
DeLS-3D: Deep Localization and Segmentation with a 3D Semantic Map

Peng Wang, Ruigang Yang, Binbin Cao, Wei Xu, Yuanqing Lin

Baidu Research

National Engineering Laboratory for Deep Learning Technology and Applications

{wangpeng54, yangruigang, caobinbin, wei.xu, linyuanqing}@baidu.com

Abstract

For applications such as augmented reality, autonomous

driving, self-localization/camera pose estimation and scene

parsing are crucial technologies. In this paper, we pro-

pose a unified framework to tackle these two problems si-

multaneously. The uniqueness of our design is a sen-

sor fusion scheme which integrates camera videos, motion

sensors (GPS/IMU), and a 3D semantic map in order to

achieve robustness and efficiency of the system. Specifi-

cally, we first have an initial coarse camera pose obtained

from consumer-grade GPS/IMU, based on which a label

map can be rendered from the 3D semantic map. Then, the

rendered label map and the RGB image are jointly fed into

a pose CNN, yielding a corrected camera pose. In addi-

tion, to incorporate temporal information, a multi-layer re-

current neural network (RNN) is further deployed improve

the pose accuracy. Finally, based on the pose from RNN,

we render a new label map, which is fed together with

the RGB image into a segment CNN which produces per-

pixel semantic label. In order to validate our approach, we

build a dataset with registered 3D point clouds and video

camera images. Both the point clouds and the images are

semantically-labeled. Each video frame has ground truth

pose from highly accurate motion sensors. We show that

practically, pose estimation solely relying on images like

PoseNet [25] may fail due to street view confusion, and it

is important to fuse multiple sensors. Finally, various ab-

lation studies are performed, which demonstrate the effec-

tiveness of the proposed system. In particular, we show that

scene parsing and pose estimation are mutually beneficial

to achieve a more robust and accurate system.

1. Introduction

In applications like robotic navigation [34] or augment

reality [2], visual-based 6-DOF camera pose estimation [5,

31, 25, 10], and concurrently parsing each frame of a video

into semantically meaningful regions [48, 46, 6] efficiently

are the key components, which are attracting much attention

in computer vision.

Currently, most state-of-the-art (SOTA) algorithms try

to solve both tasks using solely visual signals. For cam-

era localization, geometric based methods are relying on vi-

sual feature matching, e.g. systems of Perspective-n-Points

(PnP) [19, 26, 5] when a 3D map and an image is provided,

or systems of SLAM [15, 32, 33] when there is a video.

Such systems are dependent on local appearance, which

could fail when confronted with low-texture environments.

Most recently, deep learning based methods, e.g. for either

images [25] or videos [8], have been developed, which not

only consider hierarchical features, while yielding real-time

performance. Nevertheless, those methods are good for en-

vironments with rich distinguishable features, such as these

in the Cambridge landmarks dataset [25]. They could fail

for common street views with very similar appearances or

even repetitive structures.

For scene parsing, approaches [48, 6] based on deep fully

convolutional network (FCN) with ResNet [21] are the best-

performing algorithms for single image input. When the

input is video, researchers [28, 49] incorporate the optical

flow between consecutive frames, which not only accel-

erates the parsing, but also improve temporal consistency.

Furthermore, for static background, one may use structure-

from-motion (SFM) techniques [44] to jointly parse and

reconstruct [27]. However, these methods could be either

time-consuming or hard to generalize for applications ask-

ing online real-time performance.

In this paper, we aim to solve this camera localization

and scene parsing problem jointly from a more practical

standpoint. In our system, we assume to have (a) GPS/IMU

signal to provide a coarse camera pose estimation; (b) a se-

mantic 3D map for the static environment. The GPS/IMU

signals serve as a crucial prior for our deep-learning based

pose estimation system. The semantic 3D map, which can

synthesize a semantic view for a given camera pose, not

only provides strong guidance for scene parsing, but also

helps maintain temporal consistency. Our setting is consid-

ered on par with the widely used mobile navigation systems,

whereas the 2D labeled map is replaced with a 3D seman-

tic map, and we are able to virtually place the navigation

signals into the images with more accurate self-localization

15860

GPS IMU

Pose CNN Pose RNN Segment CNN

Image stream

R
es-G

R
U

R
es-G

R
U

Segment

building

car-lane

ped-lane

plants

Projection 3D Semantic Map

Camera

Projection

Refined pose

Figure 1: System overview. The black arrows show the testing process, and red arrows indicate the rendering (projection)

operation in training and inference. The yellow frustum shows the location of cameras inside the 3D map. The input of our

system contains a sequence of images and corresponding GPS/IMU signals. The outputs are the semantically segmented

images, each with its refined camera pose.

and scene parsing on-the-fly. Promisingly, with the accel-

erated development of autonomous driving, city-scale 3D

semantic maps are being collected and built (such as the

TorontoCity dataset [43]). Here, we constructed our own

data with high quality 3D semantic map, which is captured

via a high-accuracy mobile LIDAR device from Riegl1.

Last but not least, within our deep learning framework,

the camera poses and scene semantics are mutually ben-

eficial. The camera poses help establish the correspon-

dences between the 3D semantic map and 2D semantic label

map. Conversely, scene semantics could help refine cam-

era poses. Our unified framework yields better results, in

terms of both accuracy and speed, for both tasks than doing

them individually. In our experiments, using a single Titan

Z GPU, the networks in our system estimates the pose in

10ms with accuracy under 1 degree, and segments the im-

age 512 × 608 in within 90ms with pixel accuracy around

96% without model compression, which demonstrates its

efficiency and effectiveness.

In summary, the contributions of this paper are:

• We propose a deep learning based system for fus-

ing multiple sensors, i.e. RGB images, customer-grad

GPS/IMU, and 3D semantic maps, which improves the

robustness and accuracy for camera localization and

scene parsing.

