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Abstract

Recent works showed that Generative Adversarial

Networks (GANs) can be successfully applied in unsuper-

vised domain adaptation, where, given a labeled source

dataset and an unlabeled target dataset, the goal is to train

powerful classifiers for the target samples. In particular,

it was shown that a GAN objective function can be used

to learn target features indistinguishable from the source

ones. In this work, we extend this framework by (i) forcing

the learned feature extractor to be domain-invariant, and

(ii) training it through data augmentation in the feature

space, namely performing feature augmentation. While

data augmentation in the image space is a well established

technique in deep learning, feature augmentation has not

yet received the same level of attention. We accomplish it

by means of a feature generator trained by playing the GAN

minimax game against source features. Results show that

both enforcing domain-invariance and performing feature

augmentation lead to superior or comparable performance

to state-of-the-art results in several unsupervised domain

adaptation benchmarks.

1. Introduction

Generative adversarial networks (GANs [10]) are mod-

els capable of mapping noise vectors into realistic samples

from a data distribution. GANs are defined by two neural

networks, a generator and a discriminator, and the training

procedure is a minimax game where the generator is op-

timized to fool the discriminator, and the discriminator is

optimized to correctly classify generated samples from ac-

tual training samples. Recently, this framework proved to

be able to generate images with impressive accuracy [24],

to generate videos from static frames [37], and to translate

images from one style to another [32, 18, 1, 17].

Furthermore, GANs have been exploited in the context

of unsupervised domain adaptation. Here, a source (la-

beled) dataset and a target (unlabeled) dataset are consid-

ered, which are separated by the so-called domain shift [33],

i.e., they are drawn from two different data distributions.

Unsupervised domain adaptation aims at building models

that are able to correctly classify target samples, despite

the domain shift. In this framework, adversarial training

has been used (i) to learn feature extractors that map target

samples in a feature space indistinguishable from the one

where source samples are mapped [8, 34], and (ii) to de-

velop image-to-image translation algorithms [32, 18, 1, 17]

aimed at converting source images in a style that resembles

that of the target image domain.

In this paper, we build on the work by Tzeng et al.

[34], which proposes to use a GAN objective to learn

target features that are indistinguishable from the source

ones, leading to a pair of feature extractors, one for the

source and one for the target samples. We extend this

approach in two directions: (a) we force domain-invariance

in a single feature extractor trained through GANs, and

(b) we perform data augmentation in the feature space

(i.e., feature augmentation), by defining a more complex

minimax game. More specifically, we perform feature

augmentation by devising a feature generator trained with

a Conditional GAN (CGAN [21]). The minimax game is

here played with features instead of images, allowing to

generate features conditioned to the desired classes. The

CGAN generator is thus able to learn the class distribution

in the feature space, and therefore to generate an arbitrary

number of labeled feature vectors. Our results show that

forcing domain-invariance and augmenting features are

both valuable approaches in the unsupervised domain adap-

tation setting, leading to higher classification accuracies.

In summary, the main contributions of this paper are

the following:
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1. Introducing for the first time the use of GANs to per-

form data augmentation in the feature space.

2. Proposing a new method for unsupervised do-

main adaptation, based on feature augmentation and

(source/target) feature domain-invariance.

3. Evaluating the proposed method on unsupervised do-

main adaptation benchmarks (cross-dataset digit clas-

sification and cross-modal object classification), ob-

taining results which are superior or comparable to

current state-of-the-art in most of the addressed tasks.

The remaining of the paper is organized as follows. Sec-

tion 2 is dedicated to the related work. The models and the

training procedure are presented in Section 3. In Section 4,

the datasets used for the analysis and method’s validation

are described. The experiments and associated results are

detailed in Section 5. Finally, conclusive remarks are drawn

in Section 6.

2. Related work

The work related to our proposed method is focused

on GAN research and on modern domain adaptation

techniques (i.e., based on deep learning).

Generative adversarial networks. In the original

formulation by Goodfellow et al. [10], a GAN model is

trained through a minimax game between a generator, that

maps noise vectors in the image space, and a discriminator,

trained to discriminate generated images from real ones.

