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Abstract

In this work, we introduce a Hierarchical Generative

Model (HGM) to enable realistic forward eye image synthe-

sis, as well as effective backward eye gaze estimation. The

proposed HGM consists of a hierarchical generative shape

model (HGSM), and a conditional bidirectional generative

adversarial network (c-BiGAN). The HGSM encodes eye ge-

ometry knowledge and relates eye gaze with eye shape, while

c-BiGAN leverages on big data and captures the dependency

between eye shape and eye appearance. As an intermedi-

ate component, eye shape connects knowledge-based model

(HGSM) with data-driven model (c-BiGAN) and enables

bidirectional inference. Through a top-down inference, the

HGM can synthesize eye images consistent with the given

eye gaze. Through a bottom-up inference, HGM can infer

eye gaze effectively from a given eye image. Qualitative and

quantitative evaluations on benchmark datasets demonstrate

our model’s effectiveness on both eye image synthesis and

eye gaze estimation. In addition, the proposed model is

not restricted to eye images only. It can be adapted to face

images and any shape-appearance related fields.

1. Introduction

Human eye plays an important role in perceiving the

world around us, expressing our intent, emotion, and commu-

nicating with each other. Human can infer rich information

from the appearance of the eye and the eye gaze direction-

s. Being able to synthesize realistic eye appearances and

track eye gaze directions has numerous applications: video-

conferencing [4], human computer interface [15], social

attention [13, 29], virtual reality [8], graphical animation

[31] and gaming [3] to name a few.

Realistic eye image synthesis is however challenging.

Recent development of eye image synthesis can be di-

vided into graphics-based and warping-based approaches.

Graphics-based approaches [38, 39] leverage on graphical

engine to render eye textures on top of a 3D eye model. The

Figure 1. Overview of hierarchical generative model.

advantage is the full geometry control over the 3D eye model

to simulate variations in terms of gaze direction, head orien-

tation, etc. However, there is a gap between the synthesized

eye texture distribution and real eye texture distribution. The

overall synthesized eye looks like cartoon/animated image.

On the other hand, warping-based methods take an eye im-

age as input, and warp the input image to have a desired

output appearance. Among them, [7] warped the image to be

under different head orientations, and [41] further extended

to different gaze directions and head orientations. In [33],

the authors refined the input unrealistic images to be more

realistic. And [1, 20] warped the input eye images to have

specific gaze angles (gaze correction). Despite the realism

inherited from the input image or additional model, such syn-

thesis is task-dependent or subject-specific, it cannot produce

sufficient eye geometry variations and appearance variations.

Existing gaze estimation approaches fall into appearance-

based and model-based approaches. The appearance-based

approaches [18, 43, 21] estimate eye gaze directly from eye

appearance or extracted eye features. They need sufficient

amount of data with groundtruth labels to produce accurate

results. Model-based approaches [12, 34, 16, 37] leverage on

anatomical eye model knowledge to estimate eye gaze from

detected eye features. They are sensitive to the variation of

personal eye parameters such as eyeball radius. A subject-

specific personal calibration is often required for each person

to estimate these personal eye parameters. They also require

explicit detection of eye features such as pupil center and

cornea reflections.

There is little work on a unified model for joint top-down

eye image synthesis and bottom-up eye gaze estimation,
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despite their close relationship. To address this issue, we in-

troduce a novel hierarchical generative model to accomplish

the goal. As shown in Fig. 1, we first introduce HGSM, a

Bayesian hierarchical model inspired by eye anatomy knowl-

edge, to relate eye gaze with eye shape. Through a top-down

inference, it can synthesize eye shape consistent with the giv-

en eye gaze with subject eye geometry variations. Through

a bottom-up inference, it can estimate eye gaze effectively

from the given eye shape. The hierarchical perspective of

the model is to account for subject-dependent eye geometry

variations through the introduction of hyperparameters. Next

we propose the c-BiGAN to relate eye shape with eye image.

