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Abstract

The ability to predict depth from a single image - us-

ing recent advances in CNNs - is of increasing interest to

the vision community. Unsupervised strategies to learning

are particularly appealing as they can utilize much larger

and varied monocular video datasets during learning with-

out the need for ground truth depth or stereo. In previous

works, separate pose and depth CNN predictors had to be

determined such that their joint outputs minimized the pho-

tometric error. Inspired by recent advances in direct vi-

sual odometry (DVO), we argue that the depth CNN pre-

dictor can be learned without a pose CNN predictor. Fur-

ther, we demonstrate empirically that incorporation of a

differentiable implementation of DVO, along with a novel

depth normalization strategy - substantially improves per-

formance over state of the art that use monocular videos

for training.

1. Introduction

Depth prediction from a single image using CNNs has

had a surge of interest in recent years [7, 21, 20]. Recently,

unsupervised methods that rely solely on monocular video

for training (without depth or stereo groundtruth) have cap-

tured the attention of the community. Of particular note in

this regard is the work of Zhou et al. [31] who proposed

a strategy that learned separate pose and depth CNN pre-

dictors by minimizing the photometric consistency across

monocular video datasets during training. Although achiev-

ing impressive results this strategy falls noticeably behind

those that have been trained using rectified stereo image

pairs [13, 19]. These rectified stereo methods have shown

comparable accuracy to supervised methods [26, 7, 23] over

datasets where only sparse depth annotation is available.

However, the assumption of using calibrated binocular im-

age pairs excludes itself from utilizing monocular video

which is easier to obtain and richer in variability. This per-

formance gap between stereo [13, 19] and monocular [31]

learning strategies is of central focus in this paper.

In this paper, we attempt to close this gap by drawing

Zhou etal.

Ours

Figure 1. Our depth prediction (3rd row) compared against Zhou

et al. [31] (2nd row) on KITTI dataset. Our method recovers more

fine details such as tree trunks and advertising board.

inspiration from recent advances in direct visual odome-

try. Specifically, we note that the major difference between

stereo and monocular strategies stems from: (i) unknown

camera pose between frames, and (ii) ambiguity in scale.

Existing methods [28, 31] for learning depth from monocu-

lar video address these differences only partially by adding

an extra CNN pose prediction module. In this paper we ar-

gue that these previous strategies do not adequately address

the scale ambiguity issue - causing divergence during train-

ing. Further, we advocate that the incorporation of an addi-

tional CNN pose prediction module is unnecessary. Instead

we argue that one could employ a differentiable and deter-

ministic objective for pose prediction which is now com-

monly employed within the SLAM community for direct

visual odometry [10, 8, 6, 2].

Contributions: We make the following contributions.

First, we characterize theoretically and demonstrate empiri-

cally why scale ambiguity in current monocular methods is

problematic. Specifically, the problem lies in the scale sen-

sitivity of the depth regularization terms employed during

training. Inspired by related work in direct visual odom-

etry [10] we propose a simple normalization strategy that

circumvents many of these problems and leads to notice-

ably improved performance over Zhou et al. [31](see Fig. 1

for qualitative comparison).

Second, we suggest that learning an additional pose pre-

dicting CNN (which we shall refer to herein as the Pose-
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CNN) is not the most effective strategy for estimating a

depth predicting CNN from monocular video. The Pose-

CNN employed by Zhou et al. does not fully exploit the

relation between camera pose and depth prediction, and ig-

nores the fact that pose estimation from depth is a well-

studied problem with known geometric properties and well

performing algorithms. We instead propose the incorpora-

tion of a Direct Visual Odometry (DVO) [27] pose predictor

into our framework as: (i) it requires no learnable parame-

ters, (ii) establishes a direct relationship between the input

dense depth map and the output pose prediction, and (iii) it

is derived from the same image reconstruction loss used for

minimizing our entire unsupervised training pipeline. To in-

corporate DVO into end-to-end training, we propose a dif-

ferentiable implementation of the DVO (DDVO module), so

that the back-propagation signals reaching the camera pose

predictor can be propagated to the depth estimator.

