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Abstract

Vision-to-language tasks require a unified semantic un-

derstanding of visual content. However, the information

contained in image/video is essentially ambiguous on t-

wo perspectives manifested on the diverse understanding

among different persons and the various understanding

grains even for the same person. Inspired by the basic level

in early cognition, a Basic Concept (BaC) category is pro-

posed in this work that contains both consensus and prop-

er level of visual content to help neural network tackle the

above problems. Specifically, a salient concept category is

firstly generated by intersecting the labels of ImageNet and

the vocabulary of MSCOCO dataset. Then, according to

the observation from human early cognition that children

make fewer mistakes on the basic level, the salient catego-

ry is further refined by clustering concepts with a defined

confusion degree which measures the difficulty for convo-

lutional neural network to distinguish class pairs. Finally,

a pre-trained model based on GoogLeNet is produced with

the proposed BaC category of 1,372 concept classes. To

verify the effectiveness of the proposed categorizing method

for vision-to-language tasks, two kinds of experiments are

performed including image captioning and visual question

answering with the benchmark datasets of MSCOCO, Flick-

r30k and COCO-QA. The experimental results demonstrate

that the representations derived from the cognition-inspired

BaC category promote representation learning of neural

networks on vision-to-language tasks, and a performance

improvement is gained without modifying standard models.
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1. Introduction

For human being, basic level [39] is an abstraction that

plays a primary role in the form of early cognition. It con-

tains several objects that are firstly perceived [39] and faster

being named by children, then other subordinate concept-

s are learned afterwards [45]. In the taxonomic hierarchy,

basic level is located on the middle which represents mid-

level generality (e.g., bird, chair), oppose to more general

concepts (e.g., vertebrate, furniture) and more specific con-

cepts (e.g., sparrow, recliner). It also has been found that

children make fewer mistakes at basic level on matching

and sorting tasks [41, 4] as well as simple decision making

on adults. The annotation of ESP dataset [48] is accom-

plished through an online game which demands two play-

ers independently propose labels to one image for match-

ing as many words as possible in a certain time limit. It

is demonstrated that humans tend to label visual objects at

an easily accessible semantic level termed as the basic lev-

el [3]. Similar observations can also be obtained on oth-

er human annotated datasets such as the image captioning

dataset MSCOCO [24] which limits each description in 16

words. This limitation on time and length will impel people

to use simple but cognitive useful words for expression.

Vision-to-Language (V2L) includes high-level semantic

tasks which demand automatically transferring visual infor-

mation into human language. Recently, a number of ap-

proaches [7, 14, 47] treat V2L as translation tasks using

Convolutional Neural Networks (CNN) as encoder while

employing Long Short Term Memory (LSTM) [9] as de-

coder to directly translate an image to a sentence. In the

predominant neural network based approaches, it seems that

each partial network has an explicit objective function to

learn, however the real evaluation of the generated results

is highly subjective which makes V2L challenging both on

realization and evaluation.

The main problems which V2L faces to are two folds.

First, the understanding of one image varies for different

people. The diversity of thinking habit, attention and even

expression leads to different explanations of visual content.

In the MSCOCO dataset, each image is associated with 5
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captions which are all correct on content but various on ex-

pression. This problem makes it difficult to reach a cogni-

tive consensus for same visual content among different per-

sons. Second, for certain person, the understanding of one

image can be varied on multiple levels which means it can

be very specific (dense caption [13], fine-grained classifica-

tion [16]) or very general (scene classification [2, 51, 22]).

However, for most V2L tasks, especially for image caption-

ing, it only needs a middle level overview of the content.

Thus, a proper level of understanding is vital for efficient

representation in V2L.