• Camera poses and scene semantics are designed to

handle jointly in a unified framework.

• We create a dataset from real scenes to fully evalu-

ate our approach. It includes dense 3D semantically

labelled point clouds, ground truth camera poses and

1http://www.rieglusa.com/index.html

pixel-level semantic labels of video camera images,

which will be released in order to benefit related re-

searches.

The structure of this paper is organized as follows. We

first give an overview of our system in Sec. 1.1 and talk

about related works in Sec. 2. In Sec. 3, we describe the

uniqueness of our data from the existing outdoor datasets,

and introduce our collection and labelling process. Then,

Sec. 4 presents details of our system. We perform full evalu-

ation quantitatively for both pose estimation and scene pars-

ing in Sec. 5, and Sec. 6 concludes the paper and points out

future directions.

1.1. Framework
The framework of our system is illustrated in Fig. 1. At

upper part, a pre-built 3D semantic map is available. Dur-

ing testing, an online stream of images and corresponding

coarse camera poses from GPS/IMU are fed into the system.

Firstly, for each frame, a semantic label map is rendered out

given the input coarse camera pose, which is fed into a pose

CNN jointly with the respective RGB image. The network

calculates the relative rotation and translation, and yields a

corrected camera pose. To incorporate the temporal corre-

lations, the corrected poses from pose CNN are fed into a

pose RNN to further improves the estimation accuracy in

the stream. Last, given the rectified camera pose, a new

label map is rendered out, which is fed together with the

image to a segment CNN. The rendered label map helps to

segment a spatially more accurate and temporally more con-

sistent result for the image stream of video. In this system,

since our data contains ground truth for both camera poses

and segments, it can be trained with strong supervision at

each end of outputs.

5861

2. Related Work

Estimating camera pose and semantic parsing given a

video or a single image have long been center problems for

computer vision. Here we summarize the related works in

several aspects without enumerating them all due to space

limitation. Notice that our application is autonomous driv-

ing and navigation, we therefore focus on outdoor cases

with street-view input. Localization and general parsing in

the wild is beyond the scope of this paper.

Camera pose estimation. Traditionally, localizing

an image given a set of 3D points is formulated as a

Perspective-n-Point (PnP) problem [19, 26] by matching

feature points in 2D and features in 3D through cardinal-

ity maximization. Usually in a large environment, a pose

prior is required in order to obtain good estimation [11, 31].

Campbell et al. [5] propose a global-optimal solver which

leverage the prior. In the case that geo-tagged images are

available, Sattler et al. [39] propose to use image-retrieval

to avoid matching large-scale point cloud. When given a

video, temporal information could be further modeled with

methods like SLAM [15] etc, which increases the localiza-

tion accuracy and speed.

Although these methods are effective in cases with dis-

tinguished feature points, they are still not practical for

city-scale environment with billions of points, and they

may also fail in areas with low texture, repeated structures,

and occlusions. Thus, recently, deep learned features with

hierarchical representations are proposed for localization.

PoseNet [25, 24] takes a low-resolution image as input,

which can estimate pose in 10ms w.r.t. a feature rich en-

vironment composed of distinguished landmarks. LSTM-

PoseNet [20] further captures a global spatial context af-

ter CNN features. Given an video, later works incorpo-

rate Bi-Directional LSTM [8] or Kalman filter LSTM [10]

to obtain better results with temporal information. How-

ever, in street-view scenario, considering a road with trees

aside, in most cases, no significant landmark appears, which

could fail the visual models. Thus, signals from GPS/IMU

are a must-have for robust localization in these cases [42],

whereas the problem switched to estimating the relative

pose between the camera view from a noisy pose and the

real pose. For finding relative camera pose of two views, re-

cently, researchers [29, 41] propose to stack the two images

as a network input. In our case, we concatenate the real im-

age with an online rendered label map from the noisy pose,

which provides superior results in our experiments.

Scene parsing. For parsing a single image of street

views (e.g., these from CityScapes [9]), most state-of-the-

arts (SOTA) algorithms are designed based on a FCN [46]

and a multi-scale context module with dilated convolu-

tion [6], pooling [48], CRF [1], or spatial RNN [4]. How-

ever, they are dependent on a ResNet [21] with hundreds of

layers, which is too computationally expensive for applica-

tions that require real-time performance. Some researchers

apply small models [35] or model compression [47] for ac-

celeration, with the cost of reduced accuracy. When the

input is a video, spatial-temporal informations are jointly

considered, Kundu et al. [28] use 3D dense CRF to get tem-

porally consistent results. Recently, optical flow [12] be-

tween consecutive frames is computed to transfer label or

features [16, 49] from the previous frame to current one.

In our case, we connect consecutive video frames through

3D information and camera poses, which is a more com-

pact representation for static background. In our case, we

propose the projection from 3D maps as an additional in-

put, which alleviates the difficulty of scene parsing solely

from image cues. Additionally, we adopt a light weighted

network from DeMoN [41] for inference efficiency.

Joint 2D-3D for video parsing. Our work is also related

to joint reconstruction, pose estimation and parsing [27, 18]

through embedding 2D-3D consistency. Traditionally, re-

liant on structure-from-motion (SFM) [18] from feature or

photometric matching, those methods first reconstruct a 3D

map, and then perform semantic parsing over 2D and 3D

jointly, yielding geometrically consistent segmentation be-

tween multiple frames. Most recently, CNN-SLAM [40]

replaces traditional 3D reconstruction module with a sin-

gle image depth network, and adopts a segment network for

image parsing. However, all these approaches are processed

off-line and only for static background, which do not satisfy

our online setting. Moreover, the quality of a reconstructed

3D model is not comparable with the one collected with a

3D scanner.

