, the 3-input network

was observed to yield best performance overall (Fig. 3(f))

and was hence adopted for analyzing our network further.

Our experiments to identify the optimal inputs for α = 2
also lead to very similar observations. The best 3 input

combination for this case turned out to be λ2 = 1e4, 1e3,

and 1e2. While the overall performance improvement over

the inputs was quite good for the case of α = 2, the re-

sults were marginally inferior (refer Fig. 4) as compared to

that of α = 2/3. Therefore, the performance of the net-

work output depends on the initialization, and hence there

exists scope to further improve the performance by adopt-

ing NBD approaches with better priors. This is an added

advantage since the performance of our approach scales up

along with improvements in image-prior-driven restoration

schemes. Note that while adding further combinations by

changing both λ and α to produce inputs is certainly pos-

sible, we rely on the principle assumption that regions with

fewer artifacts and high-frequency details must go as inputs

to the network. This is satisfactorily achieved by keeping α
constant and changing only λ.

7. Synthetic vs real noisy kernel

To obtain real noisy kernels, one can use the blur kernels

returned by conventional BD algorithms. However, this has

several issues. First of all, the centroid of kernel estimates

returned by BD algorithms may not be consistent with the

centroid of the ground truth kernels. This will introduce ran-

dom misalignments between the deblurred image and cor-

responding latent image, thus hindering the learning capa-

bility of the network. Secondly, it is impossible to obtain

a large number of real noisy kernels since the generation

of real kernels is very time-consuming. To address these is-

sues, we attempt two different strategies to use noisy kernels

for training. Our first approach is to use the real kernels for

training, and account for any misalignments introduced by

the kernel noise by performing affine registration [2] of the

estimated image with the ground truth image. The second

is to generate synthetic noisy kernels.

7.1. Generation of synthetic noisy kernels

We used an optimization framework to generate syn-

thetic noisy kernels. To make the network generalize well-

enough to handle real kernels, the generated synthetic noisy

kernels must mimic the characteristics of real noise encoun-

tered in practice. Typical kernel priors used by BD methods

(L2 or L1 norm on kernels) tend to deliver smoothly varying

kernel estimates, while suppressing isolated noises which

might get generated otherwise. We have tried to analytically

model and adhere to these properties in our synthetic ker-

nel generation scheme. To resolve the issue with respect to

changes in the centroid between ground truth and noisy ker-

nels, we perform centroid-preserving noise addition i.e., we

first align the ground truth kernels (kgt) such that their cen-

troid is zero. Then, we generate zero-centroid synthetic ker-

nel noise (n̂) using our optimization framework (discussed

next) and add it to the ground truth kernel to yield the de-

sired noisy kernel. This ensures that both the restored image

and the ground truth image are perfectly aligned.
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To generate n̂, we solve the optimization problem

n̂ = argmin
n

{||n− λ1Wvni||
2 + λc||McWvn||

2+

λp(||WvPxn||
2 + ||WvPyn||

2)}
(5)

Here, ni is an initial estimate of kernel noise which we ob-

tain using a random number generator. While λ1 determines

the depth of the noise, Wv is the mask for selecting only the

valid region over the neighborhood of the ground truth ker-

nel. Mc is the centroid computation matrix, and λc is the

weight for centroid enforcement term. Px and Py are ma-

trices for gradient computation along x and y, and λp is the

smoothness weight over the gradients of kernel noise. We

also enforce an additional non-negativity constraint on ker-

nel noise. In Eq. 5, the first term ensures randomness of

the generated noise by enforcing it to be closer to ni. The

final synthetic noisy kernel k̂s is formed by adding n̂ to the

ground truth kernel followed by Gaussian low-pass filtering

(with variance vg) as

k̂s = fvg ∗ (kgt + n̂) (6)

Low-pass filtering enforces the desired smoothing effect.

We chose λc = 1e3, and λp = 1 for all our experiments.

