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Abstract

We propose a large-margin Gaussian Mixture (L-GM)

loss for deep neural networks in classification tasks. Dif-

ferent from the softmax cross-entropy loss, our proposal

is established on the assumption that the deep features of

the training set follow a Gaussian Mixture distribution. By

involving a classification margin and a likelihood regular-

ization, the L-GM loss facilitates both a high classification

performance and an accurate modeling of the training fea-

ture distribution. As such, the L-GM loss is superior to the

softmax loss and its major variants in the sense that besides

classification, it can be readily used to distinguish abnormal

inputs, such as the adversarial examples, based on their

features’ likelihood to the training feature distribution. Ex-

tensive experiments on various recognition benchmarks like

MNIST, CIFAR, ImageNet and LFW, as well as on adversar-

ial examples demonstrate the effectiveness of our proposal.

1. Introduction

Recently, deep neural networks have substantially im-

proved the state-of-the-art performances of various chal-

lenging classification tasks, including image based object

recognition [17, 14, 10], face recognition [25, 36] and speech

recognition [5, 6]. In these tasks, the softmax cross-entropy

loss, or the softmax loss for short, has been widely adopted

as the classification loss function for various deep neural

networks [31, 10, 35, 19, 12]. For example in image classi-

fication, the affinity score of an input sample to each class

is first computed by a linear transformation on the extracted

deep feature. Then the posterior probability is modeled as

the normalized affinity scores using the softmax function.

Finally, the cross-entropy between the posterior probability

∗These two authors contributed equally.
†This work was done when Y. Zhong was with Tsinghua University.
‡Corresponding author.

and the class label is used as the loss function. The soft-

max loss has its probabilistic interpretation in that, for a

large class of distributions, the posterior distribution com-

plies with the softmax transformation of linear functions of

the feature vectors [1]. It can also be derived from a binary

Markov Random Field or a Boltzmann Machine model [3].

However, the relationship between the affinity score and the

probability distribution of the training feature space is vague.

In other words, for an extracted feature, its likelihood to the

training feature distribution is not well formulated.

Several variants have been proposed to enhance the ef-

fectiveness of the softmax loss. The Euclidean distances be-

tween each pair [36] or among each triplet [25] of extracted

features are added as an additional loss to the softmax loss.

Alternatively, in [32] the Euclidean distance between each

feature vector and its class centroid is used. However, under

the softmax loss formulation, the cosine distance based simi-

larity metrics is more appropriate, indicating that using the

Euclidean distance based additional losses may not be the

most ideal choice. Based on this understanding, an angular

distance based margin is introduced in [22] to force extra

intra-class compactness and inter-class separability, leading

to better generalization of the trained models. Nevertheless,

the softmax loss is still indispensable and mostly dominates

the training process in these proposals. Therefore, the prob-

abilistic modeling of the training feature space is still not

explicitly considered.

In this paper we propose a Gaussian Mixture loss (GM

loss) under the intuition that it is reasonable as well as

tractable to assume the learned features of the training set

to follow a Gaussian Mixture (GM) distribution, with each

component representing a class. As such, the posterior prob-

ability can be computed using the Bayes’ rule. The classifi-

cation loss is then calculated as the cross-entropy between

the posterior probability and the corresponding class labels.

To force the training samples to obey the assumed GM dis-

tribution, we further add a likelihood regularization term to

the classification loss. As such, for a well trained model, the

probability distribution of the training features can now be
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(f)

Figure 1. Two-dimensional feature embeddings on MNIST training set. (a) Softmax loss. (b) Softmax loss + center loss [32]. (c) Large-

margin softmax loss [22]. (d) GM Loss without margin (α = 0). (e) Large-margin GM loss (α = 1). (f) Heatmap of the learned likelihood

corresponding to (e). Higher values are brighter. Several adversarial examples generated by the Fast Gradient Sign Method [8] have

extremely low likelihood according to the learned GM distribution and thus can be easily distinguished. This figure is best viewed in color.

explicitly formulated. It can be observed from Fig. 1 that

the learned training features spaces using the proposed GM

loss are intrinsically different from those learned using the

softmax loss and its invariants, by approximately following

a GM distribution.