Finally, since DVO is a second order gradient descent

based method, a good initialization point can lead to better

solution. So instead of starting our DDVO module from

the identity pose, we propose a mixed training procedure

- use a pretrained Pose-CNN to provide pose initialization

for DDVO during training. We demonstrate empirically that

this hybrid method provides better performance compared

to training with Pose-CNN or DDVO alone, and achieves

comparable results to Gordard et al. [13], which is the state

of the art method trained with calibrated binocular pairs on

KITTI dataset [12].

Notation: lowercase boldface symbols (e.g. x) denote vec-

tors, uppercase boldface symbols (e.g. W) denote matrices,

and uppercase calligraphic symbols (e.g. I) denote images.

We also use the notations I(x) : R
2 → R

K to indicate

sampling of the K-channel image representation at subpixel

location x = [x, y]⊤.

2. Learning depth estimation from videos

Our goal is to learn a function fd (modeled as a CNN)-

parametrized by θd- which predicts the inverse depth mapD
from a single image I. Instead of doing supervised learning,

we want to learn from more widely available data sources

without groundtruth depth. Moreover, instead of restricting

ourselves to calibrated binocular images [11, 13, 19], we go

for more general case of monocular video sequences.

Before introducing our end-to-end training pipeline, it is

worth to mention an alternative approach. Given the tem-

poral cues between sequential video frames, it is possible

to first get auxiliary depth annotation from some structure-

from-motion (SfM) algorithm, and then use its output as su-

pervision to learn the depth estimator. Suppose that the SfM

algorithm can be oversimplified as doing photometric bun-

dle adjustment, which minimizes a cost function combining

appearance error Lap., measuring dissimilarity of pixel-wise

correspondences, and some prior cost Lprior, encouraging
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Figure 2. Illustration of our unsupervised learning pipeline. The

learning algorithm takes three sequential images at a time. The

Depth-CNN produces three inverse depth maps for the inputs, and

the pose predictor (lower part) estimates two relative camera pose

between the second image and the other two. The appearance dis-

similarity loss is measured between the second image I2 and the

inversely warped images of I1, I3; In addition, the loss is evalu-

ated in a reverse direction (marked by orange arrows) - it is also

measured between I1, I3 and two warped images of I2. Lower

part of the figure illustrates three architectures we evaluated for

pose prediction: 1) Pose-CNN, 2) use our proposed differentiable

Direct Visual Odometry (DDVO), the initialization of pose is set

as zero (identity transformation), and 3) a hybrid of the above two

- use pretrained Pose-CNN to give a better initial pose for DDVO.

the smoothness of the depth map. This procedure can be

summarized as a two-step optimization:

1. Compute inverse depth maps and camera poses with

SfM:

D∗,p∗ = argmin
D,p
Lap.(D,p) + Lprior(D) (1)

2. Use inverse depth maps from Eq. 1 as supervision to

learn the depth estimator:

min
θd
L(fd(I; θd),D

∗) (2)

We argue that this two-step optimization is sub-optimal

in theory. Since we are assuming that the SfM’s cost func-

tion in Eq. 1 reflects the quality of the depth map prediction,

what we really want is to find θd which leads to the mini-

mum of this cost. However, minimizing Eq. 2 in the second

step does not necessarily lead to minimizing Eq. 1.
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Therefore, end-to-end learning of a depth predictor by

directly minimizing the cost function in Eq. 1 is, in princi-

ple, the best approach. In practise, however, since Eq. 1 is

an oversimplification of a real SfM pipeline, it is still possi-

ble to get better supervision from the above two-step opti-

mization approach compared to an end-to-end training with

gradient descent. Hence, as covered in section 3, one of our

contribution is to bring one piece of the sophistication of

modern SLAM algorithms - e.g. direct visual odometry into

the training framework.