For training, we used synthetic noisy kernels obtained with

6 ≤ λ1 ≤ 9 and 0.5 ≤ vg ≤ 0.7. To form the training

data corresponding to synthetic noisy kernels, we used the

approach in [4] to generate ground truth kernels. 1

The average PSNR gain (in dB) obtained on our test data,

with networks trained using real and synthetic kernels in-

dividually was found to be 0.89 and 0.91. Although the

synthetic noisy kernels were obtained from a larger variety

of GT kernels as compared to real kernels, the PSNR gain

using only the synthetic noisy kernels was just comparable

to that of real kernels. This is probably because the noisy

kernels which we generated despite being visually similar

to the real kernels, may not represent the behavior of real

kernels in their complete generality. However, when we

used synthetic kernels and real kernels together for train-

ing, the PSNR gain improved to 1.15. Our proposed ker-

nel generation scheme delivers a large number of synthetic

kernels quickly allowing us to incorporate a larger set of

noisy kernels generated by a wide variety of GT kernels

into our training process. Since the collections of real and

synthetic kernels have differences in terms of variations in

kernel noise and nature of GT kernels, combined training

enabled the network to generalize better. To the best of our

knowledge, this is the first attempt of its kind to systemat-

ically generate noisy blur kernels, with implicit alignment.

Potential exists to harness this capability in a variety of re-

lated image restoration tasks such as blind deblurring.

1An illustration of the closeness between real noisy kernels and our

synthetically generated kernels is provided in the supplementary material.

8. Results and comparisons

In this section, we evaluate the performance of our net-

work by comparing with the state-of-the-art works in the

literature. For all the experimental results presented here,

we use a network trained with synthetic and real, as well as

low and high-noise kernels. To evaluate the performance of

our proposed method, we use the publicly available datasets

in [22, 32, 19].

Table 1. Average PSNR on dataset of [22]

NBD

method

Method for kernel estimation

[10] [5] [22] [5]+refinement

[13] 27.28 28.55 28.79 28.92

[14] 27.12 28.07 28.11 28.78

[7] 28.61 28.84 29.20 29.45

[18] 28.74 28.99 29.51 29.75

[20] 28.86 29.32 29.49 29.63

[16] 29.08 29.39 29.55 29.81

[28] 29.29 29.50 29.66 29.90

[44] 29.51 29.66 29.85 30.01

CNN2/3 (1) 29.50 29.64 29.91 30.22

CNN2/3 (3) 30.40 30.62 30.87 31.19

CNN2 (3) 29.91 30.25 30.30 30.69

The most desirable property of an NBD algorithm is to

maintain good restoration quality for kernel estimates re-

turned by arbitrary BD methods. To verify this generaliza-

tion capability of our method, we perform extensive quanti-

tative and qualitative evaluation using real kernels returned

by several BD methods. For a particular BD method, we

use the corresponding set of kernels to obtain the restored

images using different NBD methods. The quality of these

deblurred images is used to assess performance. For the

dataset in [22], we used kernel estimates obtained from

[10, 5, 22], whereas for [32] we used kernel estimates re-

turned by [5, 38, 23]. Since [19] comprises of many chal-

lenging examples, there exist examples on which BD algo-

rithms ([38, 40, 32, 26]) fail to recover the blur kernels. To

avoid the damaging influence of such bad kernel estimates,

we excluded them while testing performance in Table 2.

To evaluate the performance of our proposed approach,

we compared with existing NBD approaches in [20, 16,

44, 13, 7, 28, 14, 18] and used PSNR, SSIM ([34]), and

IFC [31] as metrics. We used online-available implemen-

tation of these NBD methods with optimal parameters set-

tings as specified in the respective works. For [16], we used

λ = 2e3, as given therein. Use of IFC for [19] is motivated

by the fact that on the images from this dataset, IFC has

the highest correlation with respect to human subject scores

[19]. As can be observed from Tables 1 and 2, our method

significantly outperforms the state-of-the-art works with re-

spect to all the metrics. In Table 1, for our proposed method,
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(a) (b) (c) (d) (e) (f) (g) (h)
Figure 5. Example from the dataset in [22]. (a) Ground truth (top) and estimated kernel (bottom). (b) Input blurred image. Restored images

using (c) [16] (d) [20], (e) [28], (f) [44], and (g) proposed approach (CNN2/3). (h) GT image.