As a bidirectional model, c-BiGAN enables realistic eye

image synthesis from eye shape with different appearance

variations, as well as effective eye shape estimation from eye

images. To summarize, our main contributions include:

• Combine knowledge-based Bayesian model (HGSM)

and data-driven deep model (c-BiGAN) for unified eye

image synthesis and eye gaze estimation.

• Enable synthesizing large amount of gaze-annotated

eye images with subject eye geometry variations and

appearance variations.

• Incorporate eye anatomy knowledge into eye gaze es-

timation, and achieve better generalization than pure

data-driven approaches.

• Develop a generic top-down image synthesis frame-

work, which can be applied beyond eye images, to any

shape-appearance related fields.

2. Related Work

Image Synthesis. Image synthesis is an arising research

topic [19, 25, 5]. The most related work to ours are the

Generative Adversarial Network (GAN) [9, 28], its variant

conditional-GAN [30], bidirectional-GAN [6] and [2, 22] for

generating images consistent with high-level latent represen-

tations. Different from their applications like text-to-image

synthesis, we focus on human eye synthesis conditioned on

eye shape. Instead of performing pure data-driven image

synthesis, we studied eyeball anatomy and 3D eye gaze mod-

el to explore how visual attention affects eye appearance. In

addition, besides image synthesis, the proposed model also

allows bottom-up inference from image to high-level latent

representations.

For eye image synthesis, graphics-based methods [38, 39]

can produce high resolution eye images, but the artificial eye

texture makes them unrealistic. For warping-based methods,

[41, 7] can synthesize additional eye images with different

gaze directions and head poses. However, their per-image or

per-subject based synthesis cannot produce large eye geome-

try and appearance variations. In [33], the authors proposed

to warp eye images generated from graphics engine to make

them more realistic. Because of the use of GAN and graphic-

s engine generated eye images, they can synthesize realistic

eye images with different variations. However, they lose the

precise control over the gaze angles of the generated images

as they directly inherit the gaze angles from the input images.

On the contrary, our synthesis framework is from high level

latent representation (gaze), and can synthesize eye images

with arbitrary gaze angles. This is of significant importance

in many applications. For example, we can synthesize mean-

ingful eye movements like horizontal/vertical movement by

providing the corresponding gaze angles. This is challenging

and cumbersome for methods like [33], unless they search

their input image database and find images with required

gaze angles.

Gaze Correction. Another related research topic is gaze

correction [1, 20], where the goal is to synthesize an eye

image only differ by gaze from the input eye image, while

keeping all other nuisance parameters the same. Despite the

similarity in generating new eye images, our goal is, however,

to synthesize large amount of eye images with variations in

terms of subjects, gaze directions, appearances, etc.

Gaze Estimation. Traditional model-based methods

[12, 36, 16, 42] leverage on 3D eye model to estimate eye

gaze with detected features like pupil center, corneal reflec-

tions, facial landmarks, etc. They can achieve good accuracy

in controlled environments but cannot adapt to challenging

in-the-wild scenarios. Recent approaches [43, 21] tackle the

challenge by training deep neural networks on large amount

of eye images and show promising results. However, their

model cannot generalize well on data with different distri-

butions (cross-dataset). One similar work to ours is [24],

where the authors also built a generative model to capture

the dependence between eye gaze and eye image. However,

besides replacing its simple tri-color appearance model with

a GAN that can synthesize realistic appearances, we also

make significant extensions to their shape model: 1) We in-

troduce a hierarchical model to model subject eye geometry

variations, while [24] does not involve any hierarchy and can

only handle one specific subject. As a result, we can build

one unified hierarchical model and apply it to all subjects,

while [24] needs to train many subject-specific models. 2)

We employ a comprehensive eye geometry model with 27

eye shape points, while [24] only includes 4 control points.

We can therefore better capture gaze-shape correlation and

control the deformations of eye shape.