Overall, the end-to-end training objective is written as:

min
θd,p
Lap. (fd (I; θd) ,p) + Lprior (fd (I; θd)) (3)

Taking apart the joint minimization, we have the following

equivalent formulation:

min
θd

min
p
Lap. (fd (I; θd) ,p) + Lprior (fd (I; θd)) (4)

Minimizing Lap. over camera pose p in Eq. 4 can be viewed

as a function which takes inputs from sequential images

I1, . . . , In and current depth estimation:

fp(D, I1, . . . , In) , argmin
p
Lap. (D,p) . (5)

Here, we omit Ii from the input of Lap. for conciseness,

and we refer fp as an auxiliary pose predictor. Substitute

Eq. 5 to the end-to-end training objective function(Eq. 4),

we have our final formulation of the training objective:

min
θd
Lap. (fd (I; θd) , fp (fd(I; θd))) + Lprior (fd (I; θd)) .

(6)

Detailed definition of our appearance and prior smooth-

ness loss is given in section 4.

Optimizing this loss function meets two crucial issues,

which we will address over the following subsections.

2.1. Scale ambiguity

Unlike training from calibrated binocular pairs with

known baseline, estimating depth and pose from monocu-

lar sequence bears scale ambiguity. Any two inverse depth

maps differing only in scale (with the pose scaled corre-

spondingly) are equivalent in the projective space. Hence,

they have the same appearance dissimilarity loss, or in other

words, Lap. is scale-invariant in this sense. However, for the

regularization term Lprior, usually formulated with deriva-

tives of the inverse depth map [19, 31], smaller inverse

depth scale always results in smaller loss value. This scale-

sensitive property of the regularization term leads to a catas-

trophic effect, the loss function in Eq. 6 does not even have

local minima, let alone global minima. The proof for this

is simple: given any inverse depth estimation, we can con-

struct a new inverse depth map through decreasing its scale
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Figure 3. Effect of inverse depth map normalization. top right:

Without normalization, the scale (blue curve, quantified by the

mean of inverse depth) decreases throughout each epochs during

training, and finally saturates to zero; with normalization, the scale

stabilizes within a reasonable range(red curve); bottom: Due to the

decrease in scale, the prior loss penalizes less on the smoothness

of the depth estimation. As a result, the model makes increasingly

more structure mistakes. And the training finally breaks before

the 15th epoch, where the prediction degenerates to zero; top mid:

With normalization, the depth prediction is more precise.

(and updating the pose accordingly), which always results

in lower loss.

Surprisingly, none of the previous works [28, 31] ad-

dress this issue. Empirically, we find that this critical de-

fect of the loss function not only leads to inferior results

compared to training with binocular pairs, but also results

in divergence during training. As shown in Fig. 3, with our

re-implementation of Zhou et al.’s architecture, the scale

of inverse depth prediction is decreasing throughout each

training epoch. After several epochs, the training diverges

and finally breaks due to the inverse depth prediction satu-

rates to close to zero.

To solve this problem, we propose a simple yet effective

approach - apply a non-linear operator to normalize the out-

put of the depth CNN before feeding it to the loss layer. The

operator η(·) we use here is dividing the input tensor by its

mean:

η(di) ,
Ndi

∑N
j=1 dj

(7)

Although this normalization trick has also been used

in LSD-SLAM [10] for keyframe selection, it has not

been used in the context of learning depth estimation from

monocular videos. Empirically we find that this simple nor-

malization trick significantly improves results (see Fig. 3) as

it removes the scale sensitive problem of the loss function.

2.2. Modeling pose predictor

In previous works, the pose predictor is approximated

as a feed-forward CNN, which takes input only from a se-

quence of frames. Though this approach enjoys the simplic-
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ity of using a black box, and is easy to integrate into end-

to-end training, it ignores the geometric relation between

camera pose and depth as summarized in Eq. 5 which could

be exploited for better training.

