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Abstract

The variety, abundance, and structured nature of hash-

tags make them an interesting data source for training vi-

sion models. For instance, hashtags have the potential to

significantly reduce the problem of manual supervision and

annotation when learning vision models for a large number

of concepts. However, a key challenge when learning from

hashtags is that they are inherently subjective because they

are provided by users as a form of self-expression. As a

consequence, hashtags may have synonyms (different hash-

tags referring to the same visual content) and may be poly-

semous (the same hashtag referring to different visual con-

tent). These challenges limit the effectiveness of approaches

that simply treat hashtags as image-label pairs. This paper

presents an approach that extends upon modeling simple

image-label pairs with a joint model of images, hashtags,

and users. We demonstrate the efficacy of such approaches

in image tagging and retrieval experiments, and show how

the joint model can be used to perform user-conditional re-

trieval and tagging.

1. Introduction

Convolutional networks have shown great success on

image-classification tasks involving a small number of

classes (1000s). An increasingly important question is how

this success can be extended to tasks that require the recog-

nition of a larger variety of visual content. An important ob-

stacle to increasing variety is that successful recognition of

the long tail of visual content [11] may require manual an-

notation of hundreds of millions of images into hundreds of

thousands of classes, which is difficult and time-consuming.

Images annotated with hashtags provide an interesting

alternative source of training data because: (1) they are

available in great abundance, and (2) they describe the long

tail of visual content that we would like to recognize. Fur-

thermore, hashtags appear in the sweet spot between captur-

ing much of the rich information contained in natural lan-
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Figure 1. Image-retrieval results obtained using our user-specific

hashtag model. The box above the query shows hashtags fre-

quently used by the user in the past. Hashtag usage varies widely

among users because they are a means of self-expression, not just

a description of visual content. By jointly modeling users, hash-

tags, and images, our model disambiguates the query for a specific

user. We refer the reader to the supplementary material for license

information on the photos.

guage descriptions [15] whilst being nearly as structured as

image labels in datasets like ImageNet.

However, using hashtags as supervision comes with its

own set of challenges. In addition to the missing-label prob-

lem that hampers many datasets with multi-label annota-

tions (e.g., [4, 13, 17]), hashtag supervision has the prob-

lem that hashtags are inherently subjective. Since hashtags

are provided by users as a form of self-expression, some

users may be using different hashtags to describe the same

content (synonyms), whereas other users may be using the

same hashtag to describe very different content (polysemy).

As a result, hashtags cannot be treated as oracle descrip-

tions of the visual content of an image, but must be viewed

as user-dependent descriptions of that content.
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Figure 2. Overview of the proposed user-specific hashtag model.

The three-way tensor product models the interactions between im-

age features, hashtag embeddings, and user embeddings.

Motivated by this observation, we develop a user-specific

hashtag model that takes the hashtag usage patterns of a

user into account [31]. Instead of training on simple image-

hashtag pairs, we train our model on image-user-hashtag

triplets. This allows our model to learn patterns in the hash-

tag usage of a particular user, and to disambiguate the learn-

ing signal. After training, our model can perform a kind of

intent determination that personalizes image retrieval and

tagging. This allows us to retrieve more relevant images

and hashtags for a particular user. Figure 1 demonstrates

how our user-specific hashtag model can disambiguate the

ambiguous #rock hashtag by modeling the user.

Figure 2 provides an overview of this model. It is com-

prised of a convolutional network that feeds image fea-

tures into a three-way tensor model, which is responsible

for modeling the interaction between image features, hash-

tag embeddings, and an embedding that represents the user.

When multiplying the three-way interaction tensor by a user

embedding, we obtain a user-specific bilinear model. This

personalized bilinear mapping between images and hash-

tags can take into account user-specific hashtag usage pat-

terns. Our model can produce a single score for an image-

hashtag-user triplet; we use this score in a ranking loss in or-

der to learn parameters that discriminate between observed

and unobserved triplets. The user embeddings are learned

jointly with the weights of the three-way tensor model.

We investigate the efficacy of our models in (user-

specific) image tagging and retrieval experiments on the

publicly available YFCC100M dataset [26]. We demon-

strate that: (1) we can learn to recognize visual concepts

ranging from simple shapes to specific instances such as

celebrities and architectural landmarks by using hashtags as

supervision; (2) our models successfully learn to discrimi-

nate synonyms and resolve hashtag ambiguities; and (3) we

can improve accuracy on tasks such as image tagging by

taking the user that uploaded the photo into account.