3. Model Description

3.1. Hierarchical Generative Shape Model

We identify 27 eye related landmarks to represent eye

shape, including 10 eyelid points, 16 iris contour points and

1 pupil center. For top down eye shape synthesis, we first
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Figure 2. (a) 3D eye shape with eyelid points (green), iris contour

points (blue) and pupil center (red). (b) Projected 2D eye shapes

with different gaze directions (best view in color).

use 3D eye geometry model to construct 3D eye shape as

in Fig. 2(a), 2D eye shape in Fig. 2(b) can be obtained by

projecting 3D eye shape to image plane.
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Figure 3. (a) Eyeball coordinates system (ECS). (b) Anatomical

eye geometry model to relate eye gaze and pupil center.

The 3D eye shape is represented in Eyeball Coordinate

system (ECS) (Fig. 3 (a)), where eyeball center is located

at the origin. A point t ∈ R3×1 in ECS can be represented

by [xt, yt, zt]
T in Euclidean coordinates or [rt, φt, θt]

T in

spherical coordinates. They are related by the transforma-

tion function f(·) such that [xt, yt, zt]
T = f([rt, φt, θt]

T ) =
[rt sin(φt) sin(θt), rt cos(φt), rt sin(φt) cos(θt)]

T . In this

work, the angles φt and θt represent pitch and yaw angles

respectively, and rt represents eyeball radius.

3.1.1 Gaze-to-Shape Synthesis

Eye shape synthesis depends on personal eye parameters. To

avoid constructing subject-dependent models, we propose

one hierarchical model (Fig. 4) to capture the gaze-to-shape

synthesis process for all M subjects. The personal eye

parameters {φk, θk, ro} are regarded as random variables,

whose distributions are controlled by their hyperparameters

{φ̂k, θ̂k, r̂o}.
Specifically considering the shape generation process of

a particular subject, we first need to determine the personal

eye parameters, which can be drawn from their prior distri-

butions. Then given personal parameters and eye gaze, we

generate 3D eye shape. Finally, we project 3D eye shape to

2D eye shape. Now we discuss in details of each step.

Pupil center generation. Pupil center reveals the most
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Figure 4. Graphical model of eye shape synthesis process, where

the shaded nodes are known during learning and inference. M
represents number of subjects and N represents number of images

per subject.

important information about human attention. We system-

atically study eyeball anatomy to relate pupil center with

human attention. As shown in Fig. 3(b), supposing human’s

attention is drawn by a visual target, the eyeball will rotate

towards the target so that the field of vision will be focused

in the fovea region. Fovea is a small depression in the retina

of the eye where visual acuity is the highest. The line of

sight passing fovea and visual target is called visual axis (eye

gaze) v = [φv, θv]. However, the pupil position is not direct-

ly determined by v, but rather the optical axis o = [φo, θo],
which can be obtained by subtracting the angle difference

k = [φk, θk] from visual axis. The angle difference k, as

well as the eyeball radius ro, are both subject-dependent

parameters. Finally, pupil center in ECS can be represented

as pe = (ro, φo, θo).
Eyelid and iris contour generation. Eyelids and iris

contour points are correlated with each other to form rea-

sonable and realistic human eye shapes. In addition, eyelids

and iris contour also strongly correlate with eye gaze. For

instance, upper eyelids will go up as we look up, and iris

contour will always move towards the gaze direction. To en-

code eye shape correlation and its dependence on eye gaze,

we propose a linear Gaussian regression model such that

continuous eye gaze is the independent variable o and the

continuous eye shape vector is the dependent variable se:

se = Ao+ b+ ǫ (1)

where se represents the coordinates of eyelids and iris con-

tour points in ECS, A is the regression matrix, b is the bias

vector and ǫ ∼ N (0,Σ) is the noise term, which accounts

for shape variations under the same gaze direction. In prac-

tice, we only care about dominant shape variations, therefore

ǫ = Bτ , where B contains the dominant eigenvectors of

covariance matrix Σ, and τ is the coefficient. We denote

the linear Gaussian regression model as d̂ = {A,B,b, τ̂},
where τ̂ is the prior of the coefficients τ .