3. Dataset

Motivation. As described in the Sec. 1.1, our system is

designed to work with available 3D motion sensors and a

semantic 3D map. However, public outdoor datasets such

as KITTI and CityScapes do not contain such information,

in particular the 3D map. The TortoroCity dataset [43] may

be used while is not open to public yet. As summarized

in Tab. 1, we list several key requirements to perform our

experiments, which none of current existing datasets fully

satisfy.

Dataset Real data Camera pose 3D semantic map Video per-pixel label
CamVid [3] X - - -
KITTI [17] X X sparse points -
CityScapes [9] X - - selected frames
Toronto [43] X X 3d building & road selected pixels
Synthia [38] - X - X

P.F.B. [37] - X - X

Ours X X dense point cloud X

Table 1: Compare our dataset with the other related outdoor

street-view datasets for our task. ‘Real data’ means whether

the data is collected from the physical world. ‘3D semantic

map’ means whether it contains a 3D map of scenes with

semantic label. ‘Video per-pixel label’ means whether it

has per-pixel semantic label.

5862

(a) (b) (c)

(e)

building

car-lane

curb

fence

light-poleped-lane object

plants

security-standsky

tele-pole

traffic-stack traffic-cone

traffic-light

traffic-signbike-lane

billboard

(a)

(f)(d)

Figure 2: An example of our collected street-view dataset.

(a) Image. (b) Rendered label map with 3D point cloud pro-

jection, with an inaccurate moving object (rider) circled in

blue. (c) Rendered label map with 3D point cloud projec-

tion after points with low temporal consistency being re-

moved. (d) & (e) Rendered depth map of background and

rendered label map after class dependent splatting in 3D

point clouds (Sec. 4.1). (f) Merged label map with miss-

ing region in-painted, moving objects and sky.

Data collection. We use a mobile LIDAR scanner from

Riegl to collect point clouds of the static 3D map with high

granularity. As shown in Fig. 2(a). The captured point

cloud density is much higher than the Velodyne2 used by

KITTI [17]. Different from the sparse Velodyne LIDAR,

our mobile scanner utilizes two laser beams to scan verti-

cal circles. As the acquisition vehicle moves, it scans its

surroundings as a push-broom camera. However, moving

objects, such as vehicles and pedestrians, could be com-

pressed, expanded, or completely missing in the captured

point clouds. In order to eliminate these inaccurate moving

objects (circled in blue at Fig. 2(b)), we conduct three steps:

1) scan the same road segment multiple rounds; 2) align and

fuse those point clouds; 3) remove the points with low tem-

poral consistency. Formally, the condition to kept a point x

in round j is,

r∑

i=0

✶(∃ xi ∈ Pi s.t. ‖xi − xj‖ < ǫd)/r ≥ δ (1)

where δ = 0.6 and ǫd = 0.025m in our setting, and ✶()
is an indicator function. We keep the remained point clouds

as a static background M for further labelling.

For video capturing, we use two frontal cameras with a

resolution of 2048×2432. The whole system including the

LIDAR scanner and cameras is well calibrated.

2D and 3D labeling In order to have semantic labelling

of each video frame, we handle static background, static

objects (e.g.parked vehicles that could be well recognized

2http://www.velodynelidar.com/

in point clouds), and moving objects separately. Firstly, for

static background, we directly perform labelling on the 3D

point clouds M which are then projected to images, yield-

ing labelled background for all the frames. Specifically, we

over-segment the point clouds into point clusters based on

spatial distances and normal directions, and then label each

cluster of points manually. Second, for static objects in each

round, we prune out the points of static background, and la-

bel the remaining points of the objects. Thirdly, after 3D-2D

projection, only moving objects remain unlabeled. Here, we

adopt an active labelling strategy, by first training an object

segmentation model using a SOTA algorithm [46], and then

refining the masks of moving objects manually.

As shown in Fig. 2(c), the labels obtained from above

three steps are still not perfect. There are some unlabeled

pixels that could be caused by missing points or reflec-

tion. We handle such issues by using the splatting technique

in computer graphics, which turns each point into a small

square as discussed in Sec. 4.1 (Fig. 2(e)). The results are

further refined to generate the final labels (Fig. 2(f)). With

such a strategy, we can greatly increase labelling efficiency

and accuracy for video frames. For example, it could be

very labor-intensive to label texture-rich regions like trees

and poles, especially when occlusion happens. We provide

the labelled video in our supplementary materials for read-

ers who are interested.

Finally, due to space limitation, we elaborate the whole

acquisition system, data collection and labelling process

with an extended dataset paper [22], called ApolloScape,

where a larger dataset with more labelled objects is col-

lected and organized after our submission. Nevertheless,

in this paper, we experimented with a preliminary version

of that dataset, which will be released separately for repro-

ducibility of our results.

4. Localizing camera and scene parsing.

As shown in Sec. 1.1, our full system is based on a se-

mantic 3D map and deep networks. In the following, we

will first describe how a semantic label map is rendered

from the 3D, then discuss the details of our network archi-

tectures and the loss functions to train the whole system.

4.1. Render a label map from a camera pose.

Formally, given a 6-DOF camera pose p = [q, t] ∈
SE(3), where q ∈ SO(3) is the quaternion representation

of rotation and t ∈ ❘
3 is translation, a label map can be

rendered from the semantic 3D map, where z-buffer is ap-

plied to find the closest point at each pixel.

In our setting, the 3D map is a point cloud based environ-

ment. Although the density of the point cloud is very high

(one point per 25mm within road regions), when the 3D

points are far away from the camera, the projected labels

could be sparse, e.g.regions of buildings shown in Fig. 2(c).

5863

FC-32

GRU

FC-7

GRU

FC-32

GRU

FC-7

GRU

FC-32

GRU

FC-7

GRU

Concat Concat Concat

Figure 3: The GRU RNN network architecture for modeling

a sequence of camera poses.

Thus for each point in the environment, we adopt the point

splatting technique, by enlarging the 3D point to a square

where the square size is determined by its semantic class.