The GM loss is not just an alternative, it bears several

essential merits comparing to the softmax loss and its invari-

ants. First, incorporating a classification margin into the GM

loss is simple and straightforward so that there is no need to

introduce an additional complicated distance function as is

practiced in the large-margin softmax loss [22]. Second, it

can be proved that the center loss [32] is formally equivalent

to a special case of the likelihood regularization in the GM

loss. However, the classification loss and the regularization

now share identical feature distance measurements in the

GM loss since they are both induced from the same GM

assumption. Last but not the least, in addition to the classi-

fication result, the GM loss can be readily used to estimate

the likelihood of an input to the learned training feature dis-

tribution, leading to the possibility of improving the model’s

robustness, for example, towards adversarial examples.

We discuss mathematic details of the GM loss in Sec-

tion 3. Extensive experimental results on object classifica-

tion, face verification and adversarial examples are shown in

Section 4. We conclude this work in Section 5 .

2. Related Work

The previous efforts for overcoming certain deficiencies

of the softmax loss are inspiring. One of the most widely

studied technical route is to explicitly encourage stronger

intra-class compactness and larger inter-class separability

while using the softmax loss. Y. Sun et al. introduced the

contrastive loss in training a Siamese network for face recog-

nition by simultaneously minimizing the distances between

positive face image pairs and enlarging the distances be-

tween negative face image pairs by a predefined margin [36].

Similarly, F. Schroff et al. proposed to apply such inter sam-

ple distance regularizations on image triplets rather than

on image pairs [25]. A major drawback of the contrastive

loss and the triplet loss is the combinatoric explosion in the

number of image pairs or triplets especially for large-scale

data sets, leading to the significant increase in the required

number of training iterations. The center loss proposed in

[32] effectively circumvents the pair-wise or triplet-wise

computation by minimizing the Euclidean distance between

the features and the corresponding class centroids. However,

such a formulation brings about inconsistency of distance

measurements in the feature space. W. Liu et al. solved this

problem by explicitly introduced an angular margin into the

softmax loss through the designing of a sophisticated differ-

entiable angular distance function [22]. Another technical

route mainly aims at improving the numerical stability of

the softmax loss. Along this line, the label smoothing [31]

and the knowledge distilling [7] are two typical methods of

which the basic idea is to replace the one-hot ground truth

distribution with other distributions that are probabilistically

more reasonable. An interesting recent work proposed by B.

Chen et al. focused on mitigating the early saturation prob-

lem of the softmax loss by injecting annealed noise in the

softmax function during each training iteration [2]. Gener-

ally speaking, all these works aim at improving the softmax

loss rather than reformulating its fundamental assumption.
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It has been revealed that deep neural networks with high

classification accuracies are vulnerable to adversarial exam-

ples [8]. Previous methods for solving this dilemma either

directly included the adversarial samples in the training set

[18] or introduced an new model for detecting the spoofing

samples [24]. Intuitively, however, the features of adversar-

ial examples should follow a probability distribution quite

different from that of the learned training feature space. In

other words, it is possible to better distinguish the adversarial

examples if the distribution of the training feature space can

be explicitly modeled.

3. Gaussian Mixture Loss

In this section, we will formulate the GM loss from a

probability perspective. We will also describe how to ef-

ficiently add a classification margin to the GM loss, after

which the likelihood regularization term in the GM loss is

further discussed. The optimization of the GM loss is also

presented.

3.1. Intuitions

Considering a K class classification task in which the

softmax loss is used. For an input sample with x as its

extracted deep feature vector, its posterior probability of

belonging to a certain class j ∈ [1,K] can be expressed by

Eq. 1, in which the affinity score (logit) fk(x) is usually

calculated by linearly transforming the feature vector x as

is shown in Eq. 2. In practice, the linear functions of all

the K classes are combined to form a linear transformation

layer with all the wk, bk as the trainable parameters. A larger

value of the affinity score fk(x) indicates a higher posterior

probability of x belonging to the class k. However, fk(x)
cannot be directly used to evaluate x’s likelihood to the

distribution of the training features which is not explicitly

formulated at all.

p(j|x) =
efj(x)

∑K

k=1 e
fk(x)

(1)

fk(x) = wT
k x+ bk, k ∈ [1,K] (2)

What is more, since fk(x) is computed through inner

product, the similarity between features in the learned fea-

ture space should be measured using the cosine distance.