For human being, these two problems can be largely e-

liminated by the basic level. Consequently, we are wonder-

ing, for neural networks, whether there exists a level which

resembles the basic level to possess the ubiquity and gen-

erality of visual representations? Furthermore, could the

V2L performance be improved by adopting such cognition-

inspired mechanisms? Specifically, a salient concept (SaC)

category is firstly proposed that contains candidate basic

level concepts by matching ImageNet [40] classes with im-

age captions from MSCOCO. This operation provides a set

of cognitive words which are located in the middle layers of

the ImageNet/WordNet [32] hierarchy. Then, these salient

concepts are refined by clustering according to the observa-

tion from human early cognition that children make fewer

mistakes on the basic level. A confusion degree is defined

to measure the difficulty for CNN to distinguish class pairs,

and the concepts with large confusion degrees are merged to

minimize the CNN classification error. After that, the Basic

Concept (BaC) category is generated and visualized by ex-

amples as compared to the basic level in human cognition.

Finally, the BaC level is used as a semantic representation

between vision model and language model in neural net-

work based approaches to test its efficiency on image cap-

tioning and Visual Question Answering (VQA) tasks.

The main contributions of this work are summarized as

follows. First, the BaC category is designed to resemble the

basic level in human cognition, which not only summarizes

the consensus among different people but also provides a

proper mid-level understanding for V2L. Meanwhile, the

proposed categorization procedure provides a method of au-

tomatically generating the basic level for neural networks.

Second, the proposed BaC level is applied as an optimized

semantic representation that connects CNN and LSTM for

V2L. The GoogLeNet [43] model is trained with the BaC

category and the corresponding pre-trained model is pro-

vided. A significant performance improvement has been

achieved by the proposed categorizing method as compared

to the baselines. For image captioning, the performances

in terms of CIDEr [46] and BLEU-4 [36] are improved by

7.7 and 2.1 on the MSCOCO dataset over the baseline. For

VQA, the performances have been improved by 2% to 4%

against the baseline models.

2. Related Work

V2L tasks attempt to bridge the gap between vision and

natural language and thus enable universal artificial intelli-

gence to some extent. As compared with other computer

vision tasks, V2L tasks such as image captioning [14] and

VQA [27] are more challenging because they require an in-

tegrated understanding of visual representation, semantics

and natural language.

The purpose of image captioning is to automatically gen-

erate natural language descriptions that describe the main

content for a given image. Image captioning has achieved

significant successes in recent years and there are sever-

al solutions to this task. An intuitive technique is to use

template based methods [17, 8], which detects objects, at-

tributes, actions and scenes and then puts them into a fixed

template. However, the generated captions are usually rigid

and restricted on expression. Another solution is based on

image retrieval [18, 19], which generates captions by trans-

ferring the corresponding descriptions from the retrieved

images. As far as VQA is concerned, the task is to pro-

vide an accurate natural language answer given an image

and a natural language question with free-form about the

image content. As compared to image captioning, VQA

needs a relatively detailed understanding rather than gener-

ic descriptions [1]. Early researches treat VQA as a Turing

test proxy such as [27] which generates the answers by the

combination of semantic parsing and image scene analysis

in a Bayesian framework. More recently, similar to image

captioning, end-to-end deep neural networks are employed

for VQA [28, 37].

Currently, the combination of CNN and Recurrent Neu-

ral Network (RNN) is the predominant framework to

achieve V2L. Generally, CNN is adopted as the encoder to

extract visual features and RNN as the decoder to generate

sentences [14, 47]. Between the encoder and the decoder,

the CNN features are projected into the same representation

space as word embedding to realize mapping from vision

to language. In [47, 7], the features of the penultimate ful-

ly connected layer are employed for visual representation.

Moreover, attention based models [50, 25] utilize the last

convolutional layer to obtain spatial information so as to

enable the model to adapt the focus on part of the image

during caption generation. These researches prefer to by-

passing the elaborate mapping from vision to language.