2. Related Work

Our study is related to prior work on (1) hashtag pre-

diction and recommendation, (2) large-scale weakly super-

vised training, and (3) three-way tensor models.

Several prior works have studied hashtag prediction

and recommendation for text posts [7, 23], infographics

[2], and images [5, 32]. The most closely related to our

study is [5], which studies hashtag prediction conditioned

on image and user features. The main differences between

our work and [5] are (1) that we train the convolutional net-

work end-to-end with hashtag supervision rather than pre-

trained ImageNet features and (2) that the user embeddings

in our model are learned based solely on the photos users

posted and the hashtags they used. Our model does not

receive any metadata about the user, whereas [5] assumes

access to detailed user metadata. This allows us to model

intent on the level of individual users, which helps in dis-

ambiguating hashtags.

Our hashtag-prediction study is an example of large-

scale weakly supervised training, which has been the

topic of several recent studies. Specifically, [24] trains con-

volutional networks on 300 million images with noisy la-

bels and show that the resulting models transfer to a range

of other vision tasks. Similarly, [12, 15] train networks

on the YFCC100M dataset to predict words or n-grams in

user posts from image content, and explore transfer of these

models to other vision tasks. Further, [30] explores aug-

menting large-scale weakly supervision with a small set of

verified labels. Our study differs from these prior works

both in terms of the type of supervision used (hashtags

rather than manual annotation or n-grams from user com-

ments), and in terms of its final objective (hashtag predic-

tion rather than transfer to other vision problems).

Tensor models have a long history in psychological data

analysis [9, 27] and have increasingly been used in a wide

range of machine-learning problems, including link predic-

tion in relational and temporal graphs [6, 18], higher-order

recommendation systems [20], and parameter estimation in

latent variable models [1]. In computer vision, prominent

examples of tensor models include the modeling of style

and content [25], the joint analysis of image ensembles [29],

sparse image coding [21] and gait recognition [8, 28].

3. Learning from Hashtags

Our goal is to train image-recognition models that can

capture a large variety of visual concepts. In particu-

lar, we aim to learn from hashtags as supervisory sig-

nal. Formally, we assume access to a set of N images

I = {I1, . . . , IN} with height H , width W and C chan-

nels so that Ii ∈ [0, 1]H×W×C , a vocabulary of K hashtags

H={h1, . . . , hK}, and a set of U users U={u1, . . . , uU}.

Each image is associated with a unique user, and with one or

more hashtags (we discard images without associated hash-

tags from the dataset). The resulting dataset comprises a

set of N triplets T , in which each triplet contains an im-

age I ∈ I, a user u ∈ U , and a hashtag set H ⊆ H.

Formally, T ={(I1, um(1),H1), . . . , (IN , um(N),HN )}, in
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which m(n) maps from the image/triplet index n to the cor-

responding user index in {1, . . . , U}.

Hashtag supervision differs from traditional image anno-

tations in that it was not intended to objectively describe the

image content, but merely to serve as a medium for self-

expression by the user. This self-expression leads to user-

specific variation in hashtag supervision that is independent

of the image content. We first study convolutional networks

that are agnostic to the subjective nature of hashtags and

simply treat them as image labels. Subsequently, we de-

velop a user-specific model that explicitly incorporates the

user as part of the hashtag-prediction model in order to cap-

ture variations in self-expression.

Throughout this work, we focus on two tasks: (1) a tag-

ging task in which, given a query image I, we aim to re-

trieve the most relevant hashtags for that image; and (2) a

retrieval task in which, given a hashtag query h ∈ H, we

aim to retrieve the most relevant images for that hashtag.

3.1. UserAgnostic Hashtag Modeling

We investigate two approaches for training image-

recognition models using user-agnostic hashtag supervi-

sion: (1) softmax multi-class classification and (2) hashtag-

embedding regression [3]. In both cases, we learn an image

model f(·; θ) : [0, 1]H×W×C → R
D which maps images

into an D-dimensional embedding space. The image model

f(·; θ) is implemented by a residual network [10] with pa-

rameters θ. In addition to the image model, we learn hash-

tag embeddings hi ∈ R
D for all hashtags hi ∈ H.