However, in the Euclidean distance based regularization is

more widely adopted in softmax variants probably due to

its mathematical simplicity. For example, the Euclidean dis-

tance between the extracted feature and the corresponding

class centroid was used to formulate the center loss LC in

Eq. 3 [32], in which N is the number of training samples; xi

and zi are the extracted feature and the class label of the i-th
sample respectively; and μzi is the feature centroid (mean)

for class zi. Intuitively, such a regularization should be more

reasonable if the similarity measurement can be coherent to

that in the classification loss.

LC =
1

2

N
∑

i=1

‖xi − μzi‖
2
2 (3)

3.2. GM loss formulation

Different from the softmax loss, we hereby assume that

the extracted deep feature x on the training set follows a

Gaussian mixture distribution expressed in Eq. 4, in which

μk and Σk are the mean and covariance of class k in the

feature space; and p(k) is the prior probability of class k.

p(x) =

K
∑

k=1

N (x;μk,Σk)p(k) (4)

Under such an assumption, the conditional probability

distribution of a feature xi given its class label zi ∈ [1,K]
can be expressed in Eq. 5. Consequently, the corresponding

posterior probability distribution can be expressed in Eq. 6.

p(xi|zi) = N (xi;μzi ,Σzi) (5)

p(zi|xi) =
N (xi;μzi ,Σzi)p(zi)

∑K

k=1 N (xi;μk,Σk)p(k)
(6)

As such, a classification loss Lcls can be computed as the

cross-entropy between the posterior probability distribution

and the one-hot class label as is shown in Eq. 7, in which the

indicator function ✶() equals 1 if zi equals k; or 0 otherwise.

Lcls = −
1

N

N
∑

i=1

K
∑

k=1

✶(zi = k) log p(k|xi)

= −
1

N

N
∑

i=1

log
N (xi;μzi ,Σzi)p(zi)

∑K

k=1 N (xi;μk,Σk)p(k)

(7)

Optimizing the classification loss only cannot explicitly

drive the extracted training features towards the GM distri-

bution. For example, a feature xi can be far away from the

corresponding class centroid μzi while still being correctly

classified as long as it is relatively closer to μzi than to the

feature means of the other classes. To solve this problem, we

further introduce a likelihood regularization term for mea-

suring to what extent the training samples fit the assumed

distribution. The likelihood for the complete data set {X,Z}

is expressed in Eq. 8. We define the likelihood regulariza-

tion term as the negative log likelihood shown in Eq. 9. By

reasonably assuming constant prior probabilities p(zi), the

likelihood regularization Llkd can be simplified as Eq. 10.

p(X,Z|μ,Σ) =
N
∏

i=1

K
∏

k=1

✶(zi = k)N (xi;μzi ,Σzi)p(zi)

(8)
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log p(X,Z|μ,Σ) = −
N
∑

i=1

(logN (xi;μzi ,Σzi)+ log p(zi))

(9)

Llkd = −
N
∑

i=1

logN (xi;μzi ,Σzi) (10)

Finally the proposed GM loss LGM is defined in Eq. 11,

in which λ is a non-negative weighting coefficient.

LGM = Lcls + λLlkd (11)

By definition, for the training feature space, the classifica-

tion loss Lcls is mainly related to its discriminative capability

while the likelihood regularization Llkd is related to its prob-

abilistic distribution. Under the GM distribution assumption,

Lcls and Llkd share all the parameters.

3.3. Large-Margin GM Loss

It has been widely recognized in statistical machine learn-

ing that large classification margin on the training set usually

helps generalization, which is also believed to be applicable

in deep learning [28, 22]. Denote xi’s contribution to the

classification loss to be Lcls,i, of which an expansion form

is in Eq. 12 and Eq. 13.

Lcls,i = − log
p(zi)|Σzi |

− 1

2 e−dzi

∑

k p(k)|Σk|−
1

2 e−dk

(12)

dk = (xi − μk)
TΣ−1

k (xi − μk)/2 (13)

Since the squared Mahalanobis distance dk is by defi-

nition non-negative, a classification margin m ≥ 0 can be

easily introduced to achieve the large-margin GM loss as in

Eq. 14. Obviously, adding the classification margin to the

GM loss is more straightforward than to the softmax loss

[22]. It should be emphasized that such a simple formulation

cannot be directly applied to the softmax loss since an inner

product can be negative, whereas a margin generally has to

be non-negative to make sense.