Formally, for a 3D point x belonging a class c, its square

size sc is set to be proportional to the class’ average dis-

tance to the camera. Formally,

sc ∝
1

|Pc|

∑

x∈Pc

min
t∈T

d(x, t) (2)

where Pc is the set of 3D points belong to class c, and T
is the set of ground truth camera poses. Then, given the

relative square size between different classes, we define an

absolute range to obtain the actual square size for splatting.

This is non-trivial since too large size will result in dilated

edges, while too small size will yield many holes. In our

experiments, we set the range as [0.025, 0.05], and find that

it provides the highest visual quality.

As shown in Fig. 2(e), invalid values in-between those

projected points are well in-painted, meanwhile the bound-

aries separating different semantic classes are also well pre-

served. Later, we insert such a rendered label map for the

pose CNN and segment CNN, which guides the network to

localize the camera and parse the image.

4.2. Camera localization with motion prior

Translation rectification with road prior. One com-

mon localization priori for navigation is to use the 2D road

map, by constraining the GPS signals inside the road re-

gions. We adopt a similar strategy, since once the GPS sig-

nal is out of road regions, the rendered label map will be

totally different from the street-view of camera, and no cor-

respondence can be found by the network.

To implement this constraint, firstly we render a 2D road

map image with a rasterization grid of 0.05m from our 3D

semantic map by using only road points, i.e.points belong

to car-lane, pedestrian-lane and bike-lane etc. Then, at each

pixel [x, y] ∈ ❩
2 in the 2D map, an offset value f(x, y) is

pre-calculated indicating its 2D offset to the closest pixel

belongs to road through the breath-first-search (BFS) algo-

rithm efficiently.

During online testing, given a noisy translation t =
[tx, ty, tz], we can find the closest road points w.r.t. t using

[tx, ty] + f(⌊tx⌋, ⌊ty⌋) from our pre-calculated offset func-

tion. Then, a label map is rendered based on the rectified

camera pose, which is fed to pose CNN.

CNN-GRU pose network architecture. As shown in

Fig. 1, our pose networks contain a pose CNN and a pose

GRU-RNN. Particularly, the CNN of our pose network

takes as inputs an image I and the rendered label map L

from corresponding coarse camera pose pc
i . It outputs a 7

dimension vector p̂i representing the relative pose between

the image and rendered label map, and we can get a cor-

rected pose w.r.t. the 3D map by pi = pc
i + p̂i. For the

network architecture of pose CNN, we follow the design of

DeMoN [41], which has large kernel to obtain bigger con-

text while keeping the amount of parameters and runtime

manageable. The convolutional kernel of this network con-

sists a pair of 1D filters in y and x-direction, and the en-

coder gradually reduces the spatial resolution with stride of

2 while increasing the number of channels. We list the de-

tails of the network in our implementation details at Sec. 5.

Additionally, since the input is a stream of images, in

order to model the temporal dependency, after the pose

CNN, a multi-layer GRU with residual connection [45] is

appended. More specifically, we adopt a two layer GRU

with 32 hidden states as illustrated in Fig. 3. It includes high

order interaction beyond nearby frames, which is preferred

for improve the pose estimation performance. In traditional

navigation applications of estimating 2D poses, Kalman fil-

ter [23] is commonly applied by assuming either a constant

velocity or acceleration. In our case, because the vehicle

velocity is unknown, transition of camera poses is learned

from the training sequences, and in our experiments we

show that the motion predicted from RNN is better than us-

ing a Kalman filter with a constant speed assumption, yield-

ing further improvement over the estimated ones from our

pose CNN.

Pose loss. Following the PoseNet [24], we use the geo-

metric matching loss for training, which avoids the balanc-

ing factor between rotation and translation. Formally, given

a set of point cloud in 3D P = {x}, and the loss for each

image is written as,

L(p,p∗) =
∑

x∈P

ωlx |π(x,p)− π(x,p∗)|2 (3)

where p and p∗ are the estimated pose and ground truth

pose respectively. π() is a projective function that maps a

3D point x to 2D image coordinates. lx is the semantic label

of x and ωlx is a weight factor dependent on the semantics.

Here, we set stronger weights for point cloud belong to cer-

tain classes like traffic light, and find it helps pose CNN to

5864

32

18

O
ne-

hot

32

64
128

256
512

Softmax

1024

Softmax

18

256
128

64 128

8x Upsample

2x down-sample

32 32

64

4x Upsample

128 64 64

32 64

Softmax

32 18

2x

Conv

DeConv

Score

Plus

4x
8x

16x
32x

2x

4x

8x

16x

1x

4x

2x 2x

1x

Figure 4: Architecture of the segment CNN with rendered label map as a segmentation priori. At bottom of each convolutional

block, we show the filter size, and at top we mark the downsample rates of each block w.r.t. the input image size. The

’softmax’ text box indicates the places a loss is calculated. Details are in Sec. 4.3.

achieve better performance. In [24], only the 3D points vis-

ible to the current camera are applied to compute this loss

to help the stableness of training. However, the amount of

visible 3D points is still too large in practical for us to apply

the loss. Thus, we pre-render a depth map for each training

image with a resolution of 256×304 using the ground truth

camera pose, and use the back projected 3D points from the

depth map for training.

4.3. Video parsing with pose guidance

Having rectified pose at hand, one may direct render the

semantic 3D world to the view of a camera, yielding a se-

mantic parsing of the current image. However, the esti-

mated pose is not perfect, fine regions such as light poles

can be completely misaligned. Other issues also exist. For

instance, many 3D points are missing due to reflection,

e.g.regions of glasses, and points can be sparse at long dis-

tance. Last, dynamic objects in the input cannot be rep-

resented by the projected label map, yielding incorrect la-

belling at corresponding regions. Thus, we propose an ad-

ditional segment CNN to tackle these issues, while taking

the rendered label map as segmentation guidance.

