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Figure 1: Our end-to-end method retargets a given input motion (top row), to new characters with different bone lengths and

proportions, (middle and bottom row). The target characters are never seen performing the input motion during training.

Abstract

We propose a recurrent neural network architecture with

a Forward Kinematics layer and cycle consistency based

adversarial training objective for unsupervised motion re-

targetting. Our network captures the high-level properties

of an input motion by the forward kinematics layer, and

adapts them to a target character with different skeleton

bone lengths (e.g., shorter, longer arms etc.). Collecting

paired motion training sequences from different characters

is expensive. Instead, our network utilizes cycle consistency

to learn to solve the Inverse Kinematics problem in an un-

supervised manner. Our method works online, i.e., it adapts

the motion sequence on-the-fly as new frames are received.

In our experiments, we use the Mixamo animation data 1 to

test our method for a variety of motions and characters and

achieve state-of-the-art results. We also demonstrate motion

retargetting from monocular human videos to 3D characters

using an off-the-shelf 3D pose estimator.

* Most of this work was done during Ruben’s internship at Adobe.
1https://www.mixamo.com. See details in Section 5.

1. Introduction

Imitation is an important learning scheme for agents to

acquire motor control skills [32]. It is often formulated as

learning from expert demonstrations with access to sample

trajectories of state-action pairs [3, 15]. However, this first-

person imitation assumption may not always hold since 1)

the teacher and the learner may have different physical struc-

tures, e.g., a human being vs a humanoid robot [4, 33] and

2) the learner may only observe the states of the teacher,

e.g. joint positions, but not the actions that generate these

states [28]. Adapting the motion of the teacher, e.g., a person,

to the learner, e.g., a humanoid robot [2] or an avatar [34, 27],

is often referred as motion retargetting in robotics and com-

puter animation. This paper focuses on retargetting motions

from a source to any target character with a known but dif-

ferent kinematic structure in terms of bone lengths and pro-

portions. Skeletal differences between the source and target

characters create the necessity of disentangling skeleton-

independent features of the source motion and automatically

adapting them to a target character in one shot, ideally with-

out any post-processing optimization and hand-tuning steps.
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Furthermore, a faithful solution needs to ensure the retar-

getted motion to be natural and realistic-looking which has

been a long-standing challenge for animation.

Deep neural networks are known to have the ability to

learn high-level features in sequential data that humans may

not be able to easily identify, and have already achieved

remarkable performance in machine translation [20] and

speech recognition [13]. However, human motions are highly

nonlinear and intrinsically constrained by kinematic struc-

tures of the skeletons. Thus classic sequence models such

as recurrent neural networks (RNNs) may not be directly

applicable to motion retargetting.

In this paper, we propose a novel neural network archi-

tecture to perform motion retargetting between characters

with different skeleton structures (i.e., same topology but

different bone length proportions). Our architecture relies

on an analytic Forward Kinematics layer and two RNNs

that work together to (i) encode the input motion data to

motion features, and (ii) decode the joint rotations of the

target skeleton from the identified features. The forward

kinematics layer takes as input the joint rotations and the

T-pose of a target skeleton, and renders the resulting motion.

This fully differentiable layer forces the network to discover

valid joint rotations by enabling to reason about the realism

of the resulting motion. We use an adversarial training ob-

jective, rooted on the cycle consistency principle [44], to

learn motion retargetting in an unsupervised way. In partic-

ular, the motion retargetted onto a target character should

generate the original motion of the source character when

retargetted back. Furthermore, the generated motion should

be as natural as other known motions of the target character

for an adversarially trained discriminator. The decoder RNN

is conditioned on the target character, and together with the

adverserial training, is able to generate natural motions for

unseen characters as well. In our experiments, we show that

the proposed method can perform online motion retargetting,

i.e., adapting the input motion sequence on-the-fly as new

frames are received. We also use 3D pose estimates from

video sequences, e.g., in Human 3.6M dataset [18], as input

to our network to animate Mixamo 3D characters.

The contributions of our work are summarized below:

• A novel Neural Kinematic Network consisting of two

RNNs and a forward kinematics layer that automatically

discovers the necessary joint rotations (i.e., solution

to the Inverse Kinematics (IK) problem) for motion

retargetting without requiring ground-truth rotations

during training.