Lm
cls,i = − log

p(zi)|Σzi |
− 1

2 e−dzi
−m

∑

k p(k)|Σk|−
1

2 e−dk−✶(k=zi)m
(14)

To understand m’s role in the large-margin GM loss, one

may consider the simplest case in which p(k) and Σk are

identical for all the classes. Then xi is classified to the class

zi if and only if Eq. 15 holds, indicating that xi should be

closer to the feature mean of class zi than to that of the other

classes by at least m.

e−dzi
−m > e−dk ⇐⇒ dk − dzi > m , ∀k �= zi (15)

To design the margin, we adopt an adaptive scheme by

letting the value of m to be proportional to each sample’s

1

1

Margin
Decision Boundary

(a) (b)

Class 0

Class 1

Figure 2. A geometry interpretation of the relationship between α

and the margin size in the training feature space using (a) GM loss

without margin α = 0; (b) large-margin GM loss with α > 0.

distance to its corresponding class feature mean, i.e., m =
αdzi , in which α is a non-negative parameter controlling

the size of the expected margin between two classes on the

training set. Fig. 2 shows a schematic interpretation of α;

and Fig. 1 (d) and (e) illustrate how the training feature space

changes when increasing α from 0 to 1.

3.4. A Discussion on Llkd

Although the likelihood regularization Llkd defined in

Eq. 10 is proposed from a probability perspective, it has a

strong connection with the empirical center loss LC defined

in Eq. 3 [32] as is described in Lemma 1, of which the proof

is quite straightfoward.

Lemma 1. If Σk = I (identity matrix), p(k) = 1/K, ∀k ∈
[1,K], the center loss LC and the likelihood regularization

Llkd satisfy Eq. 16, in which D is the feature dimension.

Llkd = LC +
N

2
D log(2π) (16)

Lemma 1 shows that LC is identical to Llkd except for a

constant under certain conditions. In other words, the center

loss [32] is basically equivalent to a special case of the pro-

posed likelihood regularization. This indicates that it might

be more appropriate to use the center loss, or the proposed

likelihood Llkd as regularization in a GM distributed feature

space, as is practiced in this work.

More importantly, Llkd can be readily used to estimate the

likelihood of a sample feature to the learned GM distribution.

Simply put, a model trained using our GM loss can now

both generate a classification result and provide a likelihood

estimation. In case that the likelihood is too low, one may

refuse to make the classification decision. Such a choice

may be favorable, for example, when an adversarial example

[8] is generated to attack the trained classification model.

In fact, the center loss LC could also be used to estimate

such a likelihood. However, when being combined with the

softmax loss during training, the center loss may produce

inaccurate likelihood estimation since the generated training

feature space probably deviates from the GM distribution.
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3.5. Optimization

The GM loss can be optimized using the typical stochastic

gradient descent (SGD) algorithm. In practice, updating the

covariance matrix with gradient descent is feasible but may

suffer from singularity problems. Hence, for simplicity, we

assume that the covariance matrix Σk is diagonal, denoted

by Λk; and the prior probability p(k) = 1/K. As such, the

contribution of a sample xi to the large-margin GM loss can

be rewritten in Eq. 17 and Eq. 18.

Lm
GM,i =− log

|Λzi |
− 1

2 e−dzi
(1+α)

∑

k |Λk|−
1

2 e−dk(1+✶(k=zi)α)

+ λ(dzi +
1

2
log |Λzi |)

(17)

dk =
1

2
(xi − μk)

TΛ−1
k (xi − μk), k ∈ [1,K] (18)

The gradient computations for the GM loss of the i-th
sample are given in Eqs. 19 to 23. For conciseness, we

denote p(k|xi) as pk and (xi − μk)(xi − μk)
T as Ck in all

these equations.

