This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Modulated Convolutional Networks

Xiaodi Wang and Baochang Zhang
School of Automation Science and Electrical Engineering
Beihang University, Beijing, China

bczhang@buaa.edu.cn
CeLi

Department of Computer Science and Technology
China University of Mining & Technology, Beijing, China

celi@cumtb.edu.cn

Rongrong Ji*

School of Information Science and Engineering

Xiamen University, Fujian, China

correspondence rriji@xmu.edu.cn

Xianbin Cao

School of Electronic and Information Engineering

Beihang University, Beijing, China

xbcao@buaa.edu.cn

Abstract

Despite great effectiveness of very deep and wide Con-
volutional Neural Networks (CNNs) in various computer vi-
sion tasks, the significant cost in terms of storage require-
ment of such networks impedes the deployment on compu-
tationally limited devices. In this paper, we propose new
modulated convolutional networks (MCNs) to improve the
portability of CNNs via binarized filters. In MCNs, we pro-
pose a new loss function which considers the filter loss,
center loss and softmax loss in an end-to-end framework.
We first introduce modulation filters (M-Filters) to recover
the unbinarized filters, which leads to a new architecture to
calculate the network model. The convolution operation is
further approximated by considering intra-class compact-
ness in the loss function. As a result, our MCNs can reduce
the size of required storage space of convolutional filters
by a factor of 32, in contrast to the full-precision model,
while achieving much better performances than state-of-
the-art binarized models. Most importantly, MCNs achieve
a comparable performance to the full-precision Resnets and
WideResnets. The code will be available publicly soon.

Jungong Han
School of Computing & Communications
Lancaster University, LA1 4YW, UK

jungonghan77@gmail.com

Jianzhuang Liu
Noah’s Ark Lab
Huawei Technologies Co. Ltd., China

liu.Jjianzhuangfhuawei.com

1. Introduction

Deep convolutional neural networks (DCNNs) have
gained much attention with their capability of learning
powerful feature representations directly from raw pixels,
thereby facilitating many computer vision tasks. Despite
a purely data-driven technique that can learn robust repre-
sentations from data, DCNNs usually come with the cost
of expensive training and complex model parameters. For
instance, the sizes of most DCNNs’ models for vision ap-
plications are easily beyond hundreds of megabytes, which
makes them impractical for most embedded platforms. This
is fundamentally attributed to the way of filter designing
[2, 19], generating many redundant parameters.

Binary filters instead of using real-value weights have
been investigated in DCNNs to compress the deep models

[15, 4,3, 9]. A complete binarization process for DCNNs
is exploited to approximate floating-point weights with bi-
naries [15, 4, 3]. Inspired by the well-known local binary

pattern (LBP), local binary convolution (LBC) layers are
presented in [9] that approximate the non-linearly activated
response of a standard convolutional layer. While in [3],
BinaryConnect uses the real-valued version of the weights
as a key reference for the binarization process. Later based
on BinaryConnect, BinaryNet is introduced to train CNNs

840

Convolution
Layers

MCconv| |MCcony|

— forward propagation
Unbinarized

&

—
Average

Layers

Feature
Maps

Feature
Maps

—=-= backward propagation Filters

l .-

Feature Maps [= |

Modulation Module
(MCconv layer)

Average
Feature Maps

Loss layer

Figure 1: Modulated Convolutional Networks (MCNs). MCNs are designed based on the binarized convolutional filters and
the modulation filters (M-Filters). M-Filters are particularly designed to approximate the unbinarized convolutional filters in
the end-to-end framework. Due to the operation of M-Filter (matrix) can be shared at each layer, the model size of MCNs
is rather small. To alleviate the disturbance caused by the binarized process, the intra-class compactness based on the center
loss function is further deployed to enhance the performance. The red arrows are used to show the back propagation process.
By considering the filter loss, center loss and softmax loss in an unified framework, we achieve much better performance
than state-of-the-art binarized models. Most importantly, our MCNs based on a highly compressed model also achieve a
comparable performance than well-known full-precision Resnets and WideResnets. The reconstructed filters are only used
for easy presentation of the computation, which are not saved for testing, while the M-Filters and binarized filters are kept in

the final model.