Segment network architecture. As discussed in Sec. 2,

heavily parameterized networks such as ResNet are not ef-

ficient enough for our online application. Thus, as illus-

trated in Fig. 4, our segment CNN is a light-weight net-

work containing an encoder-decoder network and a refine-

ment network, and both have similar architecture with the

corresponding ones used in DeMoN [41] including 1D fil-

ters and mirror connections. However, since we have a seg-

ment guidance from the 3D semantic map, we add a residual

stream (top part of Fig. 4), which encourages the network

to learn the differences between the rendered label map and

the ground truth. In [36], a full resolution stream is used to

keep spatial details, while here, we use the rendered label

map to keep the semantic spatial layout.

Another notable difference for encoder-decoder network

from DeMoN is that for network inputs, shown in Fig. 4,

rather than directly concatenate the label map with input im-

age, we transform the label map to a score map through one-

hot operation, and embed the score of each pixel to a 32 di-

mensional feature vector. Then, we concatenate this feature

vector with the first layer output from image, where the in-

put channel imbalance between image and label map is alle-

viated, which is shown to be useful by previous works [14].

For refinement network shown in Fig. 4, we use the same

strategy to handle the two inputs. Finally, the segment net-

work produces a score map, yielding the semantic parsing

of the given image.

We train the segment network first with only RGB im-

ages, then fine-tune the network by adding the input of ren-

dered label maps. This is because our network is trained

from scratch, therefore it needs a large amount of data to

learn effective features from images. However, the rendered

label map from the estimated pose has on average 70% pixel

accuracy, leaving only 30% of pixels having effective gra-

dients. This could easily drive the network to over fit to

the rendered label map, while slowing down the process to-

wards learning features from images. Finally, for segmen-

tation loss, we use the standard softmax loss, and add in-

termediate supervision right after the outputs from both the

encoder and the decoder as indicated in Fig. 4.

5. Experiments

We perform all experiments using our collected dataset,

and evaluate multiple system settings for pose estimation

and segmentation to validate each component. For GPS and

IMU signal, despite we have multiple scans for the same

road segments, it is still very limited for training. Thus,

follow [42], we simulate noisy GPS and IMU by adding

random perturbation ǫ w.r.t. the ground truth pose follow-

ing uniform distributions. Specifically, translation and rota-

tion noise are set as ǫt ∼ U(0, 7.5m) and ǫr ∼ U(0◦, 15◦)
respectively. We refer to realistic data [30] for setting the

noisy range of simulation.

5865

Datasets. In this paper, our acquisition vehicle scans

two sites at Beijing in China yielding two datasets. The

first one is inside a technology park, named zhongguan-

cun park (Zpark), and we scanned 6 rounds during differ-

ent daytimes. The 3D map generated has a road length

around 3km, and the distance between consecutive frames

is around 5m to 10m. We use 4 rounds of the video camera

images for training and 2 for testing, yielding 2242 train-

ing images and 756 testing images. The second one we

scanned 10 rounds and 4km near a lake, named daoxianghu

lake (Dlake), and the distance between consecutive frames

is around 1m to 3m. We use 8 rounds of the video camera

images for training and 2 for testing, yielding 17062 train-

ing images and 1973 testing images. The semantic classes

of the two datasets are shown in Tab. 3. We will release the

two datasets separately.

Implementation details. To quickly render from the

3D map, we adopt OpenGL to efficiently render a la-

bel map with the z-buffer handling. A 512 × 608 im-

age can be generated in 70ms with a single Titan Z GPU,

which is also the input size for both pose CNN and seg-

ment CNN. For pose CNN, the filter sizes of all layers are

{32, 32, 64, 128, 256, 1024, 128, 7}, and the forward speed

for each frame is 9ms. For pose RNN, we sample sequences

with length of 100 from our data for training, and the speed

for each frame is 0.9ms on average. For segment CNN, we

keep the size the same as input, and the forward time is

90ms. Both of the network is learned with ’Nadam’ opti-

mizer [13] with a learning rate of 10−3. We sequentially

train these three models due to GPU memory limitation.

Specifically, for pose CNN and segment CNN, we stops at

150 epochs when there is no performance gain, and for pose

RNN, we stops at 200 epochs. For data augmentation, we

use the imgaug3 library to add lighting, blurring and flip-

ping variations. We keep a subset from training images for

validating the trained model from each epoch, and choose

the model performing best for evaluation.

For testing, since input GPS/IMU varies every time,

i.e. pc
t = p∗ + ǫ, we need to have a confidence range of

prediction for both camera pose and image segment, in or-

der to verify the improvement of each component we have

is significant. Specifically, we report the standard variation

of the results from a 10 time simulation to obtain the con-

fidence range. Finally, we implement all the networks by

adopting the MXNet [7] platform.

For pose evaluation, we use the median translation off-

set and median relative angle [25]. For evaluating seg-

ment, we adopt the commonly used pixel accuracy (Pix.

Acc.), mean class accuracy (mAcc.) and mean intersect-

over-union (mIOU) as that from [46].