2D eye shape synthesis. Given one point in ECS te

with its Euclidean coordinates, we first get its coordinates
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Figure 5. Flowchart of c-BiGAN. The left opague part shows its relationship with the HGSM. z denotes the random vector input in GAN, s

and I represent eye shape and eye image, {G, E, D} represent generator, encoder and discriminator respectively. y denotes the probability

that the shape and image tuple (s, I) is true/consistent.

in camera coordinate system (CCS) tc = Rte + e with

head pose h = {R, e}. The 2D eye shape (see Fig. 2 (b))

can be obtained by projecting tc using the camera intrinsic

parameters W, assuming orthographic projection.

Algorithm 1: Eye Shape Synthesis from Eye Gaze

1. Input: hyper-parameters: {φ̂v, θ̂v, ĥ, φ̂k, θ̂k, r̂o, d̂}
2. Output: 2D eye shape s2D
3. Specify subject by drawing personal parameters:

φk = N (φ̂k, σk), θk = N (θ̂k, σk), ro = N (r̂o, σro)
4. Draw visual axis and head pose h = {R, e}:
φv = U(φl, φh), θv = U(θl, θh),h = U(hl,hh)
5. Optical axis: o = [φo, θo] = [φv − φk, θv − θk]
6. Pupil center in ECS and CCS:

pe = f(ro, φo, θo),p
c = Rpe + e

7. Eyelids and iris contour in ECS and CCS:

τ = N (τ̂ , στ ), s
e = Ao+Bτ + b, sc = Rse + e

8. 2D eye shape: s2D = 1

λ
Wsc, p2D = 1

λ
Wpc

Mathematical formulation. To summarize, the overall

top-down shape synthesis process is outlined in Alg. 1, where

N (·) represents Gaussian distribution. Linear Gaussian re-

gression model and hyperparameters can both be learned

from data. For visual axis and head pose, their values can be

drawn from an uniform distribution U(·).

3.2. Conditional­BiGAN

We propose a conditional-BiGAN (Fig. 5), which is

inspired by two recent work conditional-GAN (Reed et al.

[30]) and bidirectional-GAN (Donahue et al. [6]).

The motivation is two-fold. First, we want to synthe-

size gaze-annotated eye images, and naturally we would

treat eye gaze as condition. However, we want to explic-

itly incorporate subject eye geometry variations (through

HGSM), therefore we treat the intermediate eye shape as our

condition. Actually, shape-to-image is more generic than

task-dependent label-to-image synthesis, and allows us to

generalize the image synthesis framework to different fields.

Second, we also want to infer eye gaze from eye image. The

bidirectional idea in [6] inspired us to consider BiGAN to

recover conditions from images. Differently, [6] is used for

feature learning to recover the latent representation z from

images, while we want to recover the condition (eye shape

s) from images. Therefore we construct the shape-image

tuple (s, I), which is fed to the Discriminator D and output

the probability y, the probability is high only if I is realistic

and s, I are consistent with each other. When learning is

finished, the generator G can map eye shape and the random

vector to eye image (I = G(z, s;wg)), while the encoder E
can map eye image back to eye shape (s = E(I;we)).

4. Learning and Inference

4.1. HGSM Parameter Learning

We first learn the linear Gaussian regression model pa-

rameters d̂ from 3D eye shapes {sei}
N
i=1 and corresponding

optical axes {oi}
N
i=1. The data is extracted from the Unity-

Eye dataset [39]. A and b can be easily solved with least

square regression: {A∗,b∗} =
∑N

i=1
||sei−Aoi−b||

2. The

regression error for each data sample (sei −A∗oi − b∗) is

concatenated into a large matrix L. We perform a PCA anal-

ysis on L and only keep the first K dominant eigenvectors

to form the bases matrix B. The mean and variance of the

corresponding coefficients from PCA analysis are computed

to determine τ̂ .

To learn the hyperparameters α = {φ̂k, θ̂k, r̂o}, we first

specify their prior distributions, i.e. hyperpriors: p(α) =∏3

i=1
N (αi|bi, σ

2
i ), where αi is one of the three hyperpa-

rameters, bi and σ2
i represent the mean and variance for

the hyperpriors. In our work, bi is set to empirical hu-

man average values [12] and σ2
i is set to a fixed large

value to account for the variations in the entire popula-

tion. We can then solve α by maximizing its posterior:

α∗ = argmaxα
∏N

i=1
p({si2D,pi

2D}|α)P (α).