Several other papers address ways to control what GANs

generate [21, 3, 26]. In particular, CGANs [21] allow to

condition on the desired classes, from which samples are

generated. Other works [7, 6] propose to learn inference by

playing a minimax game against features. In these works,

trained models are feature extractors that map images into

the feature space, not feature generators, which is our

primary goal.

Performing feature augmentation through GANs is

one of the original aspects of our approach. We propose

a generator able to generate features from noise vectors

and label codes, via a CGAN [21] framework, playing a

minimax game with features extracted from a pre-trained

model instead of images.

Unsupervised domain adaptation. Ganin and Lem-

pitsky [8] propose a neural network (Domain-Adversarial

Neural Network, DANN) where a ConvNet-based [16] fea-

ture extractor is optimized to both correctly classify source

samples and have domain-invariant features, through

adversarial training. Different works [35, 19] aim at

minimizing the Maximum Mean Discrepancy [11] between

features extracted from source and target samples, training

a classifier to correctly classify source samples while

minimizing this measure. Bousmalis et al. [2] propose to

learn image representations divided in two components,

one shared across domains and one private, following the

hypothesis that modeling unique elements in each domain

can help to extract features which are domain-invariant.

Tzeng et al. [34] use GANs to train an encoder for

target samples, by making the features extracted with this

model indistinguishable from the ones extracted through

an encoder trained with source samples. The last layer

of the latter can then be used for both encoders to infer

labels. Saito et al. [28] propose an asymmetric tri-training

where pseudo-labels are inferred and exploited for target

samples during training. In particular, two networks are

trained to assign labels to target samples and one to obtain

target-discriminative features. Haeusser et al. [13] propose

to exploit associations between source and target features

during training, to maximize the domain-invariance of

the learned features while minimizing the error on source

samples.

Recently, several image-to-image translation methods

have been proposed to solve unsupervised domain adapta-

tion tasks. Taigman et al. [32] propose the Domain Trans-

fer Network (DTN), that allows to translate images from a

source domain to a target one, under a f -constancy con-

straint, where f is a generic function that maps images in

a feature space. Translated images result portrayed in the

target images’ style, while maintaining the content of the

images fed in input. Liu and Tuzel [18] introduce Cou-

pled GAN (CoGAN), an extension of GAN that allows to

model a joint distribution P (X,Y ) and to generate cou-

ples of images from noise vectors, one belonging to P (X)
and one to P (Y ). This model can be applied to image-to-

image translation tasks: fixing one image, the noise vector

that most likely could have generated that picture can be in-

ferred and, feeding it to the model, the second image is gen-

erated. Bousmalis et al. [1] propose to train an image-to-

image translation network relying on both a GAN loss and

a task-specific loss (and in problems with prior knowledge,

also a content-specific loss). The resulting network takes in

input both an image and a noise vector, that allows to gener-

ate a potentially infinite number of target images. Liu et al.

[17] propose UNIT, an extension of CoGAN that relies on

both GANs and Variational Auto-Encoders, and makes the

assumption of a shared latent space. Image-to-image trans-

lation methods [32, 18, 1, 17] are applied to unsupervised

domain adaptation by generating target images and training

classifiers directly on them.

The domain-invariant feature extractor we designed is

inspired by Tzeng et al. [34], with two main differences.

First, we play the minimax game against features which

are generated by a pre-trained model, thus performing fea-

ture augmentation. Second, we train the feature extractor
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Figure 1. Training procedure, representing the steps described in Section 3.1. Solid lines indicate that the module is being trained, dashed

lines indicate that the module is already trained (from previous steps). All modules are neural networks, whose architectures are detailed

in Section 5.1. Smaller, dashed panels in the bottom indicate how to generate features (left) and how to infer source or target labels (right).

in order to make it work for both source and target samples

(thus achieving domain-invariance), avoiding catastrophic

forgetting. Both modifications lead to higher accuracies in

classifying target samples, as we will show in Section 5.

Domain-invariance also allows to use the same feature ex-

tractor for both source and target samples, while in Tzeng

et al. [34] two different encoders are required.

3. Model

Our goal is to train a domain-invariant feature extractor

(EI ), whose training procedure is made more robust by data

augmentation in the space of source features. The training

procedure we designed to accomplish our intent is based

on three different steps, depicted in Figure 1. First, we

need to train a feature extractor on source data (C ◦ Es).