with binary weights, where the activations are triggered
at running time while parameters are computed at training
time. In [15], XNOR-Network is presented where both the
weights and inputs attached to the convolution are approx-
imated with binary values, which allows an efficient way
of implementing convolutional operations, particularly by
reconstructing the unbinarized filters with a single scaling
factor. From the concept perspective, our idea is similar to
those methods, because all attempt to simplify the convolu-
tion procedure via binarized filters and/or approximate the
original unbinarized filters. However, the ways of approx-
imating the unbinarized filters are clearly different, where
the unbinarized filters are reconstructed using binary filters
with a single scaling factor [15] while ours accomplishes it
by a set of M-Filters together with the binary filters. On
the one hand, M-Filters with the format of a matrix, rather
than a single value representing the scaling factor, lead to an
unique architecture with more precise estimate of the orig-
inal convolutional filters through minimizing the filter loss.
On the other hand, the approximation based on M-Filters
can allow us to consider the intra-class compactness during

the optimization procedure, enabling to further improve the
convolution operations.

Aiming to improve the portability of DCNNs, this pa-
per reduces the model storage space via binarized filters.
Unlike previouse work based on a single scaling factor as
shown in [15], we incorporate modulation filter (M-Filter),
into DCNNs so as to better approximate the convolution.
To this end, a simple and unique modulation process is de-
signed, which is replicable at each layer and can be solved
within the same pipeline of the back propagation algorithm.
In addition, we further consider the intra-class compactness
in the loss function, and obtain the modulated convolutional
networks (MCNs) as shown in Fig. 1. Both the M-Filters
and binarized filters can be jointly optimized and obtained
in an end-to-end learning framework, leading to a compact
and portable deep learning architecture. Thanks to the low
model complexity, such an architecture is less prone to be
over-fitting and suitable for resource-constrained environ-
ments. To be specific, our MCNs reduce the required stor-
age space of a full-precision model by a factor of 32, while
achieving the best performance so far, as compared to the

841

existing binarized filters based CNNs. In summary, the con-
tributions of this paper are as follows:

(1) The M-Filters are employed to reconstruct the un-
binarized filters, leading to a new architecture to calculate
the CNNs model. The convolution operation is further im-
proved by considering the intra-class compactness in the
loss function, making the performance comparable to the
full-precision model.

(2) We manage to solve MCNs in an end-to-end frame-
work. This highly compressed model outperforms all
the state-of-the-art binarized models and is comparable to
the well-known full-precision ResNet on CIFAR, MNIST,
SVHN and 100-class ImageNet databases in terms of clas-
sification accuracy.

2. Modulated Convolutional Networks

We design an architecture in MCNs based on the bina-
rized convolutional filters and M-Filters. M-Filters are par-
ticularly designed to approximate the unbinarized convolu-
tional filters in the end-to-end framework. Each layer shares
only one M-Filter and it leads to significant reduction of the
network model. To alleviate the disturbance caused by the
binarized process, the intra-class compactness based on the
center loss function is further deployed to enhance the per-
formance. With two schemes mentioned above, the perfor-
mance drop is marginal even when the learnable network
parameters are highly compressed.

2.1. Loss Function of MCNs

In order to constrain CNNs to have binarized weights,
we introduce a new loss function in MCNs. Two aspects
are considered: the unbinarized convolutional filters are re-
constructed based on binarized filters; the intra-class com-
pactness is incorporated based on the output features. In
addition to Table 1, we further introduce the variables used
in this section: C! are the unbinary filters of the Ith convo-
lutional layer, [€ {1,..., N'}; C! denote the binarized filters
corresponding to C!; M! denotes the modulation filter (M-
Filter) shared by all C! in the /th convolutional layer and
M Jl represents the jth plane of M'; o is a new plane based
operation (Eq. 3) which is defined in the next section. We
then have the first part of the loss function for minimization:

9 R
Ly = QZHC! —Cio M|+

il

1)
A - [,
5 2 fm(C.) = F(C, M),

m

where M = {M", ..., MN} are the M-Filters, and (' is the
binarized filter set across all layers. The operation o de-
fined in Eq. 3 is used to approximate the unbinarized fil-
ters based on the binarized filters and M-Filters, leading to

the filter loss shown in the first term on the right of Eq. 1.
The second term on the right is similar to the center loss
used to evaluate the intra-class compactness, which is used
for the reason that the binarization process causes feature
variations. f,,(C, M) denotes the feature map of the last
convolutional layer for the mth sample, and f(C, M) de-
notes the class-specific mean feature map of previous sam-
ples. Note that we do not approximate the original features,
since MCNss are an end-to-end deep model, based on which
the original feature maps are unavailable, and thus only the
center loss is deployed. To reduce the storage space, after
training we only keep the binarized filters and the shared M-
Filters (quite small) to calculate the feature maps. Finally,
we define the complete loss function L as:

L=Lg+ Ly, (2)

where Lg is the conventional loss function, e.g., softmax
loss.

2.2. Forward Propagation with Modulation
2.2.1 Reconstructed Filters

We first design the specific convolutional filters used in our
MCNSs. We deploy the 3D filter across all layers with the
size of K x W x W (one filter), which has K planes, and
each of the planes is a W x W-sized 2D filter. To use
such kind of filters, we extend the input channels of the net-
work, e.g., from RGB+X, where X can be any of RGB for
K = 4. By doing so, we can easily implement our MCNs
in the Torch platform. After the extension process, we di-
rectly deploy our filters in the convolution process, whose
details concerning the MCNs convolution are illustrated in
Fig. 2(b).

To reconstruct the unbinarized filters, we introduce a
modulated process based on the M-Filters and the binarized
filters. An M-Filter is a matrix serving as the weight of the
binarized filters, which is also with the size of K x W x W.
Let M; be the jth plane of the M-Filter. We define the op-
eration o for a given layer as:

K
CioM =Y CixM;, 3)
J

where]\1]/- = (Mj,...,M;) is a 3D matrix built based on
K copies of the 2D matrix M; with j = 1,..., K. *is
the element-wise multiplication operator, also named Schur
product operation. In Eq. 3, M is a learned weight ma-
trix, which is used to reconstruct the convolutional filters
C; based on @, and the operation o. And it leads to the
filter loss in Eq. 1. An example of the filter modulation is
shown in Fig. 2(a). In addition, the operation o results in
a new matrix (named reconstructed filter) , i.e., C’Z * M],-,
which is elaborated in the following. We define:

842

C C M Qo
P -
<+ N ;
Binarize J - n ,i |
| . . .
Unbinarized filter Binarized filter M-Filter Reconstructed filter
4x3x3 4x3x3 4, 3x3 Ax4x3x3

(a) Modulation process based on an M-Filter

Reconstructed filter
4x4x3x3

Input feature map
1x4x32x32

Output feature map
1x4x30x30

(b) MCNs Convolution (MCconv)

Figure 2: Left shows the modulation process based on an M-Filter to obtain a reconstructed Filter (). Right illustrates an
example of MCNs convolution with K = 4 planes. The number of planes of the M-Filter is the same as the number of
channels of the feature map. In this paper, a feature map is defined as a 3D matrix with 4 channels.

Table 1: A brief description of variables and operators used in the paper

C': unbinarized filter
Q: reconstructed filter

C'" binarized filter
M: M-Filters across all layers

M modulation filter (M-Filter)

1: filter index
m: sample index
g: input feature map index

7+ plane index
[: layer index

h: output feature map index

K: number of planes for each filter
N': number of layers

Qij = Ci % M, “
Qi ={Qi1, ..., Qi }. ©)

In testing, ; is not pre-defined but is calculated based on
Eq. 4. An example is shown in Fig. 2(a). @; is introduced
to approximate the unbinarized filters C; to alleviate the in-
formation loss problem caused by the binarized process. In
addition, we further require M > 0 to simplify the recon-
structed process.

The binarized filter in Eq. 4 is calculated based on the
nearest neighbor method as:

(©)

. ar,if |e; —ar] < |e; — as
C;, = .
as, otherwise

where ¢; is an element of C;, and ¢; denotes the correspond-
ing element in C’i. In Eq. 6, a; and ay are calculated by an
offline k-means clustering algorithm on the data of unbina-
rized filters after 10 epochs. Though ¢; is a floating number,
it can be represented as a binary value (a; or a2) to save the
storage space. For other quantization process (see the ex-
perimental section), the same nearest neighbor method is
also deployed.