Solving the problem analytically is intractable because of

the hierarchical architecture and the presence of intermediate

latent variables. To address this challenge, we propose an

iterative algorithm as in Alg. 2. Hyperparameters are first

initialized by sampling from their prior distribution. Given

hyperparameters and observations, we leverage on numerical

sampling method, the No-U-Turn Sampler (NUTS) [14], to
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Algorithm 2: Hyperparameter Learning Algorithm

1. Input: Prior p(α) and data from M subjects:

D = {Dj}
M
j=1, where Dj = {s

i,j
2D,pi,j

2D}
Nj

i=1
, Nj is the

number of samples from jth subject.

2. Output: α = {φ̂k, θ̂k, r̂o}.
3. Initialization: Sample hyperparameters α0 from

their prior p(α).
while not converge do

- for subject j in {1, ..., M} do
-Estimate subject-dependent parameters

βt
j = {φk, θk, ro}

t
j given αt and Dj .

βt
j = argmaxβj

p(βj |α
t)p(Dj |βj)

-Update hyperparameters αt+1 given parameters

{βt
j}

M
j=1 and prior p(α):

αt+1 = argmaxα p(α)ΠM
j=1p(β

t
j |α)

estimate the parameters. Given parameters {φk, θk, ro} and

the prior p(α), hyperparameters α can be updated corre-

spondingly. The algorithm will iterate until convergence.

4.2. c­BiGAN Parameter Learning

We first consider following 4 different shape-image tu-

ples:

• Matched real shape and real image: (s+, I+)

• Mismatched wrong shape and real image: (sw, I+)

• Real shape and synthesized image: (s+, I−)

• Inferred shape and real image: (s−, I+)

where the first two tuples are selected from the training

dataset, while the last two tuples are generated from the

model as in Fig. 5.

For discriminator D, only the first tuple (s+, I+) is true

while the other 3 tuples are false, the discriminator can be

learned by maximumly distinguishing true and false tuples.

For generator G, we want the synthesized image I− or the

third tuple (s+, I−) to be true, and generator can be learned

by maximizing the true probability. For encoder E, we

first want the inferred s− or the fourth tuple (s−, I+) to

be true, but we also want the encoder to reconstruct the

shape accurately, therefore we also introduce a reconstruc-

tion loss term besides the adversarial loss term. Overall, the

c-BiGAN training is summarized in Alg. 3. The Discrimi-

nator, Generator and Encoder are updated alternatively until

final convergence.

4.3. Top­down Eye Image Synthesis

Eye shape inference from eye gaze. We can first sample

the prior probability of gaze to generate an eye gaze direction.

We can then follow Alg. 1 to synthesize 2D eye shape for

the gaze direction.

Algorithm 3: c-BiGAN Parameter Learning

1. Input: batches of real image I+, matched real shape

s+, mismatched wrong shape sw, learning rate α and

balance factor λ.

2. Initialization: weight {wd,wg,we}.
3. while not converge do

- z ∼ N (0, 1): draw random vector

- I− = G(z, s+;wg): eye image synthesis

- s− = E(I+;we): eye shape inference

- Generate probability for the 4 shape-image tuples:

pr = D(s+, I+;wd); p
f = D(sw, I+;wd);

pI = D(s+, I−;wd); p
s = D(s−, I+;wd)

- Discriminator loss: LD =
log(pr) + log(1− pf ) + log(1− pI) + log(1− ps)
- wd ← wd − α∂LD/∂wd

- Generator loss: LG = log(pI)
- wg ← wg − α∂LG/∂wg

- Encoder loss: LE = log(ps) + λ||s− − s+||2

- we ← we − α∂LE/∂we

Eye image synthesis from eye shape. Given 2D eye

shape s and random vector z, we can synthesize the eye

image through the generator G of c-BiGAN (Sec. 3.2): I =
G(z, s;w∗

g), where w∗

g are the learned generator parameters.