On the other hand, one class of studies focus on pro-

ducing more human-like recognition results. The majority

of these works are naming an image/object by the basic-

level concept rather than specific variety in common clas-

sification tasks. In [5], high-level concepts are utilized to

balance the accuracy and specificity of classification mod-

el if the accuracy is too low. Different from the proposed

work, these high-level concepts are designed according to

WordNet. Similarly, the WordNet structure is used in [30]
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to find appropriate basic words for image context instead of

generating concept levels. In [33], the entry-level name is

predicted which people are likely to call from the specif-

ic categories located at the leaf nodes in WordNet. Simi-

lar to [30], the entry-level name also takes WordNet struc-

ture, word frequency and image classification outputs into

account. All these works rely on the WordNet structure.

However, the limitation of WordNet is noticed in [34], and

it is believed that visually similar objects are also linked in

semantic scenarios and thus visual similarity is introduced

into basic level extraction.

Furthermore, it is highlighted in [35] that the number of

samples in each category can greatly affect the performance

of pre-train models. Consequently, it suggests to uniform

the sample number across classes. For a similar reason, the

full ImageNet dataset is combined to 4K, 8K and 13K cate-

gories in [31] according to the sample number of each class

in WordNet. Trained on this combined dataset, CNNs ob-

tain a better performance than pre-trained models for V2L

tasks. The human-categorization knowledge is introduced

to CNN learning which benefits both classification and V2L

tasks in [44].

3. Proposed Basic Concept Category

3.1. Categorizing Salient Concepts

Since basic level concepts are objects frequently ap-

peared in daily lives so that children can easily access to

them during their early learning. It is desired to narrow the

range of basic concepts into a smaller semantic concept set

which frequently appears in both vision and language. To

this aim, the benchmark image captioning dataset MSCO-

CO [24] is employed, which contains 123,287 images and

each image is associated with 5 reference sentences describ-

ing the corresponding image content. Given an object con-

cept, its most common and visually sensitive substances are

included.

Considering that MSCOCO provides only 91 stuffs and

obviously it cannot cover as many salient concepts as need-

ed, these concepts in image captions are aligned direct-

ly with the annotations in the large-scale image dataset

of ImageNet [40]. ImageNet contains 21,841 classes and

14,197,122 images in total, and it is tree structured accord-

ing to the WordNet organization, which ensures ImageNet

has both visual and semantic hierarchical characteristics.

Every ImageNet category is corresponding to a WordNet

entry which provides rich form and synonyms.

First, the MSCOCO captions are split into words and

the frequency of each word is counted. Then, the word-

s with less than 5 occurrences are treated as insignificant

and removed. After removing insignificant words, a vocab-

ulary with 9,566 words is constructed and any word out-

side this vocabulary is replaced by a special “unknown key-

word”. Afterwards, these filtered 9,566 words are matched

to ImageNet annotations and each match is considered as

an extracted salient concept. Finally, a Salient Concep-

t (SaC) Category is generated which contains 1,689 con-

cepts. Therefore, a rough set of objects is extracted which

contains salient concepts from human annotated datasets.

3.2. Clustering Concepts by Confusion Degree

As mentioned above, the proposed Basic Concept (BaC)

Category is defined as the superset of basic level concepts.

In a semantic hierarchy, the width of basic level is one, then

the width of BaC is equal to or greater than one, so BaC

is a band that enfolds the basic level. Rather than choos-

ing one strip in multiple layers, it is preferred to aggregate

these concepts into a single one. Since basic level is a cat-

egory with which children make fewer mistakes [41, 4], it

inspires us to merge classes by the “difficulty” for CNNs to

distinguish one from another. Specifically, a CNN model is

firstly trained until its classification accuracy reaches a bot-

tleneck, then the “difficulty” is measured according to the

error rate of each class. Let ��� be the number of images

misclassified from class � to class �, for all classes the mis-

classification among each class-pair can be organized by a

confusion matrix � .

Figure 1. Illustration of confusion matrix �. The brightness of

element �� indicates the number of images belonging to class �

being misclassified to class �. The diagonal is removed for better

view.