This step is necessary because we need a reference fea-

ture space and a reference classifier that performs well on

it. Secondly, we need to train a feature generator (S) to

perform data augmentation in the source feature space. We

can train it by playing a GAN minimax game against fea-

tures extracted through ES . Finally, we can train a domain-

invariant feature extractor (EI ) by playing a GAN minimax

game against features generated through S. This module

can then be combined with the softmax layer previously

trained (C ◦ EI ) to perform inference on both source and

target samples. All modules are neural networks trained by

backpropagation [27]. In the following sections, we detail

how each Step is performed, how new features can be gen-

erated, and how source/target labels can be inferred.

3.1. Training

Step 0. The model C ◦ Es is trained to classify source

samples. Es represents a ConvNet feature extractor and C

represents a fully connected softmax layer, with a size that

depends on the problem. The optimization problem consists

in the minimization of the following cross-entropy loss (CE

Loss in Figure 1):

min
θEs

,θC
ℓ0 = E(xi,yi)∼(Xs,Ys)H(C ◦ Es(xi), yi), (1)

where θEs
and θC indicate the parameters of Es and C,

respectively, Xs, Ys are the distributions of source samples

(xi) and source labels (yi), respectively, and H represents

the softmax cross-entropy function.

Step 1. The model S is trained to generate feature

samples that resemble the source features. Exploiting the

CGAN framework, the following minimax game is defined:

min
θS

max
θD1

ℓ1 = E(z,yi)∼(pz(z),Ys)‖D1(S(z||yi)||yi)− 1‖2

+ E(xi,yi)∼(Xs,Ys)‖|D1(Es(xi)||yi)‖
2, (2)

where θS and θD1
indicate the parameters of S and

D1, respectively, pz(z) is the distribution1 from which

noise samples are drawn, and ‖ denotes a concatenation

operation. In this and the following steps, we relied on

Least Squares GANs [20] since we observed more stability

during training.

Feature generation. In order to generate an arbitrary

1Uniform in the range [−1, 1] throughout this work.
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number of new feature samples, we only need S, which

takes as input the concatenation of a noise vector and a

one-hot label code, and outputs a feature vector from the

desired class:

F (z|y) = S(z||y) (3)

where z ∼ pz(z) and F is a feature vector belonging to the

class label associated with y (dashed box in Figure 1, left).

Step 2. The domain-invariant encoder EI is trained

via the following minimax game, after being initialized

with weights optimized on Step 0 (note that ES and EI

have the same architecture), a requirement to reach optimal

convergence:

min
θEI

max
θD2

ℓ2 = Exi∼Xs∪Xt
‖D2(EI(xi))− 1‖2 (4)

+ E(z,yi)∼(pz(z),Ys)‖D2(S(z||yi))‖
2,

where θEI
and θD2

indicate the parameters of EI and D2,

respectively. Since the model EI is trained using both

source and target domains, the feature extractor results

domain-invariant. In particular, it maps both source and tar-

get samples in a common feature space, where features are

indistinguishable from the ones generated through S. Be-

ing the latter trained to produce features indistinguishable

from the source ones, the feature extractor EI can be com-

bined with the classification layer of Step 0 (C) and used

for inference (as in Tzeng et al. [34]):

ỹi = C ◦ EI(xi), (5)

where xi is a generic image from the source or the target

data distribution and ỹi is the inferred label (dashed box in

Figure 1, right).

4. Datasets

To evaluate our approach, we used several benchmark

splits of public source/target datasets adopted in domain

adaptation.

MNIST ↔ USPS. Both datasets consist of white dig-

its on a solid black background. We tested two different

protocols: the first one (P1) consists in sampling 2, 000
MNIST [16] images and 1, 800 USPS [5] images. The sec-

ond one (P2) consists in using the whole MNIST training

set, 50, 000 images, and dividing USPS in 6, 562 images for

training, 2.007 for testing, and 729 for validation. For P1,

we tested the two directions of the split (MNIST→ USPS

and MNIST ← USPS). For P2, we tested only MNIST

→ USPS, and we avoided to use the validation set in this

case, too. In both experimental protocols, we resized USPS

digits to 28× 28 pixels, which is the MNIST images’ size.