We propose an alternative approach which attempts to

close this discrepancy between theory and practice through

noticing the fact that Eq. 5 relates to a class of well-

studied geometry-based methods, e.g. direct visual odom-

etry (DVO). Given the current depth estimation from fd,

DVO solves for camera pose through minimizing the pho-

tometric reprojection error between a reference image and a

source image. DVO relates to a more general class of image

registration method – the Lucas-Kanade(LK) algorithm. It

applies the same Gauss-Newton minimization as in LK for

faster convergence, and use the inverse composition trick

for computational efficiency.

However, to incorporate DVO as the pose prediction

module fp in the end-to-end training, we need to be able

to evaluate the derivatives of DVO. Inspired by recent dif-

ferentiable implementation of inverse compositional LK for

object tracking [29] and planar alignment [4], we propose a

(sub)differentiable DVO implementation which is described

in detail in section 3. With it, during training, the gradi-

ent of estimated depth with respect to loss Lap. comes from

two sources: partial derivative of loss over depth and partial

derivative of loss over pose:

dLap.

dfd
=

∂Lap.

∂fd
+

∂Lap.

∂fp

∂fp
∂fd

. (8)

It is worth to mention that Eq. 8 demonstrates one of our

major theoretical difference to Zhou et al. [31] - our depth

estimator gets additional back-propagation signals from the

pose prediction, while they ignore the role depth estimation

plays in getting camera pose.

We experiment with two versions of applying our differ-

entiable direct visual odometry (DDVO) module in training:

1) we train our Depth-CNN from scratch with DDVO; 2)

we first pretrain the Depth-CNN with Pose-CNN, then we

fine-tune the Depth-CNN by using the output of Pose-CNN

as initialization for DDVO. The motivation for the second

approach can be explained in both ways: compared to ini-

tializing from the identity pose, Pose-CNN provides a better

starting point for DVO; on the other hand, DVO refines the

output of Pose-CNN with geometric cues.

3. Differentiable direct visual odometry

3.1. Direct visual odometry

Steinbrücker et al. [27] first proposed the direct visual

odometry in the form of minimizing pixel-wise photomet-

ric error between sequential RGB-D frames. It was lat-

ter improved with more robust cost functions [15, 17] and

features [1], and extended to photometric bundle adjust-

ment [6, 2, 10]. Compared to visual odometry methods

using sparse feature correspondences, direct methods offer

better accuracy when inter-frame motion is small, since they

make use of the whole dense information contained in the

image. Hence direct methods have been widely used in cur-

rent state-of-the-art visual SLAM systems [10, 9].

Direct visual odometry takes input from a reference im-

age I, its corresponding depth map D, and a source image

I ′. Let the intensity and inverse depth of a pixel coordinate

xi ∈ R
2 at the reference image be respectively stated as

I(xi) and di; camera pose be represented by the concate-

nation of translation t ∈ R
3 and exponential coordinates

ω ∈ R
3; and the camera intrinsics be known, the projection

from the reference image coordinates xi to source image

coordinates x′
i is computed as:

x′
i =W(xi;p, di) , 〈Rx̃i + dit〉 , (9)

where rotation matrix R is computed from exponential co-

ordinates ω by the Rodrigues’ formula [25]; x̃i is the ho-

mogeneous coordinate for xi; and 〈·〉 projects 3D points to

the image plane:

〈

[x y z]
T
〉

=
[x

z

y

z

]T

(10)

The objective of direct visual odometry is to find an opti-

mum camera pose p which minimizes the photometric error

between the warped source image and the reference image

which is assumed to be always at the identity pose 0:

min
p

∑

i

||I ′(W(xi;p, di))− I(W(xi;0, di))||
2. (11)

This nonlinear least square problem can be solved effi-

ciently through Gauss-Newton method. For computational

efficiency, instead of linearly approximating the source im-

age as in vanilla Gauss-Newton method, the Inverse Com-

positional algorithm [3] reverses the roll of source image

and reference image and compute the parameters update for

the reference image. As a result, the Jacobian and Hessian

matrix do not need to be re-evaluated per iteration. We sum-

marize the algorithm as following:

1. Precompute the Jacobian matrix, and its pseudo in-

verse:

J =









:

∇I(xi) ·
∂W(xi;p,di)

∂p

∣

∣

∣

∣

0

:









, J† =
(

JTJ
)−1

JT .