Multi-Class Classification. Several prior studies [12, 24]

suggest that softmax classification can be very effective

even in multi-label settings with large numbers of classes

such as ours. Motivated by this, we train f(·; θ) with a soft-

max over the 100, 000 most frequent hashtags by minimiz-

ing the multi-class logistic loss. Following [12], we select

a single hashtag uniformly at random from hashtag set Hn

as target class for each image when training the softmax

model. In particular, let fj = f(Ij ; θ) ∈ R
D be the image

embedding, and hi ∈ Hj the randomly selected hashtag.

We then learn jointly the embeddings hi and the parameters

θ of the vision model f(·; θ) by minimizing the negative

log-likelihood for the probability distribution:

P (hi|Ij) =
exp(h⊤

i fj)
∑

ℓ exp(h
⊤
ℓ fj)

. (1)

Hashtag-Embedding Regression. This training method

comprises two main stages. First, we learn an embedding

hi ∈ R
D for each hashtag hi ∈ H. Second, we follow [3]

and learn the parameters θ of the image model f(·; θ) by

minimizing the negative cosine similarity between the im-

age embedding, fj = f(Ij ; θ) ∈ R
D, and the sum of the

embeddings of the hashtags, hj , corresponding to image Ij :

ℓ(fj ,hj ; θ) = −
h
⊤

j fj

‖hj‖‖fj‖
. (2)

A potential advantage of this approach is that the embed-

dings of synonomous hashtags are likely very similar: this

implies that the loss used for training the convolutional net-

work, in contrast to the multi-class logistic loss, does not

substantially penalize predicting a synonymous hashtag that

the user did not happen to use to describe the image.

We experiment with two methods for learning the hash-

tag embeddings hi. The first method computes the D prin-

cipal singular vectors of the positive pointwise mutual in-

formation (PPMI) matrix [14]. The second method [16]

explicitly models ambiguous hashtags (i.e., hashtags with

multiple meanings) by learning multi-sense hashtag embed-

dings. We follow [16] and use the global embedding vectors

in their model as hashtag embedding. We train all models

using mini-batch stochastic gradient descent (SGD).

3.2. UserSpecific Hashtag Modeling

The models described above do not explicitly capture

variations in hashtag labels that are due to variations in how

users self-express. Here, we present a model that aims to

capture these variations by modeling images, hashtags, and

users jointly. We will show that this can help in disam-

biguating the meaning of hashtags assigned to images. As

before, the model represents images via a convolutional net-

work, fj = f(Ij ; θ) ∈ R
F , and hashtags via embeddings

hi ∈ R
D. In addition, we learn user embeddings, uk ∈ R

E .

We aim to learn a scoring function s(t;W) with parameters

W ∈ R
D×F×E that combines all three representations to

predict whether or not an image-hashtag-user triplet t is cor-

rect. Specifically, we select a hashtag hi from hashtag set

Hj uniformly at random, and model the score of the result-

ing triplet t = (Ij , uk, hi) as:

s(t;W) =

D
∑

r1=1

F
∑

r2=1

E
∑

r3=1

wr1r2r3hir1fjr2ukr3 , (3)

where wr1r2r3 , hir1 , fjr2 , and ukr3 are elements from W,

hi, fj , and uk, respectively. Equation 3 is a three-way ten-

sor product between the embeddings of the image, hashtag,

and user in which the weights wr1r2r3 specify the (posi-

tive or negative) interactions of all possible feature combi-

nations. The user-specific aspect of Equation 3 can be ob-

served by considering the summation over the user dimen-

sion. In particular, when summing over the user dimension,

weighted by the embedding for user uk, we obtain a user-

specific weight matrix W
(k) ∈ R

D×F with entries:

w
(k)
ab =

E
∑

r=1

ukrwabr. (4)
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Figure 3. Left: Frequency of hashtags in hashtag vocabulary H.

Right: Number of photos per user in user set U .

The score function of Equation 3 is then equivalent to:

s(t;W) = h
⊤
i W

(k)
fj . (5)

Hence, our proposed model learns user-conditioned bilinear

models between hashtags for images, by conditioning the

weight matrix of the bilinear model on the user embedding.

Given a dataset of M triplets1 T = {t1, . . . , tM}, we

estimate the parameters W using a ranking approach. In

particular, we want the score of a true observed triplet t+∈
T to be higher than that of an unobserved triplet t− 6∈ T .