• A sequence-level adversarial cycle consistency objec-

tive function for unsupervised learning for motion re-

targetting which does not require input/output motion

pairs of different skeletons during training.

2. Related work

Gleicher [11] first formulated motion retargetting as a

spacetime optimization problem with kinematic constraints

that is solved for the entire motion sequence. Lee and

Shin [22] proposed a decomposition approach that first

solves the IK problem for each frame to satisfy the con-

straints and then fits multilevel B-spline curves to achieve

smooth results. Tak and Ko [35] further added dynamics

constraints to perform sequential filtering to render physi-

cally plausible motions. Choi and Ko [9] proposed an online

retargetting method by solving per-frame IK that computes

the change in joint angles corresponding to the change in

end-effector positions while imposing motion similarity as

a secondary task. While the above-mentioned approaches

require iterative optimization with hand-designed kinematic

constraints for particular motions, our method learns to pro-

duce proper and smooth changes of joint angles (solving

IK) in one-pass feed-forward inference of RNNs, and is able

to generalize to unseen characters and novel motions. The

idea of solving approximate IK can be traced back to the

early blending-based methods [31, 21]. A target skeleton

can be viewed as a new style. Our method can be applied to

motion style transfer that has been a popular research area

in computer animation [6, 17, 29, 40, 42].

Different machine learning algorithms have been used in

modeling human motions. Early works used auto-regressive

RBMs [36] or Gaussian process dynamic models [38, 14] to

learn human motions in small scale. In particular, Grochow

et al. [14] solves IK by constraining the generated poses to

a learned Gaussian process prior. With the surge of deep

learning, a variety of neural networks have been used to

synthesize human motions [10, 16, 19, 7, 25, 23]. These

networks are not applicable to motion retargetting as they di-

rectly generate the xyz-coordinates of joints and thus require

a further post-processing to ensure bone length consistency.

Instead, our method predicts quaternions that represent the

rotation of each joint with respect to the T-pose without ro-

tation supervision, which admits an end-to-end solution to

motion retargetting and also has the potential of synthesizing

kinematically plausible motions. Notably, Jain et al. [19]

model human motions with a spatial-temporal graph that

considers the skeletal structure but not in an analytic form.

Our work is also related to research efforts on “vision as

inverse graphics”. Differentiable rendering layers are incor-

porated into deep neural networks to disentangle imaging

factors of rigid objects, such as 3D shape, camera, normal

map, lighting and materials [41, 30, 37, 24]. Wu et al. [39]

further incorporated a differentiable physics simulator [8] to

disentangle physical properties of multiple rigid objects. Our

network disentangles the hierarchical rotations of articulated

skeletons through a differentiable forward kinematics layer.
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Figure 2: Forward kinematics from T-pose skeleton. Starting

from the input skeleton, the forward kinematics layer rotates

bones to achieve the desired output configuration.

3. Background

We first introduce some concepts in robotics and com-

puter animation essential for building our model.

3.1. Forward kinematics

Forward kinematics (FK) refers to the process of com-

puting the positions of skeleton joints, also known as

end-effectors, in 3D space given the joint rotations and ini-

tial positions. FK is performed by recursively rotating the

joints of an input skeleton tree starting from the root joint

and ending in the leaf joints, and is defined by:

pn = pparent(n) +Rns̄n,

where pn ∈ R
3 is the updated 3D position of the n-th joint

and pparent(n) ∈ R
3 is the current position of its parent.

Rn ∈ SO(3) is the rotation of the n-th joint with respect to

its parent. s̄n ∈ R
3 is the 3D offset of the n-th joint relative

to its parent in the input skeleton, and is defined by:

s̄n = p̄n − p̄parent(n),

Note that p̄n and p̄parent(n) refer to joint positions in the

input T-pose skeleton as depicted in Figure 2.

3.2. Inverse kinematics

While FK refers to computing the 3D joint locations by

recursively applying joint rotations, inverse kinematics (IK)

is the reverse process of computing joint rotations R1:N

that ensure specific joints are placed at the desired target

locations p1:N starting from initial positions p1:N0 . Thus, IK

is defined by:

R1:N = IK(p1:N , p1:N0 ).

IK is inherently an ill-posed problem. Target configuration

of joint locations can be fulfilled by multiple joint rotations

or no joint rotations. Classic IK solutions often resort to iter-

ative optimization by calculating the inverse Jacobian of the

highly nonlinear FK function numerically or analytically.