∂Lm
GM,i

∂μzi

=
[(

1− pzi
)

(1 + α) + λ
]

Λ−1
zi

(μzi − xi) (19)

∂Lm
GM,i

∂μk

= pkΛ
−1
k (xi − μk), ∀k �= zi (20)

∂Lm
GM,i

∂Λzi

=−
1

2

[(

(1− pzi)(1 + α) + λ
)

Λ−1
zi

Ck−

(1− pzi + λ)I
]

Λ−1
zi

(21)

∂Lm
GM,i

∂Λk

= −
1

2
pk(I − Λ−1

k Ck)Λ
−1
k , ∀k �= zi (22)

∂Lm
GM,i

∂xi

=
[(

1− pzi
)

(1 + α) + λ
]

Λ−1
zi

(x− μzi)

−
∑

k �=zi

pkΛ
−1
k (xi − μk)

(23)

4. Experiments

Two sets of experiments are presented in this section. In

the first set, we conduct the image classification and face

verification experiments to verify the effectiveness of the

large-margin GM loss (L-GM loss for short). We report

mean and standard deviation of 3 tries. In the second set,

we demonstrate the feasibility of distinguishing adversarial

examples using the likelihood regularization term Llkd. All

experiments are carried out using the Caffe framework [33]

on NVIDIA TitanX GPUs.

Loss Functions 2-D (%) 100-D (%)

Center [32] 1.45 ± 0.01 0.47 ± 0.01

L-Softmax[22] 1.30 ± 0.02 0.43 ± 0.01

Softmax 1.82 ± 0.01 0.68 ± 0.01

L-GM (α = 0)) 1.44 ± 0.01 0.49 ± 0.01

L-GM (α = 0.3) 1.32 ± 0.01 0.42 ± 0.02

L-GM (α = 1.0) 1.17 ± 0.01 0.39 ± 0.01
Table 1. Recognition error rates (%) on MNIST test set using a

6-layer CNN with different loss functions.

For the margin parameter α, a larger value may lead to a

more difficult optimization objective. Therefore intuitively,

α should be smaller when the number of classes gets larger.

In our experiments, we empirically set α to 1.0, 0.3, 0.1, 0.01

and 0.01 for MNIST, CIFAR-10, CIFAR-100, ImageNet and

face verification, respectively. Also, we set the likelihood

regularization parameter λ to a small value, e.g. 0.1 in our

experiments, so that the likelihood regularization starts to

play a major role when the training accuracy is approaching

saturation, or when pzi approaches 1.

4.1. Image Classification

MNIST We first compare the softmax loss, the center loss

(with the softmax loss) [32], the large-margin softmax loss

(L-Softmax loss for short) [25] and the L-GM loss by vi-

sualizing their learned 2D feature spaces for the MNIST

Handwritten Digit dataset [20]. We adopt a network with 6

convolution layers and a fully connected layer with a two

dimensional output. The feature embeddings on the training

set with different loss functions are illustrated in Fig. 1. As

we can see, different from the softmax loss and its variants,

the features generated using the L-GM loss roughly follow

the GM distribution, which is consistent with the assumption.

The heatmap of the learned likelihood is shown in Fig. 1(f).

Also, as is shown in Fig. 1 (d)-(e), with an increasing α,

larger margin sizes can be observed among different classes.

For the quantitative evaluation, we also increase the out-

put dimension of the fully connected layer from 2 to 100 and

add a ReLU activation after it. For fair comparison, we train

the same network with different loss functions using identi-

cal training parameters including the learning rate, weight

decay, etc.. The classification accuracies on the test set are

presented in Table 1.

CIFAR CIFAR-10 and CIFAR-100 [16] each consists of

of 32×32 pixel colored images, with 50,000 training images

and 10,000 testing images. We adopt the standard data aug-

mentation scheme including mirroring and 32× 32 random

cropping after 4 pixel zero-paddings on each side [10, 22].

For CIFAR-10, We train the ResNet [10] of depth 20,

56 and 110 with different loss functions. The networks are

trained with a batch size of 128 for 300 epochs; and the
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Loss Functions ResNet-20 ResNet-56 ResNet-110

Softmax [10] 8.75 ± 0.04 6.97 ± 0.05 6.43 ± 0.04

Center [32] 7.77 ± 0.05 5.94 ± 0.02 5.32 ± 0.03

L-Softmax [22] 7.73 ± 0.03 6.05 ± 0.04 5.79 ± 0.02

L-GM(α = 0.3) 7.21 ± 0.04 5.61 ± 0.02 4.96 ± 0.03

Table 2. Recognition error rates (%) on CIFAR-10 using ResNet

models with different loss functions.

learning rate is set to 0.1 and then divided by 10 at the 150th

epoch and the 225th epoch respectively. We use a weight

decay of 5× 10−4 and the Nesterov optimization algorithm

[30] with a momentum of 0.9. The network weights are ini-

tialized using the method introduced in [9]. The recognition

accuracies are shown in Table 2. Results in the first row were

reported in the original RestNet paper [10]. For the center

loss and the large-margin softmax loss, we train the models

by ourselves since the ResNet was not used on CIFAR-10

in the original papers [32] and [22]. The proposed L-GM

loss outperforms the softmax loss and its two variants for

different ResNet models with various depths.