4.4. Bottom­up Eye Gaze Inference

Inferring eye shape from eye image. Given an observed

real eye images I, we can estimate the eye shape with the

encoder E of c-BiGAN (Sec. 3.2): s = E(I;w∗

e), where w∗

e

are the learned encoder parameters.

Inferring eye gaze from eye shape. Giv-

en eye shape, we are able to infer the two an-

gles {φv, θv} of eye gaze (Fig. 4). Define

η := {φk, θk, h, s
c, pc, φo, θo, ro}, π := {φ̂k, θ̂k, r̂o, d̂, ĥ}.

We can perform MAP inference to get gaze angles:

{φ∗

v, θ
∗

v} = argmaxφv,θv p(φv, θv|s2D,p2D, φ̂v, θ̂v, π) =

argmaxφv,θv

∫
η
p(s2D,p2D|φv, θv, η)p(φv, θv, η|φ̂v, θ̂v, π)dη.

Similar to parameter learning, we use NUTS to draw

samples of {φv, θv} from its posterior, and the sample mean

is used as final estimation.
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Figure 6. Synthesized eye shapes given eye gaze. (a) Different

eye shapes with same frontal gaze direction and (b) Different eye

shapes with same gaze direction (looking left).
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Synthesized Real

(a) UnityEye

Synthesized Real

(b) UTMultiview

Synthesized Real

(c) MPIIGaze

Figure 7. Synthesized eye images with same gaze (pitch=yaw=0). For reference, right side of each sub-figure shows real images with

different gaze angles.

5. Experiments and Analysis

We consider three benchmark datasets UnityEye [39],

UTMultiview[41] and MPIIGaze[43]. We extract 180K im-

ages from 60 subjects in UnityEye, 128K images from 50

subjects in UTMultiview, and 214K images from 15 subjects

in MPIIGaze. Sample images can be seen on right side of

each sub-figure in Fig. 7. For HGSM, PyMC3 [26] is used

for NUTS as inference engine to perform sampling. All eye

images are resized to 64 × 64. The groundtruth landmark-

s/shape are provided in UnityEye, but are not in MPIIGaze

and UTMultiview. Their shape are alternatively detected

by adapting the approach in [10]. For c-BiGAN, our imple-

mentation is based on DCGAN-tensorflow1. The generator

has 3 standard deconvolutional layers, the encoder has 5

convolutional layers and 3 fully connected layers, and the

discriminator has 4 layers of stride-2 convolutions. Leaky-

RELU activation and batch normalization are also used. We

typically obtain realistic eye images after 20 epochs.

5.1. Top­down Eye Image Synthesis

5.1.1 Qualitative Evaluation

Eye geometry variation. Subject-dependent eye geometry

variation is caused by different eyeball radius, different eye-

lid shapes, etc. By keeping the same gaze direction, and

sampling coefficients from prior τ̂ , we are able to gener-

ate different eye shapes as illustrated in Fig. 6. This helps

introduce diversity in the synthesized eye images.

Appearance variation. The appearance variation can

be introduced by sampling the noise vector z. Given the

same shape vector, we can obtain eye images with different

appearances as shown in Fig. 7. Appearance variations are

very important in gaze-annotated image synthesis. We want

not only accuracy (matching between gaze and image), but

also diversity to approximate real eye image distributions.

1https://github.com/carpedm20/DCGAN-tensorflow

(a)

(b)

Figure 8. Eye movement synthesis.(a) Horizontal movement from

left to right and (b) vertical movement from close to open. See

supplementary materials for animated gif images.

Gaze annotation. To demonstrate synthesizing gaze-

annotated eye shapes/images, we uniformly sample 8 pitch

angles from [−20◦, 30◦] and 8 yaw angles from [−30◦, 30◦],
the corresponding synthesized shapes/images on the 3
datasets are shown in Fig. 9. Notice due to the random-

ness in the input vector z, there might be some poor samples

like (row 8, col 7) in Fig. 9(a) and (row 7, col 2) in Fig. 9(b).