(a) Input (b) [16] (c) [13] (d) [7] (e) [28] (f) [14] (g) [44] (h) Ours (i) GT

(j) Input (k) [16] (l) [13] (m) [20] (n) [7] (o) [28] (p) [18] (q) [44] (r) Ours
Figure 6. Synthetic (Row 1) and real (Row 2) examples from the dataset in [19].

the number in parentheses indicates the number of inputs

used for CNN. While with a single input (Table 1, CNN2/3

(1)), the performance of our method is only comparable to

other works, the addition of more inputs results in signifi-

cant improvement in PSNR. Furthermore, although the per-

formance of CNN2 is better than the competing methods,

CNN2/3 performs the best.

For visual comparisons, we show few randomly chosen

representative examples.2 Fig. 5 shows a low resolution ex-

ample from [22]. We used the kernel estimate shown in Fig.

5(a) to deblur the image in Fig. 5(b). As is evident from

Fig. 5(g), our approach restores the image without artifacts

while achieving significant improvement in the recovery of

details over competing methods. Fig. 6 reveals performance

on high resolution images from [19]. While our approach

(Figs. 6(h,r)) is able to deliver an artifact-free and yet detail-

preserving image, the competing methods (Figs. 6(b-g,k-

q)) either fail to recover the details or generate significant

artifacts. Similar observations can be found from our ex-

tensive comparisons on kernels from various BD methods

([10, 5, 38, 22, 17, 40, 32, 42, 43, 23, 26, 24, 25]) revealing

the generalization capability of our trained network.

2Our supplementary material contains discussions on few other training

experiments which we have conducted, analysis on generalization capabil-

ity of our network to other NBD methods, run-time comparisons for the

NBD methods, additional quantitative comparisons and extensive visual

comparisons on more examples.

9. Other improvisations

In this section, we demonstrate that there are further ben-

efits to be derived from our proposed framework. We first

show how our NBD method can be employed in an iterative

fashion to reduce the residual noise in the kernels and im-

prove restoration quality further. Next, we reveal how our

NBD method can be used as a plug-in inside an existing BD

method to mitigate local minima issues which is at the core

of erroneous blur kernel estimates.

9.1. Iterative restoration for kernel noise reduction

As discussed earlier, kernel estimate from BD methods is

often affected by noise. The noise level specific training ex-

periments that we have conducted with our network (details

are provided in the supplementary material) reveal that the

average PSNR is higher for test data corresponding to less-

noisy kernels. While our approach performs significantly

better than the existing NBD methods, the performance of

our trained network is fundamentally limited by the noise

level in the input kernel (akin to other NBD methods). We

explored the possibility of reducing the kernel noise level by

employing our NBD approach in an iterative fashion. More

specifically, we treat the input kernel as the initial kernel es-

timate k̂1 and solve the following optimization problem to

obtain refined estimates of blur kernel.

k̂t+1 = argmin
k

||(F ◦ ▽l̂tnet) ∗ k − ▽b||2 + β||k||2 (7)
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Table 2. Performance comparison on dataset of [32] and [19]

NBD method BD method for kernel estimation

PSNR/SSIM for images from [32] SSIM/IFC for images from [19]

[5] [38] [23] [38] [40] [32] [26] [40] + CNN2/3

[20] 28.02/0.81 29.56/0.83 28.87/0.80 0.72/2.17 0.72/2.00 0.69/1.92 0.69/1.91 0.75/2.31

[16] 28.29/0.83 30.15/0.85 29.27/0.82 0.73/2.40 0.73/2.16 0.71/2.08 0.71/2.13 0.75/2.50

[28] 27.22/0.78 28.34/0.81 27.90/0.78 0.66/1.70 0.67/1.60 0.65/1.60 0.63/1.50 0.70/1.88

[44] 28.46/0.83 30.51/0.86 29.59/0.82 0.75/2.52 0.74/2.28 0.72/2.20 0.72/2.20 0.76/2.59

CNN2/3 29.54/0.88 32.60/0.91 30.69/0.85 0.78/2.58 0.76/2.30 0.75/2.31 0.75/2.41 0.80/2.81

where t denotes the iteration number, ▽l̂tnet is the gradient

of the restored image obtained using our NBD method (Fig.