4. Method

In this section, we present our proposed method for un-

supervised motion retargetting. There are two main com-

ponents: (i) the neural kinematic network architecture for

skeleton conditioned motion synthesis, and (ii) the adver-

sarial cycle consistency training for unsupervised motion

retargetting. We next describe these components in detail.

4.1. Neural kinematic networks

Our neural kinematic networks for motion synthesis com-

ponent is built to strictly manipulate a target skeleton, which

we refer as condition skeleton, into performing a given mo-

tion sequence performed by another source skeleton through

a Forward Kinematics layer.

In our setup, the input motion data x1:T is decomposed

into p1:T and v1:T , where for each time t, pt ∈ R
3N rep-

resents the local xyz-configuration of the skeleton’s pose

with respect to its root joint (i.e., hip joint), and vt ∈ R
4

represents the global motion of the skeleton’s root joint (i.e.,

x,y,z-velocities and rotation with respect to the axis perpen-

dicular to the ground). Given the condition skeleton, the

motion synthesis module outputs the rotations, Rn
t , that are

then applied to each joint n at time t, as well as the global

motion parameters.

4.1.1 Forward kinematics layer

At the core of our neural kinematic networks for motion syn-

thesis component lies the Forward Kinematics layer (Figure

2) which is designed to take in 3D rotations for each joint

n at time t parameterized by unit quaternions qnt ∈ R
4, and

apply them to a skeleton bone configuration s̄n. A quater-

nion extends a complex number in the form r+x✐+y❥+z❦

and is used to rotate objects in 3 dimensional space, where r,

x, y, and z are real numbers and ✐, ❥, ❦ are quaternion units.

The rotation matrix corresponding to an input quaternion is

calculated as follows:

Rn
t =

(

1−2(qntj
2+qntk

2) 2(qntiq
n
tj+qntkq

n
tr) 2(qntiq

n
tk−qntjq

n
tr)

2(qntiq
n
tj−qntkq

n
tr) 1−2(qnti

2+qntk
2) 2(qntjq

n
tk+qntiq

n
tr)

2(qntiq
n
tk+qntjq

n
tr) 2(qntjq

n
tk−qntiq

n
tr) 1−2(qnti

2+qntj
2)

)

(1)

Given the rotation matrices Rn
t ∈ SO(3) for each joint,

the FK layer updates the joint positions of the condition

skeleton by applying these rotations in a recursive manner

as described in Section 3.1 and shown in Figure 2,

p1:Nt = FK(q1:Nt , s̄).

The FK layer serves as a tool for mapping the joint rota-

tions to actual joint locations and thus helps our network to

focus on learning skeleton independent motion features, i.e.,

joint rotations.
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Figure 3: Neural kinematic networks for motion synthesis.

4.1.2 Online motion synthesis

Our proposed neural kinematic networks architecture for

online motion synthesis is shown in Figure 3. Taking ad-

vantage of the temporal coherency in motion sequences, we

synthesize the current motion step at time t by conditioning

on previous steps through an RNN hidden representation.

The current step in the input motion is encoded by:

henc
t = RNNenc(xt, h

enc
t−1;W

enc), (2)

where RNNenc(., .) is an encoder RNN, henc
t is the encoding

of the input motion up to time t, and xt = [pt, vt] is the

current input. The encoded feature is then fed to a decoder

RNN to perform skeleton conditioned motion synthesis by:

hdec
t = RNNdec(x̂t−1, h

enc
t , s̄, hdec

t−1;W
dec), (3)

q̂t =
W pThdec

t

‖W pThdec
t ‖

, (4)

p̂t = FK(q̂t, s̄), (5)

v̂t = W vThdec
t , (6)

x̂t = [p̂t, v̂t] . (7)

where hdec
t is the hidden representation of decoder RNN, x̂t

is the synthesized motion at time step t for the condition

skeleton s̄. The unit vector q̂t ∈ R
4N denotes the rotations

— which can be interpreted as actions — to be applied to

the condition skeleton through the FK layer. The outputs

p̂t and v̂t are the estimated local and global motion of the

condition skeleton. Finally, W enc, W dec, W v ∈ R
d×4 and

W p ∈ R
d×4N are learnable parameters.