The confusion matrix � is organized by each row and

visualized in Fig. 1. The long horizontal light indicates the

target class that is very prone to be misclassified while the

long vertical light means that the corresponding class is vi-

sually similar to many other classes. As seen in Fig. 1, the

following observations can be made. First, most confusing

classes are gathered into groups rather than scattered sep-

arately. Visually similar objects are close to each other in

semantic distance. Second, there are more vertical cluster-

s than horizontal clusters. This phenomenon is due to the

presence of the container class in the category. Contain-

er classes are usually located at the higher layer of Ima-

geNet hierarchy and contain several sub-classes, e.g., “cat”

contains “Egyptian cat”, “Persian cat” and “kitty”, and sub-
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classes are more confused than the corresponding contain-

er class. Third, there exist several clusters in the same

row/column. This is because some classes that are far away

in WordNet may share similar visual characteristics.

In order to measure how difficult a class-pair �� can be

distinguished by a certain CNN model, the confusion degree

��� is defined as

��� =
������ − ������

√

(��� + ���)(��� + ���)(��� + ���)(��� + ���)
.

(1)

The smaller the confusion degree is, the easier for CNN

to distinguish a class-pair. This operation also transfers a

asymmetric confusion matrix � to a symmetric similarity

matrix Φ. It is common that the classes which are similar to

each other have larger �. It is a graph clustering problem to

merge these classes. To achieve this, the graph-based dis-

tance ��� between class � and � is defined as

��� = max
���∈���

min
���∈���

���, (2)

where ��� indicates all paths from � to �, and ��� is an

edge in ��� from � to �. The proposed BaC Category can

be obtained by simply merging class � and class � once ���
is larger than a given threshold �.

Figure 2. Histogram of confusion degree. It shows the number (in

log) of confusion degree for each class pair in SaC.

To decide the value of �, the statistics of confusion de-

gree are shown in Fig. 2. For most class pairs, their confu-

sion degree range from −0.95 to −1, which demonstrates

that CNN can easily distinguish them. However, for several

class pairs, CNN can hardly perform well and the distri-

bution of prone-confused classes is generally uniform. It

is worth noting that when � gets smaller its effect on clus-

ter number will be weak since most class pairs own small

confusion degrees. The selection of � is quite robust from

−0.8 to −0.95. In this work, � is empirically set to −0.9
and finally the BaC category is obtained with 1,372 concept

clusters.

3.3. Comparing BaC with Cognitive Basic Level

The effect of the proposed BaC Category is visualized in

Fig. 3 with several toy examples divided into three cluster-

s: natural object, artificial object and others. The examples

of natural object show that different varieties belong to the

same species with similar appearance. Even for the same

scenario, various attention will make completely different

understandings such as mountain and valley. The examples

of artificial object, as the large proportion in the BaC cat-

egory, mainly include activities and human created stuffs.

The former contains several usually concurrent objects and

actions whereas the latter is often various in shape but ap-

pears in same scenes. The last group represents the exam-

ples with social attributes which mainly contain high level

semantic inference. All of these examples manifest that the

objects inner one cluster share very general characteristics

although their labels vary.

(a) Natural object

(b) Artificial object

(c) Others
Figure 3. Toy examples of the proposed BaC Category, including

three clusters: (a) natural object, (b) artificial object, and (c) others

with latent social attributes.

Moreover, some partial classes and the corresponding hi-

erarchy related to head dress in WordNet/ImageNet are il-

lustrated in Fig. 4, where the words in circle represent the

classes in the SaC Category (1,689 classes in total) and the

words in square indicate the nodes constructed by the hier-

archy but not in the SaC Category. Besides, the words in

the same color represent that the corresponding classes be-

long to one cluster in the BaC Category (1,372 classes in

total). It is observed that beret, beany and toque have very

similar appearances, however they are located on distinct

depths and cross with other clusters in the hierarchy. The

visual similarity among such classes can hardly be discov-
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ered only by the distance in WordNet. Apparently, visu-

ally similar classes may cross the lexical relations among

categories. Grouping clusters cannot be accomplished by

rolling classes between direct superclass and subclass, or

simply selecting a certain layer where all deeper subclasses

could be aggregated on. It is also mentioned in [34] that the

encyclopedic knowledge in WordNet does not coincide with

the expected organization of common sense knowledge.