For CIFAR-100, we adopt the same CNN architecture

used by the large-margin softmax loss [22], which follows

the design philosophy of the VGG-net [27] consisting of 13

convolutional layers and 1 fully connected layer. Bach nor-

malization [15] is used after each convolutional layer and no

dropout is used. To achieve better recognition performances,

we replace the fully connected layer in this network with

Global Average Pooling [21]. We report the recognition per-

formances with or without the data augmentation in Table 3,

denoted by C100+ and C100 respectively. Several points can

be observed from Table 3. First, the proposed L-GM loss

consistently outperforms the softmax based losses on both

C100+ and C100. Second, for the augmented data set C100+,

increasing the margin parameter α consistently benefits the

recognition performance. However, this is not true for C100

without data augmentation. This is probably related to the

fact that the number of training samples for each object class

is as low as 500 on C100. The margin size on the training

set and the model generalization capability is less correlated.

Loss Functions C100 C100+

Center [32] 24.85 ± 0.06 21.05 ± 0.03

L-Softmax [22] 24.83 ± 0.05 20.98 ± 0.04

Softmax 25.61 ± 0.07 21.60 ± 0.04

LGM(α = 0.1) 23.74 ± 0.08 20.94 ± 0.03

LGM(α = 0.2) 23.04 ± 0.08 20.85 ± 0.04

LGM(α = 0.3) 23.80 ± 0.06 20.76 ± 0.03
Table 3. Recognition error rates (%) on CIFAR-100 using a VGG-

like 13 layer CNN with different loss functions.

ImageNet We investigate the performance on large-scale

image classification using the ImageNet dataset [4]. We

perform experiments on ImageNet (ILSVRC2012) using

ResNet-101 [10] combined with different loss functions. To

make fair comparison, all the models are trained for 100

epochs on 6 Titan GPUs with a mini-batch size of 16 for

each GPU. The learning rate is initialized as 0.01 and divided

by 10 at the 50th epochs and 75th epochs respectively. We

use a weight decay of 0.0002 and a momentum of 0.9; and

no dropout [11] is used. We evaluate the performances for

1-crop and 10-crop practices on the ILSVRC2012 validation

set. Results in Table 4 show that our proposal is also effective

on the large-scale dataset.

Loss
1-crop 10-crop

top-1 top-5 top-1 top-5

Softmax 23.5±0.2 7.55±0.08 22.6±0.2 6.92±0.04

L-GM 22.7±0.2 7.14±0.08 21.9±0.1 6.05±0.03

Table 4. Error rates (%) on ILSVRC2012 validation set. For L-GM,

we set α=0.01 and λ=0.1.

4.2. Face Verification

We conduct the face verification experiments on the La-

beled Face in the Wild (LFW) dataset [13], which contains

13,233 face images from 5749 different identities with large

variations in pose, expression and illumination. The offi-

cially provided 6,000 pairs are used for face verification test.

We follow the standard unrestricted, labeled outside data

protocol of LFW and use only the CASIA-WebFace dataset

[34] for training. The CASIA-WebFace dataset consists of

494,414 face images from 10,575 subjects. The training and

testing images are aligned using MTCNN [37] and resized

to 128 × 128 pixel. A simple data augmentation scheme

is adopted including horizontal mirroring and 120 × 120
random crop from the aligned 128× 128 pixel face images.

We train the ResNet [10] based face recognition model

with 27 convolutional layers. The PReLU activations [9]

are used after each convolutional layer and no batch normal-

ization or Dropout is used. We train with a batch size of

256 for 20 epochs. The learning rate is initially set to 0.1

and divided by 10 at the 10th, 14th and 16th epochs. The

Method Training Data Accuracy

FaceNet [26] 200M 99.65

Deepid2+ [29] 0.3M 98.70

Softmax 0.49M 98.56 ± 0.03

L-Softmax [22] 0.49M 98.92 ± 0.03

Center [32] 0.49M 99.05 ± 0.02

LGM (α = 0.001) 0.49M 99.03 ± 0.03

LGM (α = 0.005) 0.49M 99.08 ± 0.02

LGM (α = 0.01) 0.49M 99.20 ± 0.03
Table 5. Face verification performances on LFW of a single model.