We achieve this by minimizing the following loss:

ℓ(t+;W) = max

(

0, max
t− 6∈T

s(t−;W)− s(t+;W) + 1)

)

.

This ranking loss is better suited for our problem than a per-

triplet binary logistic loss, because the latter would consider

any unobserved triplet as a “negative”. This is problematic

because (1) the hashtag annotations for an image are gen-

erally not exhaustive and (2) there are far more unobserved

than observed triplets. The ranking loss only aims to assign

a lower score to unobserved triplets, and as a result it is not

nearly as much affected by these problems.

In practice, the maximization over negative triplets t−

can only be approximated. For our ranking loss to be ef-

fective, it is essential to develop good approximations for

the maximization by mining “hard negatives” [22]. We per-

form online hard negative mining along all three axes, i.e.,

we rank tags, images, and users. Specifically, we sample six

negative triplets per positive sample, and uses each of them

as a negative in the loss. We sample three “intermediate”

and three “hard” negatives. In an “intermediate” negative,

one of the three elements (the image, hashtag, or user) of

the positive triplet is replaced by another element that is

selected uniformly at random from the training batch; the

other two elements remain the same. In a “hard” negative,

we replace one of the three elements in the triplet by the

(non-identical) element in the training batch that maximizes

the score s(t;W).

1Please note that T contains image-hashtag-user triplets, whereas T

contains image-hashtag set-user triplets.

Table 1. Frequency of the most common hashtags in the data set.

Hashtag Frequency Unique Users

#california 905,715 15,785

#travel 826,366 15,944

#usa 825,641 13,400

#london 764,277 21,516

#japan 732,859 11,652

#france 650,436 17,265

#wedding 580,605 19,599

#music 552,645 23,359

#beach 547,038 44,695

As before, we train our user-specific hashtag model us-

ing mini-batch SGD. We first learn the parameters of the

convolutional network, θ, by minimizing one of the losses

from 3.1. We then jointly learn the image, hashtag and user

embeddings as well as the parameters of the scoring func-

tion, W, in a subsequent training stage. In our experiments,

we use image and hashtag embeddings with D = F = 300
dimensions and user embeddings of size E = 50.

Once we have inferred the embeddings for users, hash-

tags, and images as well as W, we can then approach the

aforementioned image tagging and retrieval results in the

following way. Given a user uk and an image Ij , we com-

pute the most likely hashtag according to our model as:

argmaxhi∈H h
⊤
i W

(k)
fj (6)

The most likely image given a hashtag-user pair can be re-

trieved analogously.

4. Experiments

The aim of our experiments is: (1) to compare the strate-

gies for training user-agnostic convolutional networks us-

ing hashtag supervision introduced in Section 3.1 and (2)

to investigate the effectiveness of the user-specific hashtag

model we introduced in Section 3.2.

4.1. Dataset

We conduct experiments on the YFCC100M dataset [26]

of approximately 99.2 million photos. More than 60 million

of these photos have one or more associated hashtags, and

each photo has an associated user, the user who uploaded it.

We start by removing numerical hashtags and also remove

the 10 most frequent tags because they are non-visual and

non-informative (e.g., #iphonography, #instagram,

#square, and #canon). We define the hashtag set H as

the set of the 100, 000 most frequent (remaining) hashtags.

The left plot in Figure 3 shows the resulting hashtag fre-

quencies, and Table 1 lists the most frequent hashtags. The

hashtag distribution is heavily skewed towards a few fre-

quent hashtags and has a long tail of less frequent tags. For
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Figure 4. Image tagging: Accuracy@1 of four user-agnostic and

three user-specific hashtag prediction models on the YFCC100M

test set; see text for details. Higher is better.

example, the most frequent hashtag, #california, ap-

pears over 900, 000 times in the training set, i.e., with 1.78%
of training images. The least frequent hashtags in our hash-

tag set H only appear 260 times. Another characteristic of

the hashtags is that while the most frequent tags tend to be

English, less frequent tags are increasingly multilingual.

We select all photos with at least one hashtag from H
and filter out photos by “spammers”, i.e., by users that use

more than 15 hashtags per image on average. This results

in a dataset of 55.6 million images and a user set U with

U =315, 745 users. As shown in the right plot in Figure 3,

the number of photos per user is also heavy-tailed.

To model a realistic use-case, we split the photos for

training and testing according to their upload time stamps.