When the condition skeleton is different from the skele-

ton where the input motion lives, the decoder is meant to

generate the rotations of a new character to achieve motion

retargetting. Please note that in the rest of the paper, we use

superscripts A or B to refer to the identity of the skeleton

we are retargetting motion from and into.

4.2. Adversarial cycle training for unsupervised
motion retargetting

FK

J

Cycle consistency loss

Twist loss

Adversarial loss

FK

J

RNN RNN

R

S S

C

Twist lossSmooth loss Smooth loss

Figure 4: Adversarial cycle consistency framework.

In Section 4.1, we describe a method for skeleton condi-

tioned motion synthesis based on a forward kinematics layer

embedded within the network architecture. However, train-

ing such a network for motion retargetting is challenging

as it is very expensive to collect paired motion data xA
t and

xB
t where the same motion is performed by two different

skeletons. Note that collecting such data requires using iter-

ative optimization based IK methods in addition to human

hand-tuning of the retargetted motion.

We propose a training paradigm based on the cycle con-

sistency principle [43] and adversarial training [12] for unsu-

pervised motion retargetting (Figure 4). Let f be our neural

kinematic network, and let the superscripts define skeleton

identity. Given an input motion sequence from skeleton A,

we first retarget the input motion to skeleton B and back to

A as follows:

x̂B
1:T = f(xA

1:T , s̄
B), (8)

x̂A
1:T = f(x̂B

1:T , s̄
A), (9)

where x̂B
1:T and x̂A

1:T are synthesized motions for skeletons

B and A, respectively. Therefore, we define four loss terms:

adversarial loss on x̂B
1:T , cycle consistency loss on x̂A

1:T ,

twist loss on rotations q̂A1:T and q̂B1:T , and smoothing loss on

v̂At and v̂Bt , so our full training objective is defined by:

min
f

max
d

C(x̂A
1:T , x

A
1:T ) +R(x̂B

1:T , x
A
1:T )+

λ J(q̂B1:T , q̂
A
1:T ) + ω S(v̂B1:T , v̂

A
1:T ), (10)

where C is the cycle consistency loss, R the adversarial loss,

J the joint twist loss, and S the velocity smoothing loss.

Adversarial loss. The input motion xA
1:T =

[

pA1:T , v
A
1:T

]

,

the synthesized motion x̂B
1:T =

[

p̂B1:T , v̂
B
1:T

]

, and their re-

spective skeleton are fed to a discriminator network g that
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computes a realism score for real and fake motion sequences:

rA = g(pA2:T − pA1:T−1, v
A
1:T−1, s̄

A), (11)

rB = g(p̂B2:T − p̂B1:T−1, v̂
B
1:T−1, s̄

B), (12)

where rA is the output of the discriminator given real data,

and rB is the output of the discriminator given the fake

data (i.e., the motion retargetted by our network into skele-

ton B). The inputs to the discriminator pA2:T − pA1:T−1 and

pB2:T − pB1:T−1 are the local motion difference between two

adjacent time steps, and s̄A and s̄B denote the input and

target skeletons A and B, respectively. During training, we

randomly sample s̄B from all the available skeletons, thus,

it is possible for skeleton B to be the same as skeleton A. In

case skeleton B is the same as skeleton A, x̂B
1:T = x̂A

1:T , we

switch between adversarial and square loss as follows:

R(x̂B
1:T , x

A
1:T ) =

{

‖x̂B
1:T − xA

1:T ‖
2
2, if B = A

log rA + β log(1− rB), otherwise.
,

(13)

When B and A are not the same, we rely on the motion

distributions learned by g as a training signal. By observ-

ing other motion sequences performed by skeleton B, the

discriminator network learns to identify motion behaviors

of skeleton B. The generator (encoder and decoder RNNs)

uses this as indirect guidance to learn how the motion should

be retargetted to B and thus fool the discriminator. When

applying the adversarial loss, we use a balancing term β to

regulate the strength of the discriminator signal when opti-

mizing f to fool g. We use β = 0.001 in our experiments.

Cycle consistency loss. The cycle consistency loss C op-

timizes the following objective:

C(x̂A
1:T , x

A
1:T ) = ‖xA

1:T − x̂A
1:T ‖

2
2. (14)

Equation 14 encourages f to be able to take its own retar-

getted motion and map it back to the original motion source

effectively achieving cycle consistency.