But overall, the synthesized eye images and eye shapes are

well matched, as well as the given gaze angles.

Eye movement synthesis. By providing a sequence

of gaze angles as conditions, we can easily synthesize se-

quences of eye movement as shown in Fig. 8. The model

is trained on UnityEye to cover large range of gaze angles.

Notice we use the same random vector z for all images, so

that the sequence looks like from the same subject.

5.1.2 Quantitative Evaluation on Gaze-Annotation
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Figure 10. Gaze estimation error with real and synthetic data (best

view in color).

We first evaluate whether synthesized eye images help
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Figure 9. Synthesized eye shapes and eye images given different gaze directions (best view in color).

gaze estimation with small amount of real data. We train a

gaze estimator (LeNet in [43]) on synthesized image-gaze

pairs and test on reserved 104 real eye images. Training

data consists of k% of 104 real images and n synthetic eye

images. As shown in Fig. 10, the model is under-fitted with

2% real data which cause poor performance. However, as

we continuously add synthetic eye images, the performance

keeps improving until saturation. Final error reduces about

53.4% compared to no synthetic images. If we increase the

number of real data to 5% and 10%, the improvement is less

significant, with 32.1% and 20.3% performance gain. This

demonstrates the synthesized eye images indeed capture the

correlation between eye gaze, eye shape and eye appearance,

and can be helpful for applications with small amount of real

data or less well annotated data.

Table 1. Comparison with [33] on image synthesis

Dataset MPIIGaze UTMultiview

Method [33] Ours [33] Ours

Error / degree 7.8 7.6 8.9 8.8

Next we compare with state-of-the-art method [33] on eye

image synthesis. The image synthesis models are learned

on MPIIGaze and UTMultiview separately. The synthesized

images are used to train the same gaze estimator and test on

remaining images from the two datasets. As shown in Tab. 1,

we achieve comparable results as [33] for both datasets. The

reason is that both methods use GAN as the key component

to generate images. However, compared to [33], besides

synthesizing similar quality images, the proposed method

yields additional advantages:

• Our model is a generic two-step synthesis framework,

from high-level latent representation to shape and from

shape to image, while [33] is based on refining existing

images and is restricted to synthetic images.

• Direct image synthesis from latent representations en-

ables broader applications, like the eye movement syn-

thesis in Fig. 8, but this is difficult for [33].

• The proposed method also supports effective bottom-up

gaze inference, which is infeasible for [33].

5.2. Bottom­up Eye Gaze Estimation

5.2.1 Evaluation of Eye Shape Inference

Table 2. Comparison of eye shape prediction error.

Method / # training 1000 3000 10000

[11] 2.7 2.3 1.8

Proposed 4.5 3.1 1.4

We first evaluate the detection error of the 27 eye land-

marks on UnityEye. As shown in Tab. 2, with smaller num-

ber of training samples (1000 and 3000), [11] achieves better

results, but we can achieve much better results (1.4 pixel)

with more training data (10000), demonstrating the effective-

ness of the proposed shape estimation method.

Table 3. Comparison of pupil detection rate.

Method deye ≤ 0.05 deye ≤ 0.10 deye ≤ 0.25

[11] (R) 91.2% 99.4% 99.8%

Proposed (R) 90.3% 99.3% 99.9%

Proposed (R+S) 92.1% 99.9% 99.9%

Next we compare the pupil detection rate on benchmark

dataset BioID [17]. In Tab. 3, R and S denote real and syn-

thetic images respectively. When trained with 4000 real

samples (second row in Tab. 3), we achieve reasonable detec-

tion rate but is not as good as [11]. However, the proposed

method outperforms [11] on all three metrics when we add

10000 synthesized image-shape pairs (third row in Tab. 3).

This not only demonstrates the effectiveness of shape esti-

mation, but also shows the potential of using synthesized

image-shape pairs to learn shape estimator.