(12)

2. Warp the source image by the current estimate of cam-

era pose p, and convert it to a vector denoted as I′p.
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Form a binary diagonal matrix W whose ith diago-

nal element represents if projected coordinate x′
i is in

view. We use this weight matrix to exclude out-of-view

pixels from taking part in computing pose update.

3. Compute pose update:

∆p = J†W(I− I′p), (13)

and compose it to get a new pose estimation:

p← ∆p ◦ p, (14)

here, we define the operator ◦ such that it applies a left

multiplicative update to the pose.

4. Return to step 2, and repeat till converge.

The main restriction of direct methods is that inter-frame

motion must be small. To handle larger motions, we form

pyramids of images and depths map through downsam-

pling, and update the pose estimate through coarse-to-fine

approach.

3.2. Differientiable implementation

Our differientiable implementation of DVO is similar to

the inverse compositional spatial transformer network [22].

Both methods iteratively update the geometric transfor-

mation parameters and inversely warp the source image

through bilinear sampling. The difference is that, instead of

using regression network layer with learnable parameters,

our “regressor” is deterministically formed with Eq. 13.

Computing derivatives with respect to Eq. 13 involves dif-

ferentiating matrix pseudo-inverse, which we follow similar

implementation as in [29].

4. Training loss

Our training loss is a combination of appearance loss and

prior smoothness loss, aggregated through 4 scales. The

appearance loss measures dissimilarity of pixel-wise corre-

spondence between a triplet of images(illustrated in Fig. 2);

and the prior loss enforce smoothness for the inverse depths

Di of the images in the triplet. The loss on the kth scale is

expressed as:

L(k) =
∑

i 6=j∈{1,2,3}

Lap.(D
(k)
i ,pij ; I

(k)
i , I

(k)
j )

+ λ

3
∑

i=1

Lprior(D
(k)
i ).

(15)

We use weighting parameter λ to control the penalty from

smoothness prior.

Appearance dissimilarity loss As illustrated in Fig. 2, we

measure appearance dissimilarity loss between three se-

quential images. Given inverse depth maps predicted from

these images respectively, and two camera extrinsics esti-

mated relative to the second image, we compare the in-

versely warped first and last images to the second image.

We also do it reversely, comparing the inversely warped

second image to the other two images. This bidirectional

appearance loss allows us to augment the training set with

minimum extra computational cost.

Appearance dissimilarity is aggregated through four

scales of the output of the Depth-CNN. For the three coarser

scales, we use L1 photometric loss; For the last finest scale,

we adopt a linear combination of L1 photometric loss and

single scale SSIM [30] loss, which is the same as in [13].

Inverse depth smoothness loss We use second order gra-

dients as smoothness cost to encourage the depth prediction

has flat slopes. To encourage sharpness of the depth predic-

tion, we employ two strategies:

(1) We give different weightings to the smoothness cost at

different pixel locations according to the Laplacian of the

image intensity. If the Laplacian is higher, meaning the

pixel is more likely on an edge or corner, we impose a lower

smoothness cost at that location:

Lprior(di) = e−∇2I(xi) (|∂xxdi|+ |∂xydi|+ |∂yydi|)
(16)

(2) Instead of directly compute smoothness cost from the

final inverse depth estimation, we downsample the inverse

depth map by factor 2 to three coarser scales. We aggregate

smoothness cost only from the two coarsest scales.