Twist loss. By optimizing the first two terms in Equa-

tion 10, our network discovers the necessary rotations to

move the input skeleton end-effectors to the required posi-

tions for motion retargetting. However, this does not prevent

potential excessive bone twisting since xyz-coordinates can

be perfectly predicted regardless of how many times we ro-

tate a bone around its own axis. Thus, the third term in our

objective constrains the bone rotations around its own axis.

J(q̂B1:T , q̂
A
1:T ) =‖max(0, |eulery(q̂

B
1:T )| − α)‖22+

‖max(0, |eulery(q̂
A
1:T )| − α)‖22, (15)

where eulery(.) converts the quaternion outputs of our net-

work into rotation angles around the standard xyz-axes and

the subscript y means to select the rotation angle around

the plane parallel to the bone (i.e. y-axis). Therefore, any

bone rotation exceeding α degrees in either negative or posi-

tive direction is penalized in our objective function. We use

α = 100◦, and λ = 10 in our experiments.

Smoothing loss. Finally, the first two terms in our objec-

tive function treat global motion at each time step indepen-

dently. However, global motion in consecutive timesteps are

highly dependent on each other, that is, global motion in the

next timestep should change only slightly with respect to the

previous global motion. We constraint the global motion by:

S(v̂B1:T , v̂
A
1:T ) =‖v̂B2:T − v̂B1:T−1‖

2
2+

‖v̂A2:T − v̂A1:T−1‖
2
2, (16)

We use ω = 0.01 in our experiments.

5. Experiments

Dataset. We evaluate our method on the Mixamo

dataset [1] which contains approximately 2400 unique mo-

tion sequences for 71 characters (i.e., skeletons). For train-

ing, we collected non-overlapping motion sequences for 7

characters (AJ, Big Vegas, Goblin Shareyko, Kaya, Malcolm,

Peasant Man, and Warrok Kurniawan) which in total results

in 1646 training sequences at 30 frames per second.

For testing, we collected motion sequences for 6 charac-

ters (Malcolm, Mutant, Warrok Kurniawan, Sporty Granny,

Claire, and Liam) and perform retargetting in four scenarios:

• Input motion is seen during training, and the target

character is also seen during training but the target

motion sequence is not.

• Input motion is seen during training but the target char-

acter is never seen during training.

• Input motion is not seen during training but the target

character is seen during training.

• Neither the input motion nor the target character are

seen during training.

Note that we also collected the ground truth retargetted mo-

tions of testing sequences for quantitative evaluation pur-

poses only. While we discuss our main findings below, de-

tailed results and analysis of each scenario and character can

be found in the supplementary material as well as details of

how to acquire the exact training and testing data.

Data preprocessing. Each motion sequence is pre-

processed by separating into local and global motion, similar

to [16]. For local motion, we remove the global displace-

ment (i.e., the motion of the root joint), and rotation around

the axis vertical to the ground. Global motion consists of the

velocity of the root in the x, y, and z directions, and an addi-

tional value representing the rotation around the axis perpen-

dicular to the ground. For training, and testing we use the fol-

lowing 22 joints: Root, Spine, Spine1, Spine2, Neck, Head,
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LeftUpLeg, LeftLeg, LeftFoot, LeftToeBase, RightUpLeg,

RightLeg, RightFoot, RightToeBase, LeftShoulder, LeftArm,

LeftForeArm, LeftHand, RightShoulder, RightArm, Right-

ForeArm, and RightHand.

Baseline methods. While there have been several op-

timization based approaches for the IK problem, most of

these expect the user to provide motion specific constraints

or goals. Since this is not feasible to do at a large scale, we

instead show comparisons to learning based baseline meth-

ods that aim to identify such constraints automatically. The

first baseline is an RNN architecture without the FK layer

that directly outputs xyz-coordinates for the local motion,

and the global motion output is the same as ours. Second,

we use an MLP architecture that lacks recurrent connections,

and directly outputs the xyz-coordinates for the local motion,

and the same global motion output as our method. We also

train both baselines with our adversarial cycle consistency

objective. Finally, we include another baseline that directly

copies the per-joint rotation and the global motion of the

input motion into the target skeleton.