Figure 4. Hierarchical structure of head dress in WordNet. The

words in circle represent the classes in the SaC Category and the

words in square indicate the nodes constructed by the hierarchy but

not in the SaC Category. The words in the same color represent

that the corresponding classes belong to one cluster in the BaC

Category.

Based on the aforementioned analysis, the following ob-

servations can be made. First, the natural objects in BaC are

very similar to the basic level objects in human cognition.

This infers that human categorizes natural objects essential-

ly depending on shape and texture which are features that

CNNs are good at learning. Second, the artifacts in BaC are

located relatively deeper in the hierarchy compared with the

basic level objects. In other words, it is much difficult for C-

NNs to summarize the generality among artificial objects as

humans do, so it inclines to make more clusters on a more

specific level. There are two possible explanations about

this phenomenon. One is the insufficiency of training da-

ta, and another is that people categorize artifacts according

to function rather than appearance. Consequently, it is not

easy for CNN to infer the latent information for categoriza-

tion.

4. Experimental Results

Since the BaC level is supposed as a proper level of cog-

nitive consensus, it is employed as an optimized represen-

tation between CNN and LSTM to verify its efficiency for

V2L tasks.

4.1. Image Captioning

Regarding image captioning, the benchmark datasets of

MSCOCO [24] and Flickr30k [10] are employed. As men-

tioned above, MSCOCO contains 123,287 images, and each

of them is annotated with 5 captions. The widely adopted

split method [14] is applied with 5,000 images for both val-

idation and testing. On the other hand, the dataset of Flick-

r30k contains 31,783 images and 5 captions for each image.

For Flickr30k, 29,000 images are used for training, 1,000

images are used for test, and the rest are for validation.

As far as the evaluation metrics for image captioning are

concerned, the following widely used evaluation metrics are

used for performance presentation, including BLEU [36],

METEOR [20], ROUGE L [23] and CIDEr [46] which are

denoted as ‘B’, ‘M’, ‘R’ and ‘C’ for short. About the CNN

model for visual representation, GoogLeNet [43] is adopted

to encode visual features. First, the GoogLeNet based CNN

model is trained with the SaC/BaC Category by fine-tuning

from the 4K pre-trained model [31] for convenience. Then,

the model parameters are transferred to the caption task with

the following two methods: (1) OFC (Original Fully Con-

nected) method, in which the last fully connected layer (i.e.,

classification layer) of the pre-trained model is extracted to

be the input to the LSTM network. (2) NIC (Neural Image

Captioning) method, which is a commonly used image cap-

tioning baseline model [47] with an image embedding layer

between CNN and LSTM. The caption model follows the

default setup of NIC which uses LSTM with 512 memory

cells and 512 dimensions of word embedding. The training

strategy is also the same as NIC with ADAM optimizer, and

the learning rate is 4 × 10−4, � is 0.8, � is 0.999, and � is

10−8.