5. Experiments

This section extensively evaluates our method of unsu-

pervised training depth estimator from monocular videos.

Following the other relevant works [11, 13, 19, 31, 28] we

employ KITTI dataset [12] to train our approach. We use

the same train/test split used in [7], meaning that we use 28

sequences for training and 28 sequences for testing in the

categories of ”city”, ”residential” and ”road”. Since each

of the sequences are captured with a stereo pair, we have

2 monocular sequences giving 56 monocular sequences for

training.

Training set construction We follow [31] to preprocess the

training sequences. To do so, we first remove the static

frames by inspecting if the mean magnitude of optical flow

is less than 1 pixel. Each training sample is a short clip of 3

sequential video frames resized to 128× 416 pixels.

Depth-CNN architecture We use the same network archi-

tecture as in [13]. The network resembles a U-Net struc-

ture. It consists of an encoder-decoder design with skip

connections of intermediate features between the encoder

and decoder network, and uses VGG as its encoder network
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input image GT Zhou etal. ours

Figure 4. Qualitative results on KITTI test set (Eigen split). Here, groundtruth depth maps are interpolated from sparse point clouds

captured by Lidar (2nd column), thus only serves for visualization purpose. Compared to Zhou et al. [31] (3rd column), our depth map

prediction (last column) preserves more details such as tree trunks, roadway stakes, and gives more precise reconstruction of objects near

view, such as the van and tree in the 3rd and 4th rows.
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Figure 5. Qualitative results on Make3D dataset. We directly apply

our model trained from KITTI without any tuning for this dataset.

architecture. We also output multi-scale inverse depth pre-

dictions at the end of the decoder. Since inverse depth is

bounded between 0 (at infinity) and the inverse of minimum

depth to the camera, we apply sigmoid non-linearity to the

network output. Moreover, we multiply the final inverse

depth output by 10 to constrain it inside a reasonable range,

and add a small value 0.01 to improve numerical stability.

Pose-CNN architecture We use a similar CNN architecture

as in [31], which takes input from a concatenation of three

sequential frames. The differences are 1) instead of out-

putting rotation as Euler angles, we train our Pose-CNN to

predict exponential coordinates; 2) we divide the predicted

translation by the mean value of estimated depth, so that the

scale of the translation is aligned to the depth prediction.

Training hyper-parameters Our training loss is a weighted

sum of appearance dissimilarity loss and smoothness loss.

We set the weighting for the smoothness loss as 0.01. We

empirically found that this weighting parameter offers a de-

sired balance between sharpness and overall structure cor-

rectness of the depth prediction.

We train the network through Adam optimizer [16], with

a small learning rate of 0.0001, β1 = 0.9 and β2 = 0.999.

Restricted by the non-conventional operation used in our

DDVO module, and for the sake of computational effi-

ciency, we set the batch size for training to 1. This compro-

mise on batch size is solely due to implementation issues,

not an implication of theory. Empirically, we observe no

negative effect on overall performance.

5.1. Training configurations

For a complete study of our proposed method, we con-

duct experiments with four different settings:

Ours (Baseline) To understand the effect of our proposed

normalization trick in Sec. 2.1, we setup a baseline configu-

ration. We use Pose-CNN as the pose predictor and turn off

the inverse depth map normalization. This setup is equiv-

alent to Zhou et al. [31]’s method modified with our loss

function definition (see Sec. 4) and implementation. Due to

the training diverges after 10 epochs (see Fig. 3), we report

the result at the 10th epoch.

Ours (Pose-CNN) We perform inverse depth normaliza-

tion, and still use Pose-CNN as the pose predictor. We re-

port result at the 10th epoch.
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Ours (DDVO). We replace the Pose-CNN with our pro-

posed DDVO module. The DDVO is initialized with the

identity pose. To account for large motion in the training

set, we set the module to run through five scales in a coarse-

to-fine manner. We train the model from scratch, and result

is reported at the 10th epoch.