We sort the photos of each user by timestamp, assign the

first 90% of the images to the training set, and assign the re-

maining photos to the validation and test sets. This results

in a training set of N = 50.6 million photos, a validation

set of 1 million images, and a test set of 4 million images.

Taken together, the dataset contains 265 million hashtags

for an average of about 4.7 tags per photo.

4.2. Experiment 1: Hashtag Prediction

In the first set of experiments, we use our models to pre-

dict hashtags that are relevant to a given image. We mea-

sure the tagging quality of our models by their ability to

predict the hashtags associated with the image in terms of

accuracy@k (A@k). We denote the set of the k highest-

scoring hashtags for image In by R
(In)
k , and as before, de-

note the set of hashtags that are associated to that image by

Hn. Accuracy@k is then defined as:

A@k =
1

N

N
∑

n=1

I

[

R
(I)n
k ∩Hn 6= ∅

]

N
. (7)

We evaluate accuracy at k = 1 and k = 10 to measure

(1) how often the top-ranked hashtag is in the ground-truth

hashtag set and (2) how often at least one of the ground-

truth hashtags appears in the 10 highest-ranked predictions.

A key challenge in this task is that different users assign

different hashtags to similar visual content: ideally, tagging

methods assign hashtags that are relevant to the image con-

tent and are of importance to the user under consideration.

In addition to the user-specific model of Section 3.2, we

evaluate four user-agnostic models: (1) a baseline model

that trains a linear logistic regressor on features extracted by

an convolutional network trained on ImageNet (ImageNet);

(2) a network that is trained end-to-end for hashtag predic-

tion using multi-class logistic loss (MCLL); (3) an end-

to-end trained network that uses PPMI hashtag embed-

dings [14] in the negative cosine similarity loss of Equa-

tion 2 (NCSL-PPMI); and (4) an end-to-end trained net-

work that uses the same loss but employs multi-sense hash-

tag embeddings [16] (NCSL-MS). In all experiments, our

convolutional network is a ResNet-50. We evaluate three

user-specific models that share the same architecture and

training approach, but that vary in terms of the convo-

lutional network that feeds image features into the three-

way tensor model (those three networks were trained using

MCLL, NCSL-PPMI, and NCSL-MS, respectively).

Figure 4 presents the tagging accuracy@1 of our four

user-agnostic models three user-specific models on the test

set. Additionally, Table 2 presents the accuracy@10 of

these models, and three additional baselines: (1) a fre-

quency baseline that predicts tags according to their fre-

quency in the training set; (2) a user-specific frequency

baseline that predicts tags according to their frequency for

the user under consideration; and (3) a series of user-

specific models in which we concatenate the embeddings

of the three modalities and score them using a multi-layer

perceptron (MLP) rather than the three-way tensor model.

From the results presented in the figure and the table, we

make five main observations. First, all models clearly out-

perform the (global) frequency baseline and generally per-

form quite well given that each image can be assigned one

of 100, 000 different hashtags. Second, the results show that

training networks from scratch for hashtag prediction sub-

stantially outperforms Imagenet-trained networks, suggest-

ing that the visual variety in ImageNet does not suffice for

hashtag prediction. Third, the user-agnostic model that was

trained using multi-class logistic loss (MCLL) outperforms

user-agnostic trained using negative cosine similarity loss

(NCSL), in particular, in terms of accuracy at 10. Fourth,

all user-specific models significantly outperform the user-

agnostic models, which demonstrates the ability of these

models to capture user-specific features in their predictions.

Fifth, the three-way tensor models substantially outperform

the user-specific frequency baseline and generally outper-
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Table 2. Image tagging: Accuracy@1 (A@1) and accuracy@10

(A@10) of two frequence baselines, four user-agnostic hashtag

prediction models, and six user-specific hashtag prediction mod-

els; see text for details. Higher is better.

Method A@1 A@10

Global frequency 1.68% 9.65%

User-specific frequency 38.07% 62.55%

u
se

r-
a

g
n

o
st

ic Imagenet 17.21% 40.01%

MCLL 29.24% 56.47%

NCSL-PPMI 28.72% 47.70%

NCSL-MS 27.94% 46.65%

u
se

r-
sp

ec
ifi

c

MLP (MCLL) 35.58% 65.58%

MLP (NCSL-PPMI) 37.31% 67.68%

MLP (NCSL-MS) 41.66% 71.34%

Tensor (MCLL) 41.24% 70.75%

Tensor (NCSL-PPMI) 40.43% 68.86%

Tensor (NCSL-MS) 43.65% 72.12%
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Figure 5. Image tagging: Accuracy@1 (A@1) of user-agnostic

and respective user-specific tensor model as a function of the num-

ber of images by the user.

form the user-specific MLP baselines models, which sug-

gests three-way tensor models are best suited for tailoring

predictions based on visual content to a particular user. The

highest accuracy is obtained by a three-way tensor model

on top of a convolutional network trained using NCSL-MS,

which is surprising because that network has the lowest ac-

curacy of the user-agnostic models.