5.2.2 Comparison with Appearance-based Methods

We compare with the state-of-the-art appearance-based

method [43] and a variant of the proposed method (G-c-
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Table 4. Comparison with appearance-based methods on within-

dataset and cross-dataset experiments.

Dataset Category CNN[43] G-c-BiGAN HGM

UnityEye
within 3.4 5.6 4.5

cross 19.5 21.3 15.9

UTMultiview
within 6.8 7.7 8.4

cross 18.3 19.9 14.2

MPIIGaze
within 6.1 8.5 7.5

cross 12.3 13.9 7.7

BiGAN), where we train c-BiGAN conditioned on eye gaze

and directly infer eye gaze given eye images. We perform

both within-dataset and cross-dataset experiments. Cross-

dataset means the model is trained on the rest two datasets

other than the testing dataset.

As shown in Tab. 4, compared to deep CNN model, our

HGSM is a shallow model with much fewer parameters (the

deep c-BiGAN only provides intermediate eye shape), thus

it cannot perform as well as CNN on within-dataset exper-

iments. The reason is that CNN tends to over-fit on the

dataset with large amount of parameters. However, CNN

cannot generalize well on cross-dataset experiments, while

HGSM encodes universal eye model knowledge and can gen-

eralize better than CNN for cross-dataset evaluation. Simi-

larly to CNN, HGM also outperforms the data-driven based

G-c-BiGAN, as it directly captures the gaze-appearance cor-

relation, without taking eye shape, which encodes eye model

knowledge, into consideration.

5.2.3 Comparison with Model-based Methods

Table 5. Comparison with model-based methods.

Dataset MPIIGaze EyeDiap

Methods [40] Ours [23] [35] Ours

Error / degree 47.1 7.5 18.3 17.3 15.2

We also compare with two state-of-the-art model-based

methods on within dataset experiments as in Tab. 5. [40]

performs poorly on MPIIGaze, and we also outperforms

[23, 35] on EyeDiap. Their methods rely on detected fea-

tures like iris contour, pupil center and facial landmarks.

These features are heavily affected by illumination varia-

tions, large head poses or limited image resolution, which

causes poor feature/edge detections. Our eye shape is in-

ferred from the global eye appearance, which is more robust

to the mentioned variations. In addition, our HGSM is a

probabilistic model that uses prior information and observed

data to jointly perform gaze inference, which is more robust

and accurate than deterministic model-based methods.

5.3. Beyond Eye Images

The proposed HGM can also be extended to face image

synthesis. We modify HGSM to generate 2D face shape

Figure 11. Synthesized face images given facial landmarks.

from a 3D deformable face model [27], and experimentally

trained the c-BiGAN with 2.8K face images from [32]. After

training, we can sample 2D shapes from the deformable

model and synthesize corresponding face images as shown in

Fig. 11. The quality of the synthesized face can be improved

with more training data and advanced synthesis framework.

Here we demonstrate that the synthesized images align well

with the given shape, even with large pose variations ((Row,

Col) = (1, 1), (1, 3), (4, 6), (4, 8), etc) or facial expressions

((6, 2), (8, 1), etc). In fact, shape-related high-level latent

representations (pose, expression, etc) can be seamlessly

incorporated into the HGM framework and bring in more

control for task-oriented image synthesis.

6. Conclusion

To summarize, we propose a hierarchical generative mod-

el for eye image synthesis and eye gaze estimation. With

a top-down inference, we are able to synthesize realistic

gaze-annotated eye images that reflect eye geometry and

appearance variations. Quantitatively compared to state-of-

the-art image synthesis methods, we can achieve comparable

gaze estimation accuracy, but with a more generalized frame-

work and with less restrictions. With a bottom-up inference,

we are able to predict eye gaze accurately from eye images.

Benefited from combining knowledge-based Bayesian mod-

el with data-driven deep model, the proposed method gives

better accuracy than model-based methods and shows better

generalization capability than appearance-based methods. Fi-

nally, the proposed two-step image synthesis framework can

be generalized beyond eye images, demonstrating potential

applications for shape-image related fields.
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