Ours (Pose-CNN + DDVO). We use the Depth-CNN and

Pose-CNN from “ours (Pose-CNN)” as pretrained model.

Then we fix the Pose-CNN, use its output as pose initializa-

tion for our DDVO module, and fine-tune the Depth-CNN

for 2 epochs. Since Pose-CNN already gives us a roughly

acceptable estimation, DDVO does not need to account for

large motion in this case. Hence, to speed up training, in-

stead of performing coarse-to-fine, we directly run DDVO

over the finest scale.

5.2. Results on KITTI

In this section, we evaluate performance on the same

697 KITTI images from the Eigen’s test split [7]. We com-

pute all the errors from the same cropped region using the

same performance measures as in [11, 31, 13] and without

capping to a maximum depth. Our method cannot recover

the true scale of the scene due to the monocular settings of

the problem. Therefore, we align the scale of our predic-

tion to the groundtruth through multiplying the former by

s̃ = median(Dgt)/median(Dpredict) as in [31].

Effect of depth map normalization. We compare the re-

sult of “ours (Baseline)” to “ours (Pose-CNN)” since these

two configurations only differ in whether inverse depth nor-

malization is performed or not (see section 2.1). As shown

in Table 1, the simple normalization approach gets a signifi-

cant improvement in all the measures using the same archi-

tecture. Moreover, with the results of depth normalization,

“Ours (Pose-CNN)” not only beats Zhou et al. [31]’s work

by a large margin, and also gets very close results to the one

trained on rectified stereo pairs by Godard et al. [13].

DDVO vs Pose-CNN We also test the effect of changing

the Pose-CNN module by the DDVO module proposed in

section 3. In this case, we have no parameter to learn in

the pose estimation module. In Table 1 we show the re-

sults with label “ours (DDVO)”. As the DDVO module per-

forms Gauss-Newton optimization, we initialize the pose

between each pair of training images as the identity. On the

other hand, Gauss-Newton approaches are sensible to the

initialization point. This is the reason for getting slightly

worse results with DDVO pose estimation (“ours (DDVO)”)

than with a learned Pose-CNN pose estimator (“ours (Pose-

CNN)”). In any case the results are still very close to the

stereo pairs training method of Godard et al. [13].

Finally, in order to improve the pose initialization point

in the DDVO module we have experimented a new way of

Figure 6. Failure cases of our method. Our method is sensitive to

1) dynamic scenes like pedestrians and cyclists (1st row); 2) over-

exposure of the road, which cause large texture-less regions (2nd

row); 3) vast open areas with large texture-less regions (3rd row).

training. The pose between a pair of images in a video

sequence is initialized by a pretrained Pose-CNN module

and then refined with the DDVO module. In Table 1 we

show that this strategy (“ours (Pose-CNN+DDVO)”) im-

proves both “ours (Pose-CNN)” and “ours (DDVO)”, and

gives the best results of the unsupervised trained methods

trained on KITTI dataset. Qualitative results from this ap-

proach are visualized in Fig. 4.

Pretrain on Cityscapes As shown in [31, 13] pretraining

the model on a larger dataset, e.g. Cityscapes [5], and then

finetuning on KITTI improve the results. Hence, we also

perform a similar experiment. First, we train on Cityscapes

with “ours (Pose-CNN)” architecture for 10 epochs, then

finetune the model on KITTI with “ours (Pose-CNN)” for

the first 5 epochs and “ours (Pose-CNN + DDVO)” for the

next 3 epochs. We observe a slight performance improve-

ment over training only on KITTI but still outperformed by

Godard et al. [13]. This states a bottleneck of our approach,

where our method is not modeling the non-rigid part of the

scene. This prevents us to get more benefit from a dataset

with a lot of objects in motion.