SVHN → MNIST. SVHN [23] is built with real im-

ages of Street View House Numbers. We used the whole

training sets of both datasets, following the standard pro-

tocol for unsupervised domain adaptation (SVHN training

set contains 73, 257 images), and tested on MNIST test set.

We resized MNIST images to 32× 32 pixels and converted

SVHN to grayscale. We did not use the extra set of SVHN.

SYN DIGITS→ SVHN. This split represents a synthetic-

to-real domain adaptation problem, of great interest for

research in computer vision since, quite often, generating

labeled synthetic data requires less effort than obtaining

large labeled dataset with real examples. SYN DIGITS [8]

contains 500, 000 images belonging to the same SVHN

classes. We tested on SVHN test set.

NYUD (RGB → D). This modality adaptation prob-

lem was proposed by Tzeng et al. [34]. The dataset is

gathered by cropping out tight bounding boxes around

instances of 19 object classes present in the NYUD [29]

dataset. It comprises 2,186 labeled source (RGB) images

and 2,401 unlabeled target (HHA-encoded [12]) depth im-

ages. Note that these are obtained from two different splits

of the original dataset, to ensure that the same instance is

not seen in both domains. The adaptation task is extremely

challenging, due to the very different domains, the limited

number of examples (especially for some classes), and the

low resolution of the cropped bounding boxes.

5. Experiments

In this section, we evaluate our approach. First, we show

that our model S is able to generate consistent and discrimi-

nant feature vectors conditioned on the desired classes. Sec-

ond, we report an ablation study to figure out the benefits

brought by the different steps that compose our approach.

Finally, we compare our method with competing algorithms

on unsupervised domain adaptation tasks.

5.1. Architectures

A detailed description of architectures and hyperparam-

eters used (learning rate, batch sizes, etc.) is reported in the

Supplementary Material. We provide here the details nec-

essary for a basic understanding of the experiments.2.

S is built by the repetition of two blocks, each defined by

a fully connected layer, a Batch Normalization layer [14],

and a Dropout layer [31], followed by a fully connected

layer with tanh activation functions. D1 is a one-hidden-

layer neural network, with a sigmoid hidden unit as output

layer. We defined ES and EI following standard architec-

tures used in unsupervised domain adaptation [8]. In partic-

2Models were implemented using Tensorflow, and training procedures

were performed on a NVIDIA Titan X GPU. Code will be made available

at https://github.com/ricvolpi
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Figure 2. t-SNE plots of features associated with different adopted datasets (MNIST, SVHN, SYN, USPS). For each dataset, in the left part

of the panels, red and blue dots indicate real and generated features, respectively. In the right part of the panels, different colors indicate

different classes.

ular, for SVHN→MNIST, MNIST→ USPS and USPS→
MNIST, we defined the network as conv-pool-conv-pool-

fc-fc-softmax (with Dropout [31] on fully connected layers

for MNIST ↔ USPS experiments). For SYN → SVHN,

conv-pool-conv-pool-conv-fc-fc-softmax. For the NYUD

experiment, in order to be comparable with [34], we used

a VGG-16 [30] pretrained on ImageNet [4]. The final fea-

ture dimensionality (e.g., the size of the feature vector fed

to the softmax layer) was set to 128 for all experiments,

except for SYN → SVHN (256). D2 is built with two or

three fully connected layers (depending on the experiment)

with a sigmoid unit on top. Note that for the NYUD exper-

iment we used three hidden layers, while Tzeng et al. [34]

built the discriminator with two, since our method requires

an additional one to reach convergence. For all our exper-

iments, we used Adam optimizer [15] with momentum set

to 0.95. ReLU [22] units were used throughout the archi-

tectures, except for last layers of discriminators, defined as

sigmoid units, last layer of S, whose activation functions

are tanh, and D2, which was built with Leaky ReLU units,

in agreement with the findings of Radford et al. [24].

5.2. Generating features

We qualitatively show with t-SNE [36] that we can

generate feature vectors from the desired classes, after

having trained S as described in Section 3.1. Figure 2

shows comparisons between real and generated features

for different datasets. For each dataset, two identical point

clouds are represented: the bi-color side (at the left of

each panel), highlights real and generated samples (in red

and blue, respectively); the multi-color side (at the right of

each panel) highlights instead the different classes. From a

Table 1. Second column: number of activation patterns (APs)

among the features extracted from training data. Third column:

number of APs that S is able to generate. Fourth column: clas-

sification accuracy of the generated features, accordingly to given

labels.