First, the comparisons of different categorizing methods

with the same CNN model are demonstrated in Table 1, Ta-

ble 2, Table 3 and Table 4. In these tables, the ILSVRC-1K

method [40] is provided by the winner model GoogLeNet

with 1,000 official categories of ILSVRC 2012. The meth-

ods of Shuffle-4K [31] and Shuffle-8K [31] reorganize the

full ImageNet (i.e., 21,841 classes) aiming to solve the da-

ta imbalance issue with a subset of classes. The MuCaLe-

Net [44] contains 480 basic categories from ImageNet-1K

(i.e., 1,000 classes) with human annotation. The compar-

isons with the OFC and NIC methods on MSCOCO are

shown in Table 1 and Table 2, where it can be seen that the

proposed BaC Category method outperforms all the base-

line models in all of the evaluation metrics. When com-

paring Table 1 and Table 2, the performances achieved by

Shuffle-4K and Shuffle-8K with NIC significantly surpass

their performances with OFC, and the performances ob-

tained by the proposed BaC Category method are stable

with both OFC and NIC. The improvement of the SaC Cat-

egory method is obvious with OFC as compared with the

baseline methods, however, it becomes inconspicuous with

NIC. The results imply that the SaC Category provides par-

tial salient semantics for word embedding of language mod-

el but does not greatly promote the optimization of visual

representations, while the BaC Category not only enables

high-level semantic representation but also presents the gen-
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eralization of visual features.

Table 1. Comparison of SaC and BaC to other taxonomies of Ima-

geNet by the OFC model on the MSCOCO dataset.

Taxonomy C B-3 B-4 M R

ILSVRC-1K [40] 90.7 38.7 28.1 24.2 51.9

Shuffle-4K [31] 89.5 38.5 27.6 23.9 51.8

Shuffle-8K [31] 85.9 37.7 26.5 23.3 51.3

MuCaLe-Net [44] 92.3 38.5 27.8 24.2 51.8

SaC Category 91.8 38.9 27.9 24.3 52.0

BaC Category 96.2 40.4 29.6 24.9 52.7

Table 2. Comparison of SaC and BaC to other taxonomies of Ima-

geNet by the NIC model on the MSCOCO dataset.

Taxonomy C B-3 B-4 M R

ILSVRC-1K [40] 90.1 37.9 27.6 24.0 51.7

Shuffle-4K [31] 92.9 39.8 29.1 24.5 52.4

Shuffle-8K [31] 92.8 39.0 28.2 24.4 51.9

MuCaLe-Net [44] 92.2 38.9 28.1 24.5 52.1

SaC Category 92.3 38.4 27.8 24.3 52.1

BaC Category 96.0 40.4 29.6 24.7 52.8

Similarly, the comparisons with the OFC and NIC meth-

ods on Flickr30k are shown in Table 3 and Table 4. From

the results, it can be observed that both the SaC and BaC

methods are better than the competing baseline methods

when employing the OFC method, and the BaC Catego-

ry method achieves the best. When considering the NIC

method, the proposed BaC Category method achieves al-

most the same as the Shuffle-8K method but with less

amount of model parameters.

Table 3. Comparison of SaC and BaC to other taxonomies of Ima-

geNet by the OFC model on the Flickr30k dataset.

Taxonomy C B-4 M R

ILSVRC-1K [40] 34.6 17.8 18.4 42.8

Shuffle-4K [31] 36.2 18.9 18.5 43.2

Shuffle-8K [31] 34.2 18.1 18.0 43.1

SaC Category 36.8 19.4 19.0 43.6

BaC Category 37.4 19.4 19.0 44.0

Table 4. Comparison of SaC and BaC to other taxonomies of Ima-

geNet by the NIC model on the Flickr30k dataset.

Taxonomy C B-4 M R

ILSVRC-1K [40] 33.1 17.8 18.3 42.6

Shuffle-4K [31] 36.8 18.7 18.8 43.2

Shuffle-8K [31] 36.9 19.0 18.8 43.7

SaC Category 35.2 19.1 18.5 43.6

BaC Category 36.7 19.3 18.8 43.7

Moreover, the comparisons with other state-of-the-art

methods on MSCOCO and Flickr30k are shown in Ta-

ble 5 and Table 6, respectively, where the performance

of ROUGE L is not given since almost all of these

state-of-the-art methods do not present this result, excep-

t Scene+LSTM [12] on MSCOCO in which ROUGE L =

50.9 which is lower than 53.8 achieved by the proposed BaC

Category method. Note that the ROUGE L performance

achieved by the proposed BaC Category method on Flick-

r30k is 44.4. As shown in Table 5, the proposed BaC Cat-

egory method achieves almost the best performance on the

criteria of CIDEr and BLEU-4 with its METEOR perfor-

mance a little bit lower than that of Att+CNN+LSTM [49].