Pose Evaluation. In Tab. 2, we show the performance

of estimated translation t and rotation r from different

3https://github.com/aleju/imgaug

Data Method Trans (m) ↓ Rot (◦)↓ Pix. Acc(%)↑

Z
p
ar

k

Noisy pose 3.45 ± 0.176 7.87 ± 1.10 54.01 ± 1.5
Pose CNN w/o semantic 1.355 ± 0.052 0.982 ± 0.023 70.99 ± 0.18
Pose CNN w semantic 1.331 ± 0.057 0.727 ± 0.018 71.73 ± 0.18
Pose RNN w/o CNN 1.282 ± 0.061 1.731 ± 0.06 68.10 ± 0.32
Pose CNN w KF 1.281 ± 0.06 0.833 ± 0.03 72.00 ± 0.17
Pose CNN-RNN 1.005 ± 0.044 0.719 ± 0.035 73.01 ± 0.16

D
la

k
e Pose CNN w semantic 1.667 ± 0.05 0.702 ± 0.015 87.83 ± 0.017

Pose RNN w/o CNN 1.385 ± 0.057 1.222 ± 0.054 85.10 ± 0.03
Pose CNN-RNN 0.890 ± 0.037 0.557± 0.021 88.55 ± 0.13

Table 2: Compare the accuracy of different settings for pose

estimation from the two datasets. Noisy pose indicates the

noisy input signal from GPS, IMU, and ’KF’ means kalman

filter. The number after ± indicates the standard deviation

(S.D.) from 10 simulations. ↓ & ↑ means lower the better

and higher the better respectively. We can see the improve-

ment is statistically significant.

model variations. We first directly follow the work of

PoseNet [25, 24], and use their published code and geo-

metric loss (Eq. (3)) to train a model on Zpark dataset. Due

to scene appearance similarity of the street-view, we did not

obtain a reasonable model, i.e. results better than the noisy

GPS/IMU signal. At the 1st row, we show the median error

of GPS and IMU from our simulation. At the 2nd row, by

using our pose CNN, the model can learn good relative pose

between camera and GPS/IMU, which significantly reduces

the error (60% for t, 85% for r). By adding semantic cues,

i.e.road priori and semantic weights in Eq. (3), the pose er-

rors are further reduced, especially for rotation (from 0.982
to 0.727 at the 3rd row). In fact, we found the most im-

provement is from semantic weighting, while the road priori

helps marginally. In our future work, we would like to ex-

periment larger noise and more data variations, which will

better validate different cues.

For evaluating an video input, we setup a baseline of

performing RNN directly on the GPS/IMU signal, and as

shown at ’Pose RNN w/o CNN’, the estimated t is even

better than pose CNN, while r is comparably much worse.

This meets our expectation since the speed of camera is eas-

ier to capture temporally than rotation. Another baseline we

adopt is performing Kalman filter [23] to the output from

Pose CNN by assuming a constant speed which we set as the

averaged speed from training sequences. As shown at ’Pose

CNN w KF’, it does improve slightly for translation, but

harms rotation, which means the filter over smoothed the

sequence. Finally when combining pose CNN and RNN, it

achieves the best pose estimation both for t and r. We visu-

alize some results at Fig. 5(a-c). Finally at bottom of Tab. 2,

we list corresponding results on Dlake dataset, which draws

similar conclusion with that from Zpark dataset.

Segment Evaluation. At top part of Tab. 3, we show

the scene parsing results of Zpark dataset. Firstly, we

adopt one of the SOTA parsing network on the CityScapes,

i.e. ResNet38 [46], and train it with Zpark dataset. It utilizes

pre-trained parameters from the CityScapes [9] dataset, and

run with a 1.03s per-frame with our resolution. As shown

5866

Data Method m
IO

U

Pix
. A

cc

sk
y

ca
r-
la

ne

pe
d-

la
ne

bi
ke

-la
ne

cu
rb

t
-c

on
e

t
-s

ta
ck

t
-f
en

ce

lig
ht

-p
ol

e

t
-li

gh
t

te
le

-p
ol

e

t
-s

ig
n

bi
llb

oa
rd

te
m

p-
bu

ild

bu
ild

in
g

se
c.
-s

ta
nd

pl
an

ts

ob
je

ct

Z
p
ar

k

ResNet38 [46] 64.66 95.87 93.6 98.5 82.9 87.2 61.8 46.1 41.7 82.0 37.5 26.7 45.9 49.5 60.0 85.1 67.3 38.0 89.2 66.3
Render PoseRNN 32.61 73.1 - 91.7 50.4 62.1 16.9 6.6 5.8 30.5 8.9 6.7 10.1 16.3 22.2 70.6 29.4 20.2 73.5 -
SegCNN w/o Pose 68.35 95.61 94.2 98.6 83.8 89.5 69.3 47.5 52.9 83.9 52.2 43.5 46.3 52.9 66.9 87.0 69.2 40.0 88.6 63.8
SegCNN w pose GT 79.37 97.1 96.1 99.4 92.5 93.9 81.4 68.8 71.4 90.8 71.7 64.2 69.1 72.2 83.7 91.3 76.2 58.9 91.6 56.7
SegCNN w Pose CNN 68.6 95.67 94.5 98.7 84.3 89.3 69.0 46.8 52.9 84.9 53.7 39.5 48.8 50.4 67.9 87.5 69.9 42.8 88.5 60.9
SegCNN w Pose RNN 69.93 95.98 94.9 98.8 85.3 90.2 71.9 45.7 57.0 85.9 58.5 41.8 51.0 52.2 69.4 88.5 70.9 48.0 89.3 59.5

Data Method mIO
U

Pix. Acc

sk
y

ca
r-l

an
e

ped
-la

ne

t-
sta

ck

t-
fen

ce

wall lig
ht-p

ole

t-
lig

ht

tel
e-p

ole

t-
sig

n

bill
board

build
ing

plan
ts

ca
r

cy
cli

st

motorb
ike

tru
ck

bus

D
la

k
e SegCNN w/o Pose 62.36 96.7 95.3 96.8 12.8 21.5 81.9 53.0 44.7 65.8 52.1 87.2 55.5 66.8 94.5 84.9 20.3 28.9 78.4 82.1

SegCNN w pose GT 73.10 97.7 96.8 97.5 41.3 54.6 87.5 70.5 63.4 77.6 70.5 92.1 69.2 77.4 96.1 87.4 24.5 43.8 80.0 85.7
SegCNN w pose RNN 67.00 97.1 95.8 97.2 30.0 37.4 84.2 62.6 47.4 65.5 62.9 89.6 59.0 70.3 95.2 86.8 23.9 34.4 76.8 86.6

Table 3: Compare the accuracy of different segment networks setting over Zpark (top) and Dlake (bottom) dataset. t is short

for ’traffic’ in the table. Here we drop the 10 times S.D. to save space because it is relatively small. Our results are especially

good at parsing of detailed structures and scene layouts, which is visualized in Fig. 5.