Dataset #APs ES(x) #APs S(z‖y) Accuracy

SVHN 69, 625 0.974
USPS 1, 422 ∼ 10

6 0.998
MNIST 1, 910 0.995
NYUD 19 ∼ 10

3 0.998
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Figure 3. Accuracies on target samples evaluated throughout the training of the feature extractors of LS-ADDA (green), DI (orange) and

DIFA (blue). Inference was performed by combining the feature extractor being learned with C of Step 0, Section 3.1. In the NYUD

experiment the green curve is missing due to non-convergence of LS-ADDA. SVHN → MNIST and SYN → SVHN plots were obtained

averaging over three different runs; confidence bands are portrayed.

qualitative point of view, real and generate features appear

indistinguishable, and class structure is preserved. To

quantitatively measure the quality of the features generated,

we fed them to the classifier C trained with the original

samples for class estimation. Table 1 (fourth column)

shows that such features are also quantitatively reliable,

and this is valid for all the datasets considered.

Feature augmentation. Finally, we are interested in

evaluating the variability of the features generated through

S to figure out whether (i) the model is memorizing

the features from the training set, and (ii) it is realistic

to assume that we are performing data augmentation in

the feature space. To shed light on these two questions,

we decided to perform the following empirical test: we

counted the number of activation patterns (APs) that S is

able to generate, and compared it with the ones intrinsically

available in the original dataset. An activation pattern

is defined by thresholding the output of the activation

functions of the hidden state of a network. Raghu et al.

[25] defined this concept for ReLUs [22], where values

greater than zero are set to one, the others to zero. For our

purposes, we can apply the same rule even if we are using

tanh activation functions. For example, SVHN has 73, 257
samples that - with the feature extractor we used for our

experiments - correspond to 69, 625 activation patterns.

S can instead generate a number of activation patterns

in the order of 106 (counted empirically, feeding noise

to S till saturation), indistinguishable from the original

ones due to the training procedure defined in Section 3.1.

Table 1 reports the results associated with the other datasets

considered. Interestingly, activation patterns associated

with the 2, 186 source samples of NYUD are only 19: each

pattern is associated with a different class. This is most

likely due to overfitting: the network is already explicitly

encoding classes at feature level. However, the generator S

can enrich the feature set to a broad extent.

5.3. Ablation study

We carried out an ablation study to evaluate the bene-

fit brought by the introduced modifications to the current

way of using GAN objectives in unsupervised domain adap-

tation. Since the Least Squares GAN [20] framework is

required to solve Step 1 and Step 2 of our method (Sec-

tion 3.1), we re-designed the ADDA algorithm [34] in this

framework as a baseline, and from this point we imple-
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Table 2. Comparison of our method with competing algorithms. The row LS-ADDA lists results obtained by our implementation of Least

Squares ADDA. The row Ours (DI) refers to our approach in which only domain-invariance is imposed. The row Ours (DIFA) refers to

our full proposed method, which includes feature augmentation. (*) DTN [32] and UNIT [17] use extra SVHN data (531, 131 images).

(**) Protocols P1 and P2 are mixed in the results section of Bousmalis et al. [1]. Convergence not reached is indicated as no conv.

SVHN→MNIST MNIST→USPSP1 MNIST→USPSP2 USPS→MNIST SYN→SVHN NYUD

Source 0.682 0.723 0.797 0.627 0.885 0.139

DANN [8, 9] 0.739 0.771 ± 0.018 [34] - 0.730 ± 0.020 [34] 0.911 -

DDC [34] 0.681 ± 0.003 0.791 ± 0.005 - 0.665 ± 0.033 - -

DSN [2] 0.827 - - - 0.912 -

ADDA [34] 0.760 ± 0.018 0.894 ± 0.002 - 0.901 ± 0.008 - 0.211

Tri [28] 0.862 - - - 0.931 -

DTN [32] 0.844* - - - - -

PixelDA** [1] - - 0.959 - - -

UNIT [17] 0.905* - 0.960 - - -

CoGANs [18] no conv. [34] 0.912 ± 0.008 0.957 [17] 0.891 ± 0.008 - -

LS-ADDA 0.743 ± 0.028 0.914 ± 0.000 0.912 ± 0.003 0.910 ± 0.004 0.908 ± 0.004 no conv.