A similar observation can also be made from the compari-

son result on the dataset of Flickr30k as shown in Table 6,

where the proposed BaC Category method achieves the best

in terms of CIDEr and BLEU-4 while its METEOR perfor-

mance is a little bit lower than that of Soft-Attention [50]

and Hard-Attention [50]. Note that the beamsearch tech-

nique is applied for the proposed BaC Category method

with the beamsearch size of 3 which is marked as BS3 in

Table 5 and Table 6.

Table 5. Comparison of the proposed BaC by NIC model to state-

of-the-art methods on the MSCOCO dataset.

Method C B-3 B-4 M

multimodal RNN [14] 66.0 32.1 23.0 19.5

Google NIC [47] – 32.9 24.6 –

LRCN-CaffeNet [6] – 30.4 21.0 –

m-RNN [29] – 35.0 25.0 –

Soft-Attention [50] – 34.4 24.3 23.9

Hard-Attention [50] – 35.7 25.0 23.0

emb-gLSTM [11] 81.3 35.8 26.4 22.7

RA+SF [12] 83.8 38.1 28.2 23.5

Att+CNN+LSTM [49] 94.0 42.0 31.0 26.0

VN-Embed [38] 93.7 39.5 29.7 24.4

GLA [21] 96.4 41.7 31.2 24.9

BaC Category (BS3) 99.7 42.0 32.0 25.5

Table 6. Comparison of the proposed BaC by NIC model to state-

of-the-art methods on the Flickr30k dataset.

Method C B-3 B-4 M

LogBilinear [15] – 25.4 17.1 16.9

multimodal RNN [14] – 24.0 15.7 15.3

Google NIC [47] – 27.7 18.3 –

LRCN-CaffeNet [6] – 25.1 16.5 –

m-RNN [29] 28.0 28.0 19.0 –

Soft-Attention [50] – 28.8 19.1 18.5

Hard-Attention [50] – 29.6 19.9 18.5

emb-gLSTM [11] – 30.5 20.6 17.9

BaC Category (BS3) 39.5 30.5 21.2 18.4

Several examples of the generated captions obtained by

the proposed BaC Category method are shown in Fig. 5,

where the generated captions are given in the first row in
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BaC: A group of people standing around

a kitchen preparing food.

BaC: A couple of

baseball players standing

on top of a field.

BaC: A red and white

fire hydrant on a sidewalk.

Baseline: A group of people standing around

a table with food.

Baseline: Two baseball

players standing on the field

with a baseball glove.

Baseline: A white and blue fire hydrant

with a white background.

BaC: An elephant with its trunk in its mouth.
BaC: A wooden bench sitting next to

a brick wall.

BaC: A statue of a banana

sitting on top of a tree.

Baseline: A elephant that is standing

in the dirt.

Baseline: A white and black and white

photo of a stone building.

Baseline: A orange and white

orange and a red frisbee

in a field.

Figure 5. Comparison of generated caption examples achieved by the proposed BaC Category method. The left row shows the examples

without error, the middle row shows the examples with minor errors and inappropriate expressions, and the right row shows the examples

with conspicuous mistakes.

blue and the captions generated by the ILSVRC-1K [40]

method are also presented in the second row in red for com-

parison. From left to right, there are three columns indi-

cating the good, fair and bad examples, respectively. The

left column shows the captions that accurately describe the

objects (e.g., trunk) and achieve comprehensive understand-

ings (e.g., kitchen, preparing food rather than table, food).

The middle column shows the captions without error but

losing some points. As compared with the ILSVRC-1K [40]

method, although the proposed method ignores some partial

contents of the image (e.g., glove), it produces less incor-

rect information. Similar conclusions can be derived from

the examples with conspicuous errors in the right column.