Figure 5: Results from each intermediate stage out of the system over Zpark dataset. Label map is overlaid with the image.

Improved regions are boxed and zoomed out (best in color). More results are available in the supplementary material.

at the 1st row, it achieve reasonable accuracy compare to

our segment CNN (2nd row) when there is no pose priori.

However, our network is 10x faster. At 3rd row, we show

the results of rendered label map with the estimated pose

from pose RNN. Clearly, the results are much worse due to

missing pixels and object misalignment. At 4th row, we use

the rendered label map with ground truth pose as segment

CNN guidance to obtain an upper-bound for our segmenta-

tion performance. In this case, the rendered label map aligns

perfectly with the image, thus significantly improves the re-

sults by correct labelling most of the static background. At

5th and 6th row, we show the results trained with rendered

label map with pose after pose CNN and pose RNN respec-

tively. We can see using pose CNN, the results just improve

slightly compare to the segment CNN. From our observa-

tion, this is because the offset is still significant for some

detailed structures, e.g.light-pole.

However, when using the pose after RNN, better align-

ment is achieved, and the segment accuracy is improved

significantly especially for thin structured regions like pole,

as visualized in Fig. 5, which demonstrates the effective-

ness of our strategy. We list the results over Dlake dataset

with more object labelling at bottom part of Tab. 3, and here

the rendered label provides a background context for object

segmentation, which also improve the object parsing per-

formance.

In Fig. 5, we visualize several examples from our re-

sults at the view of camera. In the figure, we can see the

noisy pose (a), is progressively rectified by pose CNN (b)

and pose RNN (c) from view of camera. Additionally, at

(d) and (e), we compare the segment results without and

with camera pose respectively. As can be seen at the boxed

regions, the segment results with rendered label maps pro-

vide better accuracy in terms of capturing region details at

the boundary, discovering rare classes and keeping correct

scene layout. All of above could be important for applica-

tions, e.g.figuring out the traffic signs and tele-poles that are

visually hard to detect.

6. Conclusion

In this paper, we present a deep learning based frame-

work for camera self-localization and scene parsing with a

given 3D semantic map for online videos, for the applica-

tions of visual-based outdoor robotic navigation. The al-

gorithm fuses multi-sensors, is simple and runs efficient,

meanwhile yields strong results in both of the tasks. More

importantly, in our system, we show that the two informa-

tion are mutually beneficial, where pose helps give good

priori for segmentation and semantic guides a better local-

ization. To perform the experiments, we created a dataset

which contains a point-cloud based semantic 3D map and

videos with ground truth camera pose and per-frame seman-

tic labelling.

5867

References

[1] A. Arnab, S. Jayasumana, S. Zheng, and P. H. S. Torr. Higher

order conditional random fields in deep neural networks. In

ECCV, 2016. 3

[2] G. Bhorkar. A survey of augmented reality navigation.

CoRR, abs/1708.05006, 2017. 1

[3] G. J. Brostow, J. Fauqueur, and R. Cipolla. Semantic object

classes in video: A high-definition ground truth database.

PR, 30(2):88–97, 2009. 3

[4] W. Byeon, T. M. Breuel, F. Raue, and M. Liwicki. Scene la-

beling with lstm recurrent neural networks. In CVPR, pages

3547–3555, 2015. 3

[5] D. Campbell, L. Petersson, L. Kneip, and H. Li. Globally-

optimal inlier set maximisation for simultaneous camera

pose and feature correspondence. ICCV, 2017. 1, 3

[6] L. Chen, G. Papandreou, F. Schroff, and H. Adam. Re-

thinking atrous convolution for semantic image segmenta-

tion. CoRR, abs/1706.05587, 2017. 1, 3

[7] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,

B. Xu, C. Zhang, and Z. Zhang. Mxnet: A flexible and effi-

cient machine learning library for heterogeneous distributed

systems. CoRR, abs/1512.01274, 2015. 7

[8] R. Clark, S. Wang, A. Markham, N. Trigoni, and H. Wen.

Vidloc: 6-dof video-clip relocalization. CVPR, 2017. 1, 3

[9] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

cityscapes dataset for semantic urban scene understanding.

In CVPR, 2016. 3, 7

[10] H. Coskun, F. Achilles, R. DiPietro, N. Navab, and

F. Tombari. Long short-term memory kalman filters: Recur-

rent neural estimators for pose regularization. ICCV, 2017.

1, 3

[11] P. David, D. Dementhon, R. Duraiswami, and H. Samet.

Softposit: Simultaneous pose and correspondence determi-

nation. IJCV, 59(3):259–284, 2004. 3

[12] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas,

V. Golkov, P. van der Smagt, D. Cremers, and T. Brox.

Flownet: Learning optical flow with convolutional networks.

In ICCV, pages 2758–2766, 2015. 3

[13] T. Dozat. Incorporating nesterov momentum into adam.

2016. 7

[14] D. Eigen and R. Fergus. Predicting depth, surface normals

and semantic labels with a common multi-scale convolu-

tional architecture. In ICCV, 2015. 6

[15] J. Engel, T. Schöps, and D. Cremers. Lsd-slam: Large-scale

direct monocular slam. In ECCV, 2014. 1, 3

[16] R. Gadde, V. Jampani, and P. V. Gehler. Semantic video cnns

through representation warping. ICCV, 2017. 3

[17] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-

tonomous driving? the kitti vision benchmark suite. In

CVPR, 2012. 3, 4

[18] C. Hane, C. Zach, A. Cohen, R. Angst, and M. Pollefeys.