The 6 models at bottom are trained on our scheme while the 2

results on top are reported from the original paper.
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networks are trained using stochastic gradient descent (SGD)

with a momentum of 0.9 and a weight decay of 5× 10−4.

For the L-GM loss, we perform PCA on the 512-

dimensional feature embeddings and then compute the Ma-

halanobis distance for verification. For fair comparison, the

verification performance is evaluated on single models and

model ensemble is not used. In Table 5, the accuracies

for the Deepid2+ (contrastive loss) [29] and the FaceNet

(triplet loss) [26] are reported in the original papers. The

FaceNet achieves the highest accuracy of 99.65% by using

a very large training set of 200M images. In [32], Y. Wen

et al. reported a higher accuracy of 99.28% for the center

loss by using both the CASIA-Webface and the Celebrity+

[23] dataset for training, with 0.7M training images in total.

When using the CASIA-Webface training dataset only, the

L-GM loss outperforms the other loss functions.

4.3. Beyond Classification

As we have discussed in Sect. 3.4, the proposed L-GM

loss enables the likelihood estimation for a given input in ad-

dition to the class prediction. During training, the L-GM loss

drives the deep model to generate features that follow the

assumed GM distribution as well as possible, while guaran-

teeing the inter class separability. In other words, the training

feature distribution is supposed to be well established for a

trained deep model using the L-GM loss. We will validate

this claim through experiments on distinguishing adversarial

examples from normal inputs in this section.

Adversarial Examples For a deep neural network, adver-

sarial examples are inputs formed by intentionally adding

small but worst-case perturbations which cause the model to

make incorrect classifications with high confidence [8]. We

generate the adversarial examples using the fast gradient sigh

method (FGSM) [8], which uses gradient backpropagation

to perturb the inputs so as to maximize the classification loss.

The perturbation P is generated by P = ε·sign(∇IL(I, z)),
in which L is the classification loss function (e.g. Lcls in

L-GM loss), I is the input image, z is the true class label,

and ε > 0 is called the magnitude of perturbation. Then the

adversarial example is formed by adding P to the original

image I . An extension of FGSM called the Targeted FGSM

aims at misclassifying an input sample to a target class by

minimizing the loss for the pre-set target label z̃. The tar-

geted perturbation Pt is given by Pt = ε·sign(−∇IL(I, z̃)),
in which L is LGM in our experiments.

By using the FGSM, we first generate one adversarial

example for each MNIST test image in order to evaluate the

classification performance using different loss functions. As

such there are altogether 10,000 adversarial examples and

10,000 original normal MNIST test images in the experi-

ment. We use the CNN architecture as described in Sect. 4.1

with the 100-dimensional feature embedding. Three models

ε Softmax Center L-GM(α = 1)

0 0.68 0.47 0.39

0.1 24.08 43.13 23.63

0.2 75.56 67.17 64.40

0.3 84.87 85.49 81.62
Table 6. Classification error rates (%) on adversarial examples

generated from the MNIST test set using FGSM. ε = 0 means that

the inputs are normal MNIST test images.

Figure 3. Histograms of the predicted posterior probability of the

adversarial examples.

are trained on the standard MNIST training set by using the

softmax loss, the center loss and the proposed L-GM loss

respectively. The classification error rates on the adversarial

examples are presented in Table 6, which shows that all three

models seem to be vulnerable to adversarial attacks. We then

investigate the posterior probability (pmax = maxk p(k|x))
corresponding to the predicted class for both the normal

inputs and the adversarial examples (ε = 0.3). For adversar-

ial examples, the histograms of pmax are shown in Fig. 3.

For normal inputs, it is unnecessary to plot the histograms

since the pmax > 0.98 for over 95% of the samples for all

the three losses. Obviously, for the L-GM loss, the overlap

between the histograms of pmax of the normal inputs and

the adversarial examples is the smallest among three loss

functions. This means that even by only considering the

posterior probability in classification, the L-GM loss already

outperforms the other two loss functions in distinguishing

adversarial examples. Nevertheless, a more effective way for

distinguishing adversarial examples is to directly consider

the likelihood to the learned training feature distribution. We

therefore design the following experiment.