Ours (DI) 0.851 ± 0.026 0.914 ± 0.000 0.954 ± 0.002 0.879 ± 0.005 0.925 ± 0.002 0.287 ± 0.002

Ours (DIFA) 0.897 ± 0.020 0.923 ± 0.001 0.962 ± 0.002 0.897 ± 0.005 0.930 ± 0.002 0.313 ± 0.002

Target 0.992 0.999 0.999 0.975 0.913 0.468 [34]

mented our peculiar contributions, showing that each one

favourably concurs to improve performance. We term it LS-

ADDA, and it is defined by the following minimax game:

min
θEt

max
θD

ℓ = Exi∼Xt
‖D(Et(xi))− 1‖2 (6)

+ Exi∼Xs
‖D(Es(xi))‖

2,

where Es is the feature extractor trained on source samples

(as the one pre-trained in Step 0, Figure 1), and Et is the

encoder for the target samples that is being trained. D is the

discriminator, as those described in this work.

The second analysis stage lies in imposing domain-

invariance, and this is carried out by solving the following

minimax problem:

min
θEI

max
θD

ℓ = Exi∼Xs∪Xt
‖D(EI(xi))− 1‖2 (7)

+ Exi∼Xs
‖D(Es(xi))‖

2,

where EI is the shared encoder for the source and target

samples that is being trained, and the rest of the modules

are the same described above. This represents our first

notable contribution, which we call DI (short for DI LS-

ADDA, as this architecture introduces domain-invariance to

LS-ADDA). Finally, the third analysis stage is constituted

by our complete proposed approach, in which the minimax

game also embeds the feature augmentation procedure (de-

scribed in Step 2 of Section 3.1). We term it DIFA (Domain-

Invariance + Feature Augmentation). For each of the three

architectures proposed in this ablation study, we finally end

up with an encoder that can be combined with the module

C trained in Step 0 (see Figure 1). We tested these algo-

rithms on the benchmark splits detailed in Section 4. Fig-

ure 3 shows the evolution of the performance of these three

Table 3. Difference in accuracy between training and test source

data, by classifying with C ◦ ES and C ◦ EI . Source test data is

not provided for NYUD [34]. EI does not experience catastrophic

forgetting and generalizes well on unseen source data (test).

Dataset ES → EI(training) ES → EI(test)

USPS 0.975→ 0.973 0.980→ 0.979

MNIST (P1) 1.000→ 0.997 0.960→ 0.961

MNIST (P2) 0.997→ 0.986 0.992→ 0.984

SVHN 0.982→ 0.883 0.905→ 0.856

SYN 0.998→ 0.996 0.995→ 0.994

NYUD 1.000→ 1.000 test set n.a.

frameworks throughout the minimax games: green curves

are associated with LS-ADDA, orange curves are associated

with DI, and blue curves are associated with DIFA. The val-

ues reported in the bottom part of the plots indicate the av-

erage and the standard deviation calculated over the final

stages of training, i.e., when the minimax game reaches a

stability point, despite oscillations. For the splits SVHN→
MNIST and SYN→ SVHN, we averaged over three differ-

ent runs, due to some instability in the equilibriums reached,

that can be observed in Figure 3. The general trend is that

enforcing domain-invariance (DI) brings a first improve-

ment (except in the MNIST→ USPS (P1) experiment), and

feature augmentation (DIFA) adds a further increment. In

NYUD, LS-ADDA cannot converge.

The only exception is USPS → MNIST, where LS-

ADDA is the best performing method. Note that we did not

report experiments related to embedding feature augmenta-

tion without domain-invariance because it performs poorly,

due to high instability.
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5.4. Comparisons with other methods

Table 2 reports our findings and results obtained by the

other works in the literature. The first row reports accu-

racies on target data achieved with non-adapted classifiers

trained on source data, and the last row reports accuracies

on target data achieved with classifiers trained on target data

(oracle). Our main contributions lie in forcing the domain-

invariance in the GAN minimax game (DI) and further im-

proving it with feature augmentation (DIFA). A difficulty in

unsupervised domain adaptation is determine the fair accu-

racy reached by each method, since cross-validation is not

feasible (target labels should be used only to evaluate the

method at the end of the training procedure). We believe

that a fair way is the one we proposed in the previous sec-

tion (mean ± std calculated over the last iterations), since

choosing a single value would be arbitrary and unfair in

stochastic training procedures (e.g., see SVHN → MNIST

and SYN→ SVHN in Figure 3).