This comparison further verifies that although the language

models are the same, the accuracy of visual representation

greatly impacts the quality of the generated captions.

4.2. Visual Question Answering

In order to testify the effectiveness of the proposed BaC

level on the VQA task, the dataset of Toronto COCO-

QA [37] is applied, which belongs to the single-word an-

swer question and contains four types of questions focus-

ing on the object, number, color and location, respectively.

The official training and test split methods are used, and

82,783 images are applied for training, 40,504 images for

validation and 81,434 images for test, and each has 3 ques-

tions and 10 answers. The existing framework for VQA is

mainly based on the VGG+LSTM model [28], which is al-

so employed as the baseline to implement the proposed BaC

Category method.

The accuracy comparison with a number of state-of-the-

art methods on the COCO-QA dataset is given in Table 7,

where the accuracy criteria of object, number, color and lo-

cation are presented as “Obj”, “Num”, “Col” and “Loc”,

respectively. Additionally, the weighted average accuracy

is also listed as “Total” in Table 7. About the competing

methods, GUESS is a very simple baseline that predicts the

answer only by the question type (object, number, color and

location). VGG+BoW [37] performs multinomial logistic

regression based on the image feature without dimensional-
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Table 7. Comparison of the proposed BaC to state-of-the-art meth-

ods on the COCO-QA dataset.

Method Total Obj Num Col Loc

GUESS 6.7 2.1 35.8 13.9 8.9

VGG+BoW [37] 55.9 58.7 44.1 52.0 49.4

VIS+LSTM [37] 53.3 56.5 46.1 45.9 45.5

2VIS+BLSTM [37] 55.1 58.2 44.8 49.5 47.3

multimodal CNN [26] 54.9 – – – –

ILSVRC-1K [40] 54.2 57.5 47.0 50.3 48.5

Shuffle-4K [31] 55.5 57.4 48.3 52.7 47.6

Shuffle-8K [31] 56.0 57.7 48.7 52.7 48.9

BaC Category 57.2 59.3 48.3 51.2 51.5

ity reduction, and a Bag-of-Word (BoW) vector is obtained

by summing all the learned word vectors of the question.

In [37], the method of VIS+LSTM uses the last hidden lay-

er of VGG [42] for image embedding and treats it as one

word of the question to be encoded at the start and the end

of the sentences. The method of 2VIS+BLSTM employs t-

wo image features which are put into the language model at

the start and the end of the sentences, respectively. On the

other hand, the method of multimodal CNN [26] encodes

both images and questions by CNN only. Moreover, the

methods of ILSVRC-1K [40] and Shuffle-4K/8K [31] are

also applied for comparison with the same configuration as

the proposed method except the number of BaC categories.

As shown in Table 7, the proposed BaC Category method

outperforms other state-of-the-art methods on the total ac-

curacy, especially on the object accuracy with 59.3% and

the location accuracy with 51.5%. The accuracy of number

and color is slightly lower than some of the other competi-

tors such as Shuffle-4K and Shuffle-8K. This may be due

to the reason that the semantic concept classes are catego-

rized mainly based on the object level while the learning of

attributes is partly weakened.

5. Conclusion

For the same image, diverse understandings among vari-

ous persons and the multiple grained understanding bring

great ambiguity to manage vision-to-language tasks. To

tackle such problems, a basic concept category that resem-

bles cognitive basic level is proposed to provide a consensus

representation on a proper level. By intersecting classes in

ImageNet and MSCOCO, a salient concept category is ob-

tained. Then a confusion matrix based method is applied

to refine the category thereby providing cognitively more

accurate visual representation for language modeling. The

comparative experimental results on the image captioning

task and visual question answering task have verified that

the proposed basic concept category method is able to sig-

nificantly improve the prediction performance for vision-to-

language tasks.
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