5.3. Results on Make3D

We directly apply our model trained from KITTI (Ours

(Pose-CNN + DDVO)) to the Make3D test set [26]. Due to

the difference in camera aspect ratio, we only evaluate our

method on the central crop of Make3D’s test images. We

find that our method generalizes moderately well on this

dataset. As shown in Fig. 5, our method can recover details

such as the road sign in distance, and wooden pole in close

view. Table 2 shows that our method achieves similar or

better results compared to other state of the art approaches.

6. Discussion

We have found that, as in monocular SLAM algo-

rithms [10], scale ambiguity has to be taken into account

when training with monocular videos. As shown in Fig. 3

this was a missing point in previous approaches training
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Method training set abs rel sq rel RMSE RMSE(log) δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [7] K (D) 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. [23] K (D) 0.202 1.614 6.523 0.275 0.678 0.895 0.965

Godard et al. [13] K (B) 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Zhou et al. [31] K (M) 0.208 1.768 6.856 0.283 0.678 0.885 0.957

ours (baseline) K (M) 0.213 3.770 6.925 0.294 0.758 0.909 0.958

ours (Pose-CNN) K (M) 0.155 1.193 5.613 0.229 0.797 0.935 0.975

ours (DDVO) K (M) 0.159 1.347 5.789 0.234 0.796 0.933 0.973

ours (Pose-CNN+DDVO) K (M) 0.151 1.257 5.583 0.228 0.810 0.936 0.974

Godard [13] CS+K (B) 0.124 1.076 5.311 0.219 0.847 0.942 0.973

Zhou et al. [31] CS+K (M) 0.198 1.836 6.565 0.275 0.718 0.901 0.960

ours (Pose-CNN+DDVO) CS+K (M) 0.148 1.187 5.496 0.226 0.812 0.938 0.975

Table 1. Evaluation of depth map accuracy on KITTI test set. The methods trained over KITTI dataset are denoted by K, and also pretrained

on Cityscapes are denoted by CS+K. We use (D) to represent methods trained with depth supervision, (B) to refer methods trained using

rectified binocular image pairs and (M) to denote methods trained on monocular video sequences. We show in bold the overall best results

trained only on KITTI, and with a blue box to highlight the best results within the (M) methods. Gordard and Zhou’s results are taken

directly from [31].

Method Supervision Abs Rel Sq Rel RMSE RMSE(log)

Train set mean depth 0.876 13.98 12.27 0.307

Karsch et al. [14] depth 0.428 5.079 8.389 0.149

Liu et al. [24] depth 0.475 6.562 10.05 0.165

Laina et al. [20] depth 0.204 1.840 5.683 0.084

Godard et al. [13] pose 0.544 10.94 11.76 0.193

Zhou et al. [31] none 0.383 5.321 10.47 0.478

ours none 0.387 4.720 8.09 0.204

Table 2. Results on the Make3D dataset [26]. Following Zhou et

al. [31], we do not use any of the Make3D data for training. We

directly apply the model trained on KITTI to the test set. Follow-

ing the evaluation protocol of [31], we first match the scale of our

depth prediction to the groundtruth, then the errors are computed

only for pixels in a central image crop with groundtruth depth less

than 70 meters.

from monocular videos. Additionally, we have shown that

Direct Visual Odometry can be used to estimate the relative

camera pose between frames instead of learning a predictor

with a CNN (Pose-CNN). This strategy needs less parame-

ters to learn and potentially less images to train. We plan to

investigate the number of images needed in the future. Fi-

nally, we have found that DDVO and Pose-CNN pose pre-

diction modules can be improved with a hybrid architecture

of Pose-CNN initialization and DDVO pose refinement giv-

ing the best results.

The current major bottleneck for our approach is that

we’re not modeling the non-rigidity of the world. As shown

in Fig. 6, our current method does not perform well for ar-

ticulated objects like bikers and pedestrians. Possible future

work for this is to incorporate techniques from non-rigid

SfM e.g. [18] to the pipeline.
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