Training and evaluation. We train our method and

baselines by randomly sampling 2-second motion clips (60

frames) from the training sequences, and testing on motion

clips of 4 seconds (120 frames) from the test sequences. We

initialized the quaternion outputs of the decoder RNN to

be close to the identity rotation (i.e., close to zero rotation).

For training the discriminator network, we sample random

motion sequences being performed by the same skeleton into

which the motion synthesis network is retargetting motion.

Details of the network architecture and hyperparameters can

be found in the supplementary material. We perform two

types of evaluations: 1) We evaluate the overall quality of

the motion retargetting using a target character normalized

Mean Square Error (MSE) on the estimated joint locations

through time (i.e., xyz-coordinates after combining local and

global motion together). 2) We compare end-effector loca-

tions through time against the ground-truth. 3) We show

qualitative results by rendering the animated 3D characters

using the outputs of our network.

5.1. Online Motion Retargetting From Character

In this section we evaluate our method on the task of

online motion retargetting, i.e., retargetting motion from one

character to a target character as new motion frames are

received. We present an ablation study to demonstrate the

benefits of the different components of our method, and also

compare against the previously described baselines. In Ta-

ble 1, we report the average MSE of the retargetted motion

when our network is trained with different objectives: 1)

Our skeleton conditioned motion synthesis network (Sec-

tion 4.1) trained with the autoencoder objective (i.e., input

reconstruction) and the bone twisting constraint only. 2) Our

network trained with the cycle consistency objective without

Method MSE

Ours: Autoencoder Objective 10.25

Ours: Cycle Consistency Objective 8.51

Ours: Adversarial Cycle Consistency Objective 7.10

Baseline: Conditional RNN 13.65

Baseline: Conditional RNN + Adv. Cycle Consistency 26.93

Baseline: Conditional MLP 17.02

Baseline: Conditional MLP + Adv. Cycle Consistency 16.96

Baseline: Copy input quaternions and velocities 9.00

Table 1: Quantitative evaluation of online motion retargetting

using mean square error (MSE).

adversarial training. Specifically, the "otherwise" branch

in Equation 13, returns 0. 3) Our network trained with our

full adversarial cycle consistency objective function which

requires examples of motions performed by skeleton B but

not paired with any motions used as inputs during training.

As it can be seen in Table 1, simply using the proposed

FK layer within RNNs and training with an autoencoder

objective (Ours: Autoencoder Objective), outperforms all

standard neural network based baselines. One explanation is

that it is highly probable for the baselines to ignore the bone

lengths of the target skeleton, and learn a motion represen-

tation that is dependent on the input skeleton. The inability

to disentangle motion properties from the input skeleton is

more evident after training with our adversarial cycle con-

sistency objective which still results in poor performance.

The inputs to the discriminator network are velocities, that

is, local motion difference between adjacent time steps and

global motion. While this input contains information about

the shift in joint locations through time, it does not capture

any information about the spatial structure. As a result, opti-

mizing the baselines to fool the discriminator network, does

not impose bone length constraints. Furthermore, encour-

aging velocities to be similar to the real data causes further

bone length degradation (i.e., excessive stretching or shrink-

ing) in absence of such constraints. On the other hand, our

architecture is designed to learn a skeleton invariant motion

representation that can be directly transferred to the target

skeleton through the FK layer.

The performance of our method improves when train-

ing our motion synthesis network with the proposed objec-

tives for cycle consistency and adversarial cycle consistency.

While training with the autoencoder objective results in rea-

sonable performance, often the network tries to match end-

effector locations but does not fully capture the properties of

the input motion. For example, when an input motion of a

small character raising its hands is retargetted to a very tall

character, the tall character is likely not able to raise its hands

but only point in the same direction as the input motion. Our

network improves when trained with the cycle consistency

objective alone. In the example of motion retargetting from

a small to a tall character, cycle consistency loss prevents the

8644



O
ur

s
C

op
y 

Q
ua

te
rn

io
ns

G
ro

un
dt

ru
th

In
pu

t M
ot

io
n

Figure 5: Qualitative evaluation. We present a motion retargetting example of our method against the best baseline. Motion is

retargetted from character Claire into Warrok Kurniawan (left) and Sporty Granny to Malcolm (right). Plots illustrating the

left/right feet and hand end-effectors’ height comparing against the groundtruth are shown at the bottom. Arrows in the plots

determine the time steps of the shown animation frames. Please visit goo.gl/mDTvem for animated videos.

tall character from directly matching end-effector positions

of the small character as retargetting back to the small char-

acter would have resulted in stretching the limbs in the small

character. The cycle consistency encourages the network to

better learn the high level features of the input motion.