In Figure 5, we break down the tagging accuracy of our

models per user by measuring accuracy as a function of

the number of training images the models observed for that

user. We show the accuracy break-down for the best per-

forming user-agnostic model (MCLL) and its correspond-

ing tensor model. The figure shows that the user-agnostic

model works well across all users, but tends to perform bet-

a) User-agnos�c image tagging

b) User-speciic image tagging

user-agnos�c user-speciic ground-truth

#nyc
#night
#people
#new york
#bw

#autumn
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#water
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#new york city
#nyc
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previous hashtags by user:user B

previous hashtags by user:user C

Figure 6. Image tagging: Example tagging results from the user-

agnostic (MCLL) and user-specific (Tensor NCSL-MS) models.

ter for users with large image libraries. We surmise this ef-

fect is due to the fact that those users have provided the ma-

jority of the images in our training set, as a result of which

they dominate the data distribution. For the user-specific

tagging model, we observe a stronger relationship between

accuracy and the number of images per user. Whilst the

user-specific model outperforms the user-agnostic one for

all users, the main benefits of the user-specific modeling are

for users with more than approximately 27 uploaded pho-

tos. For users with many photos, the tensor model has more

data that it can use to pin down the user embeddings that

capture their hashtag usage patterns.

Figure 6 shows examples of user-agnostic and user-

specific tagging results. The tag predictions were obtained

using the MCLL model and the Tensor (MCLL) model, re-

spectively. The figure highlights the wide range of visual

concepts that our convolutional networks learned to recog-

nize. This range encompasses objects such as “people”,
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Figure 7. Image tagging: Accuracy@1 (A@1) of the Tensor

(NCSL-MS) model as a function of the user embedding size, E.

“river”, and “trees”; specific instances and locations such

as the “Golden Gate Bridge”, “San Francisco”, and “New

York”; whole-image concepts such as “autumn”; and image

styles such as “black and white”. The bottom part of the fig-

ure highlights the differences between the user-agnostic and

user-specific models. Specifically, it shows tag predictions

the user-agnostic model makes for a photo and predictions

the user-specific model makes for that same photo for a par-

ticular user — we provide insight into the user’s “profile”

by showing the most frequent hashtags for that user.

We observe that the user-specific model can help in

disambiguating (most likely) locations of a photo: e.g.,

it changes its prediction from #nature to #central

park for a user that often tags photos with concepts related

to New York. The user-specific model also can change pre-

dictions into the user’s preferred language (e.g., from En-

glish to Spanish), and it can help in disambiguating fine-

grained categories, such as recognizing the difference be-

tween a rugby and a soccer stadium. We emphasize that all

the information the user-specific model used to make these

disambiguations comes from image-hashtag-user triples;

the model does not employ any additional user metadata.

A key to the user-specific model are the user embeddings

that personalize the mapping between images and hashtags.

Figure 7 shows the accuracy of the top-performing user-

specific model (Tensor NCSL-MS) as a function of the di-

mensionality of the user embedding. The results show that

a substantial number of dimensions is needed, suggesting

that the user embeddings are playing an important role in

the accuracy of the model.

4.3. Experiment 2: HashtagBased Image Retrieval

In a second set of experiments, we study hashtag-based

image retrieval and measure the quality of our models by

their ability to retrieve relevant images given a hashtag

query in terms of precision@k (P@k). We define the set

of the k highest-scoring images for hashtag h, R
(h)
k , and

the set of photos that are labeled with hashtag h, GT (h) =

#circle

#green

#sign

#lego

#star wars

#empire state building

#new york
#travel
#vacation

#new york
#30 rock
#rockefeller plaza

#empire state building
#new york
#skyline

#darth vader
#lego
#star wars

#star wars
#madrid
#exhibition

#cologne
#gamescom

#small
#star wars

#lego
#moc

#igher
#lego
#transformer

#sign
#route
#michigan

#united states
#minnesota
#minneapolis

#highway
#sign
#shield

#green
#clover
#macro

#green
#leaf
#macro

#singapore
#unretouched
#botanic gardens

#gillingham
#theatre
#kent

#california
#circle
#solvang

#wheel
#handpainted
#costa rica

Figure 8. Hashtag-based image retrieval: Top-scoring photos

and corresponding ground-truth hashtags for six hashtag queries.