2) from the corresponding kernel estimate k̂t. We apply

an additional bilateral filtering operation (denoted as F◦) to

remove small noisy gradients present in ▽l̂tnet that can be

detrimental to kernel estimation. We iteratively repeat our

network-based restoration (Fig. 2) and kernel estimation

steps to yield improved restoration quality. We empirically

found the number of required iterations for convergence of

this alternating minimization to be about 5. We used β = 20
in our experiments. The last column in Table 1 corresponds

to quantitative evaluation of our proposed kernel refinement

scheme, while attempting to reduce the noise levels from

kernels returned by [5]. Clearly, the refined kernels from

our approach result in significant performance improvement

over the kernels returned by [5].

9.2. Plugin for blind deblurring

Most existing BD approaches employ an alternating

minimization scheme for kernel estimation where they al-

ternatively estimate image and blur kernel until conver-

gence. The main difference between different BD meth-

ods lies in the prior employed for image and/or kernel es-

timation. One of the main problems associated with BD

methods is that the alternating minimization scheme often

gets stuck in local-minima due to continuous accumulation

of kernel errors. Therefore, such BD methods (which em-

ploy a latent image estimation unit akin to ours) can har-

ness the potential of our trained network to improve their

performance. Since our approach can produce restored im-

ages devoid of artifacts, we propose to replace the latent

image estimation unit of such BD methods with our NBD

approach to alleviate local-minima issues associated with

kernel errors.

To validate this possibility, we incorporated our NBD ap-

proach within the BD approach of [40]. To perform inter-

mediate image estimation, [40] enforces L0 sparsity on the

gradients of the image by solving the following set of equa-

tions.

l̂ = argmin
l

λ

2
||l ∗ k̂ − b||2 + ||▽l − z||α (8)

z =

{
0, if ▽l̂ < ǫ

▽l̂, otherwise
(9)

Both Eq. 8 and Eq. 9 are alternatively solved by varying

ǫ ∈ {1, 2−1, 4−1, 8−1} from 1 to 8−1. The work in [40]

uses α = 2 for optimization. We note that convergence

directly depends on the initial estimate obtained for the

case of ǫ = 1. Furthermore, for ǫ = 1 both Eq. 8 and Eq.

9 are equivalent to Eq. 2, since z will be 0. Hence, as an

improvisation, we replace the initial estimate obtained for

the case of ǫ = 1 with our NBD approach corresponding to

α = 2/3 to ensure better convergence. We name the corre-

sponding BD approach as ‘[40] + CNN2/3’. Quantitative

evaluation in Table 2 clearly reveals that our proposed BD

approach ‘[40] + CNN2/3’ is able to deliver significant

improvements in restoration as compared to [40] alone.3

10. Conclusions

We presented a deep CNN-based framework for non-

blind restoration of motion blurred images. Unlike exist-

ing works, we investigated a very relevant scenario which

is the unavailability of exact ground truth kernel. By using

multiple latent image estimates obtained with different prior

strengths as inputs, our network exploits the complementar-

ity present in the input data to yield high-quality restoration

results. To remove kernel noise-specific artifacts in the de-

convolved results, we trained our network with real kernels

obtained from existing blind deblurring methods as well as

synthetically generated noisy kernels. Our method is able

to deliver state-of-the-art performance in non-blind deblur-

ring. Furthermore, as indicated by our proposed impro-

visations, one can further reduce the noise level in kernel

estimates via our NBD approach and improve the overall

restoration quality.
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