Adversarial Verification Intuitively, in the feature space,

the adversarial examples should follow a distribution dif-

ferent from that of the normal inputs. Based on this under-

standing, we design an experiment called the adversarial

verification to distinguish the adversarial examples from

normal inputs based on the feature likelihood. Let the

predicted class be ẑi = argmaxk p(k|xi). For the L-

GM loss, we now assume identity covariance matrix and

equal priors for simplicity. Then the likelihood of xi is

lGM,i = exp(−‖xi − μẑi‖
2/2) based on Eq. 8 by omitting

the constant coefficient. And it can also be rewritten as

lGM,i = exp(−Llkd,i) according to Eq.10. For the center
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Figure 4. Histograms of the likelihood for adversarial examples

(Adv.) and normal inputs (Normal).

loss, the likelihood can be computed similarly according to

Lemma 1, leading to lC,i = exp(−‖xi − μẑi‖
2/2). For the

softmax loss, the likelihood is not explicitly established in its

formulation. A reasonable way is to estimate the likelihood

as lS,i = wT
ẑi
xi+bẑi . After all, the affinity score wT

ẑi
xi+bẑi

represents the similarity between xi and class ẑi.
In the adversarial verification experiment, the FGSM is

used to generate adversarial examples for the MNIST test

set, with ε = 0.3. Then for the three models, we compute

the likelihood of the normal test images and the adversarial

examples. For the softmax loss, we normalize the likelihood

lS to (0, 1] for comparison. The histograms of the likelihood

for three loss functions are illustrated in Fig. 4. For the L-

GM loss, the adversarial examples have very low likelihood

in the feature space and the normal inputs can be easily

distinguished from them. The softmax loss, however, clearly

suffers from a serious overlap between the two likelihood

histograms. The center loss lies in between by being superior

to the softmax loss while inferior to the L-GM loss in terms

of the capability of adversarial verification.

Quantitatively, we evaluate the adversarial verification

performances by thresholding the likelihood, and resultant

ROC curves are demonstrated in Fig. 5. The equal error rate

(EER) for the softmax loss is 37.7%, which is practically too

high in a binary classification task. The center loss performs

much better with an EER of 10.2%. The proposed L-GM

loss achieves the lowest EER of 3.1%. This experiment

demonstrates that comparing to the other two loss functions,

the L-GM loss can be effectively used for distinguishing

adversarial examples. This validates our claim that the L-

GM loss can well establish the training feature distribution

while maintaining a satisfactory classification performance.

Discussions Theoretically speaking, it is possible to gen-

erate adversarial examples with high likelihood in the L-GM

loss by jointly optimizing the classification loss and the like-

lihood regularization term. It can be verified that under the

L-GM loss formulation, such a joint optimization can be

approximately realized using the Targeted FGSM, in which

the targeted perturbation Pt actually helps to reduce the dis-

tance between the feature and the center of the targeted class,

or increase the likelihood. We test this approach by using

the class with the second largest posterior probability as the

Figure 5. ROC curves of the adversarial verification.

Figure 6. Histogram of the likelihood for adversarial examples

generated by the Targeted FGSM against the L-GM loss.

target label z̃ for a given input. We still set ε = 0.3 and only

test the L-GM loss. The classification error rate is 81.37%,

which is similar to that in Table. 6. The likelihood histogram

is illustrated in Fig. 6. Compared to Fig. 4, the number of

adversarial examples with very low likelihood (e.g. smaller

than 0.2) is decreased, leading to a slightly higher EER of

4.3%. Nevertheless, most of the adversarial examples can

still be distinguished using the likelihood.

5. Conclusions

We proposed a loss function by assuming a Gaussian Mix-

ture (GM) distribution of the deep features on the training

set. Besides the classification loss, a log likelihood regular-

ization term is added to explicitly drive the deep model for

generating GM distributed features. To further improve the

generalization capability of the trained model, a classifica-

tion margin is introduced. Extensive experiments demon-

strate that the proposed L-GM loss outperforms the softmax

loss and its variants in in both small and large-scale datasets

when combined with different deep models. Besides, the

L-GM loss facilitates a more effective distinguishment of

abnormal inputs of which the extracted features follow a

distribution different from the one learned during training.

This can be practically useful, for example, to improve an

deep model’s robustness towards adversarial examples.
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