Joint 3d scene reconstruction and class segmentation. In

CVPR, pages 97–104, 2013. 3

[19] B. M. Haralick, C.-N. Lee, K. Ottenberg, and M. Nölle. Re-

view and analysis of solutions of the three point perspective

pose estimation problem. IJCV, 13(3):331–356, 1994. 1, 3

[20] F. W. C. Hazirbas, L. L.-T. T. Sattler, S. Hilsenbeck, and

D. Cremers. Image-based localization using lstms for struc-

tured feature correlation. ICCV, 2017. 3

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. CVPR, 2016. 1, 3

[22] X. Huang, X. Cheng, Q. Geng, B. Cao, D. Zhou, P. Wang,

Y. Lin, and R. Yang. The apolloscape dataset for autonomous

driving. arXiv preprint arXiv: 1803.06184, 2018. 4

[23] R. E. Kalman et al. A new approach to linear filtering

and prediction problems. Journal of basic Engineering,

82(1):35–45, 1960. 5, 7

[24] A. Kendall and R. Cipolla. Geometric loss functions for cam-

era pose regression with deep learning. CVPR, 2017. 3, 5, 6,

7

[25] A. Kendall, M. Grimes, and R. Cipolla. Posenet: A convolu-

tional network for real-time 6-dof camera relocalization. In

ICCV, 2015. 1, 3, 7

[26] L. Kneip, H. Li, and Y. Seo. Upnp: An optimal o (n) solution

to the absolute pose problem with universal applicability. In

ECCV, 2014. 1, 3

[27] A. Kundu, Y. Li, F. Dellaert, F. Li, and J. M. Rehg. Joint se-

mantic segmentation and 3d reconstruction from monocular

video. In ECCV, pages 703–718. Springer, 2014. 1, 3

[28] A. Kundu, V. Vineet, and V. Koltun. Feature space opti-

mization for semantic video segmentation. In CVPR, pages

3168–3175, 2016. 1, 3

[29] Z. Laskar, I. Melekhov, S. Kalia, and J. Kannala. Camera re-

localization by computing pairwise relative poses using con-

volutional neural network. CVPR, 2017. 3

[30] B.-H. Lee, J.-H. Song, J.-H. Im, S.-H. Im, M.-B. Heo, and

G.-I. Jee. Gps/dr error estimation for autonomous vehicle

localization. Sensors, 15(8):20779–20798, 2015. 6

[31] F. Moreno-Noguer, V. Lepetit, and P. Fua. Pose priors for si-

multaneously solving alignment and correspondence. ECCV,

pages 405–418, 2008. 1, 3

[32] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. Orb-slam:

a versatile and accurate monocular slam system. IEEE Trans-

actions on Robotics, 31(5):1147–1163, 2015. 1

[33] R. A. Newcombe, S. Lovegrove, and A. J. Davison. DTAM:

dense tracking and mapping in real-time. In ICCV, 2011. 1

[34] K. Ohno, T. Tsubouchi, B. Shigematsu, S. Maeyama, and

S. Yuta. Outdoor navigation of a mobile robot between build-

ings based on dgps and odometry data fusion. In ICRA, 2003.

1

[35] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. Enet:

A deep neural network architecture for real-time semantic

segmentation. CoRR, abs/1606.02147, 2016. 3

[36] T. Pohlen, A. Hermans, M. Mathias, and B. Leibe. Full-

resolution residual networks for semantic segmentation in

street scenes. CVPR, 2017. 6

[37] S. R. Richter, Z. Hayder, and V. Koltun. Playing for bench-

marks. In ICCV, 2017. 3

[38] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and

A. Lopez. The SYNTHIA Dataset: A large collection of

synthetic images for semantic segmentation of urban scenes.

In CVPR, 2016. 3

5868

[39] T. Sattler, A. Torii, J. Sivic, M. Pollefeys, H. Taira, M. Oku-

tomi, and T. Pajdla. Are large-scale 3d models really neces-

sary for accurate visual localization? In CVPR, 2017. 3

[40] K. Tateno, F. Tombari, I. Laina, and N. Navab. Cnn-slam:

Real-time dense monocular slam with learned depth predic-

tion. CVPR, 2017. 3

[41] B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg,

A. Dosovitskiy, and T. Brox. Demon: Depth and motion

network for learning monocular stereo. CVPR, 2017. 3, 5, 6

[42] K. Vishal, C. Jawahar, and V. Chari. Accurate localization

by fusing images and gps signals. In CVPRW, pages 17–24,

2015. 3, 6

[43] S. Wang, M. Bai, G. Mattyus, H. Chu, W. Luo, B. Yang,

J. Liang, J. Cheverie, S. Fidler, and R. Urtasun. Torontoc-

ity: Seeing the world with a million eyes. arXiv preprint

arXiv:1612.00423, 2016. 2, 3

[44] C. Wu et al. Visualsfm: A visual structure from motion sys-

tem. 2011. 1

[45] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi,

W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey,

et al. Google’s neural machine translation system: Bridg-

ing the gap between human and machine translation. arXiv

preprint arXiv:1609.08144, 2016. 5

[46] Z. Wu, C. Shen, and A. van den Hengel. Wider or deeper:

Revisiting the resnet model for visual recognition. CoRR,

abs/1611.10080, 2016. 1, 3, 4, 7, 8

[47] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia. Icnet for real-time

semantic segmentation on high-resolution images. CoRR,

abs/1704.08545, 2017. 3

[48] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene

parsing network. CVPR, 2017. 1, 3

[49] X. Zhu, Y. Xiong, J. Dai, L. Yuan, and Y. Wei. Deep feature

flow for video recognition. CVPR, 2017. 1, 3

5869