Results show that our approach based on domain-

invariance and feature augmentation leads to accuracies

comparable or higher to current state-of-the-art in several

unsupervised domain adaptation benchmarks. Among the

splits we tested, the only exception is USPS → MNIST,

where ADDA [34] and our implementation of it (LS-ADDA)

perform better - with the drawback of having two differ-

ent feature extractors for source/target samples. In SVHN

→ MNIST, our approach gives results comparable to cur-

rent state-of-the-art (UNIT [17]), but it must be noted that

the latter was achieved by making use of extra SVHN set

(531, 131 images), making the result difficult to interpret.

In MNIST→ USPS (P2) we perform better or comparably

to any other method that was tested on it. Also note that all

those methods [1, 18, 17] rely on the generation of target

images to perform adaptation, and that [1, 17] rely on addi-

tional hyperparameters - a severe drawback in unsupervised

domain adaptation, where cross-validation is not applicable.

In SYN → SVHN, our method is statistically comparable

with the one proposed by Saito et al. [28]. In this case, it

is also worth noting that the adapted feature extractor per-

forms better than a neural network trained on SVHN (tar-

get) training set (see Table 2, last row). This opens a wide

range of possibility of using synthetic data, which are much

easier to obtain than labeled, real data in real-world appli-

cations. In NYUD (RGB→ Depth), we perform better than

ADDA [34] by a large margin. In particular, embedding

both domain-invariance and feature augmentation leads to

an improvement > 10%. We did not include the work by

Haeusser et al. [13] in Table 2 because it makes use of

a much more powerful feature extractor (conv-conv-pool-

conv-conv-pool-conv-conv-pool-fc-softmax), which makes

their method hard to compare with other works.

Finally, Table 3 shows the difference of performance on

classifying source samples using C ◦ Es or C ◦ EI . As it

can be observed, the encoder EI (trained following Step 2)

works well on source samples, too. This allows to use the

same encoder for both target and source data, a very useful

feature in an application setting where we might not know

the source of the data. The worst results on source samples,

achieved on SVHN dataset, are most likely due to the large

difference between the source and the target domains.

5.5. Limitations

The main limit of the domain-invariant feature extractor

we designed is the same that can be detected in the works by

Tzeng et al. [34] and by Ganin and Lempitsky [8]. Practi-

cally, all these approaches encourage source and target fea-

tures to be indistinguishable, but this does not guarantee that

target samples will be mapped in the correct regions of the

feature space. In our case and in ADDA’s one, this strongly

depends on the feature extractor trained on source samples:

if the representation is far from being good, the results will

be sub-optimal.

6. Conclusions and future work

In this work, we proposed two techniques to improve

the current usage of GAN objectives in the unsupervised

domain adaptation framework. First, we induced domain-

invariance through a straightforward extension of the orig-

inal algorithm. Second, we proposed to perform data aug-

mentation in the feature space through GANs [10], a novel

application. An exhaustive evaluation was carried out on

standard domain adaptation benchmarks, and results con-

firmed that both approaches lead to higher accuracies on

target data. Also, we showed that the obtained feature ex-

tractors can be used on source data, too.

Results showed that our approach is comparable or supe-

rior to current state-of-the-art methods, with the exception

of a single benchmark. In particular, we performed better

than recent, more complex methods that rely on generat-

ing target images to tackle unsupervised domain adaptation

tasks. This achievement re-opens the debate on the neces-

sity of generating images belonging to the target distribu-

tion: recent results [1, 17] seemed to suggest it.

For future work, we plan to test our approach on more

complex unsupervised domain adaptation problems, as well

as investigate if feature augmentation can be applied to dif-

ferent frameworks, e.g., the contexts where traditional data

augmentation proved to be successful.
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