Finally, our method performs the best when our objective

imposes both cycle consistency and realism via the full adver-

sarial cycle consistency objective. The adversarial training

helps the network to produce motions that cannot be distin-

guished from realistic motions of the target character.

The baseline "Copy input quaternions and velocities"

works better than the neural network baselines due to the fol-
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Figure 6: Qualitative evaluation on human videos. Motion is retargetted from estimated 3D pose from the Human 3.6M dataset

into Mixamo 3D characters using the estimated 3D pose from [26]. Please visit goo.gl/mDTvem for animated videos.

lowing reasons: 1) Copying per-joint rotations of the input

and performing forward kinematics already respects the tar-

get skeleton bone lengths, and 2) copying the velocities (i.e.,

global motion) avoids drifting that prediction models may

suffer from. However, when retargetting motions between

characters with significant skeleton difference, this baseline

is prone to artifacts such as foot floating (see Figure 5). This

baseline is also not scalable to cases where different skeleton

limits or topological structures are considered.

In Figure 5, we show qualitative results where we ani-

mate target characters using the output of our network using

Blender [5], a character animation software. For all the joints

that are not modeled by our network (e.g., the fingers), we

simply directly copy the joint rotations from the input mo-

tion if the corresponding joint names match in the input and

the target skeleton, otherwise we leave them fixed.

5.2. Online Motion Retargetting from Human Video

In this section we present motion retargetting from human

video input into characters using the model trained from the

Mixamo data only. We use the Human 3.6M videos as input,

the algorithm from [26] to estimate the 3D pose of each

frame, and the ground truth 3D skeleton root displacement

(3D pose estimation algorithms usually assume the person

is centered). The videos are subsampled to 25 FPS, and the

estimated 3D poses are processed similar to our previous

experiment. The algorithm in [26] only outputs 17 joints

compared to the 22 joints needed by our network. Therefore,

we manually map the 17 joints to 22 by duplicating the fol-

lowing joint positions in Human 3.6M to corresponding Mix-

amo joints: Spine into Spine and Spine1, LeftShoulder into

LeftShoulder and LeftArm, RightShoulder into RightShoul-

der and RightArm , LeftFoot into LeftFoot and LeftToeBase,

RightFoot into RightFoot and RightToeBase. Note that this

mapping will create bones of zero length during test time.

Thus, our network essentially only sees 17 joints but uses

22 joints as input. During visualization, we do not rotate

joints that are not predicted by our network (i.e., fingers).

As shown in Figure 6, our network is able to generalize to

never-seen skeletons and motions estimated from monocular

human videos. More video results and analyses are included

in supplementary materials.

6. Conclusion and Future Work

We have presented a neural kinematic network with an

adversarial cycle consistency training objective for motion

retargetting. Our network only observes a sequence of xyz-

coordinates of joints from existing animations, motion cap-

ture or 3D pose estimates of monocular human videos, and

transfers the motion to a target humanoid character without

risking skeleton deformations that occur in the baselines.

The success of our method attributes to the following factors:

1) The proposed Forward Kinematics layer helps to discover

joint rotations of target skeleton that are independent of the

input skeleton. 2) The cycle consistency of the retargetting

objective prevents regressing to the end-effector positions

of the input motion. 3) The adversarial objective helps the

network to produce realistic motions. 4) The bone twist

loss constrains the solution space of Inverse Kinematics and

prevents bone twisting in the retargetted motion.

Our current method has limitations. First, we perform

retargetting on a fixed number of joints. Handling a variable

number of joints is challenging as the retargetting algorithm

is expected to automatically select end-effectors of interest

when transferring motions. Second, we assume the envi-

ronment in which the target character is being animated

lacks physical constraints such as gravity. Future work will

include equipping the network with physics simulators to

generate more natural and physically plausible movements

of the target characters with different muscle/bone mass

distributions. Third, the input to our method still requires

3D information (xyz-coordinates of joints). Future work

will also include training our network end-to-end by using

monocular videos as input. That may require the algorithm

to learn view-invariant features.
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