Results obtained using the user-agnostic MCLL model.
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Figure 9. Hashtag-based image retrieval: Precision@10

(P@10) of four convolutional networks; see text for details.

{I | ∃u : (I, u, h) ∈ T }. Precision@k is then defined as:

P@k =
1

|H|

∑

h∈H

|R
(h)
k ∩ GT (h)|

k
. (8)

We measure P@10 in our experiments, i.e., the fraction of

the 10 top-scoring images that have the query hashtag asso-

ciated with it. A key challenge in this task is that hashtags

can have multiple meanings: ideally, retrieval methods re-

trieve photos corresponding to all meanings of a hashtag.

Figure 9 presents the P@10 on the test set for the four

user-agnostic models that were also used in Section 4.2.

From the results, we make three main observations. First,

similar to the first experiment, the visual variety in Ima-

geNet does not suffice for hashtag-based image retrieval,

as reflected in the low precision of the ImageNet model.

Second, multi-sense embeddings (MS) seem more suitable

for training with the negative cosine similarity loss (NCSL)

than PPMI embeddings, presumably, because they are bet-

ter at modeling ambiguous hashtags. Third, we observe that

the network that was trained using multi-class logistic loss

(MCLL) substantially outperforms all other models.

We emphasize that not every relevant photo for a hash-

tag query is also labeled with that hashtag, which gives rise

to the relatively low precision values in Figure 9. We show

qualitative image-retrieval results produced by the MCLL

model in Figure 8, which suggest that many of the retrieved

photos are actually relevant to the hashtag queries, even if

they are not labeled as such. More importantly, Figure 8

illustrates the wide variety of visual concepts our models

learned to recognize; the concepts recognized range from

simple shapes and colors to fine-grained concepts and indi-

vidual instances of architectural landmarks. Figure 1 shows

an example of images retrieved by our user-specific model

for the same query, #rock, for two different users; it illut-

strates how modeling the user can disambiguate hashtags.

In Figure 10, we break down the image-retrieval pre-

cision by the frequency of the hashtags we query. The

plot shows that: (1) retrieval performance is higher for fre-

quent tags and (2) the difference between the MCLL model
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Figure 10. Hashtag-based image retrieval: Precision@10

(P@10) of four convolutional networks as a function of the fre-

quency of the hashtag query. Higher is better.

and the NCSL models is primarily in the long tail of less

frequent tags. When evaluated on the 1, 000 most fre-

quent tags, the classification and the multi-sense embedding

model achieve a very similar precision@10 of 47%.

We surmise the relatively poor performance of the

embedding-regression (NCSL) models in our image-

retrieval experiments is due to the hashtag embeddings be-

ing fixed in those models, whereas they are learned jointly

with the visual features in the classification model. This re-

duces the effective capacity of embedding-regression mod-

els, resulting in weaker performances. This limitation is

alleviated in the user-specific model, in which all embed-

dings are learned jointly. For example, we observe compet-

itive performance of the tensor model that builds on NCSL-

trained convolutional networks in the tagging experiments.

5. Conclusion and Future Work

This paper trained convolutional networks from scratch

to perform hashtag prediction, and extended these networks

with a three-way tensor model that learns user embeddings

jointly with the final prediction model. This allows us to

tailor the model’s prediction to a specific user at test time.

We used two different approaches for training the convo-

lutional networks: a standard classification approach and

an approach that regresses onto pre-learned hashtag embed-

dings. The classification approach performs consistently

well across all tasks, whereas the embedding-regression ap-

proach mainly performs well for (user-specific) image tag-

ging. Generally, the user-specific approach substantially

outperforms the user-agnostic models demonstrating the

ability to capture user-specific features in the predictions.

In future work, we plan to re-visit user-specific image re-

trieval in settings with explicit relevance information. Other

directions for future work include modeling user meta-

data [5] as well as spatial and temporal patterns [19].
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