2.2.2 Forward Propagation of MCNs based on the
MCconv Module

In MCNs, the reconstructed filters @' in the Ith layer are
used to calculated the output feature maps F'+! as:

F* = MCconv(F',QY,)

where M Cconv denotes the convolution operation imple-
mented as a new module. A simple example of forward
convolutional process is described in Fig. 2(b), where there
is one input feature map with one generated output feature
map. In MCconv, the channels of one output feature map
are generated as follows:

B =Y "FloQl, ®)
4,9
Fitt = (F}jll., ...,F,llj%), 9)

where ® denotes the convolution operation; F,l;;l is the kth
channel of the hth feature map in the (I + ljth convolu-
tional layer. Fé denotes the gth feature map in the /th con-
volutional layer. In Fig. 2(b), h = 1 and g = 1, where
after MCconv with one reconstructed filter, the number of
the channels of the output feature map is the same as that of
the input feature map.

Fig. 3 illustrates another example of MCNs convolu-
tion with multiple feature maps. One output feature map
is the sum of the convolution between all the 10 input fea-
ture maps and 10 reconstructed filters in the correspond-
ing group. For example, for the first output feature map,
h=114i=1,..,10,g = 1,...,10, and for the second out-
put feature map, h = 2,7 = 11,..., 20,9 = 1, ..., 10.

843

Input feature maps Reconstructed filters Output feature maps

10x4x32x32 20x10, 4x4x3x3 20x4x30%30
. {mm ']
10 | |
MR = ' {mn] Lo

Groups

{m/m

N

Figure 3: MCNs Convolution (MCconv) with multiple feature maps. There are 10 and 20 feature maps in the input and the
output, respectively. The reconstructed filters are divided into 20 groups and each group contains 10 reconstructed filters,
corresponding to the number of feature maps and MC feature maps respectively.

When the first convolutional layer is considered, the in-
put size of the network is 32 x 32 !. First, each channel of
the image is copied K = 4 times, resulting in the new input
of size 4 x 32 x 32 to the whole network.

The advantages of our MCconv module lie in that the
numbers of the input and output channels in every feature
map are the same, making such a module be replicated and
so MCNss be easily implemented.

2.3. Back-propagation Updating

In MCNs, what need to be learned and updated are the
unbinarized filters C; and M-Filters M. These two kinds
of filters are jointly learned. In each convolutional layer,
MCNs update the unbinarized filters first, and then the M-
Filters.

2.3.1 Updating Unbinarized Filters

We define §¢ as the gradient of the unbinarized filter C;,
and have:

OL OLs 9Ly

oo = aC; — a0, " ac;

+O(CHM 621 —), (10)

where CIF) + 7]16 — CI¥ is used to further regularize the
loss function, and we have:

Ci < Cs —mc, (1)

'We only use one channel of gray-level images (3 x 32 x 32)

where L is the loss function, and 7; is the learning rate.
Further we have:

OLs OLg 0Q OLs
A et A S =2 .M. 12
9C; — 0Q 9C; £ 0Qy (12)
AL .
3C, :ezj:(ci—cioMj), (13)

where C; is the binarized convolutional filter corresponding
to C;.
2.3.2 Updating M-Filters

We further update the M-Filter M with C' fixed. &,/ is de-
fined as the gradient of M, and we have:

0L 0Ls OLy

o — 14
MT oM~ oM T oM (19
M <« |M —n2éml, 15)
where 1) is the learning rate. Further we have:
aLs 8L5 aLS
e ’iv 16
oM~ 9Q 6M Z 0Q; (1o

Based on Eq. 1 and we have:

0Ly

S = —0) (C; — CioM;)-Ci. a7

(]

844

The details about the derivatives with respect to the cen-
ter loss can be found from [16]. The above derivations show
that MCNs are learnable with the BP algorithm.

3. Implementation and Experiments

We evaluate the effectiveness of MCNs on 5 datasets,
MINST, SVHN, CIFAR-10, CIFAR-100 and ImageNet. It
can be applied to any CNNs. Particularly, our new mod-
ulation module is applied to Wide-ResNets [17]. In our
experiments, we use MCNs with four convolutional layers
on MINIST. In our experiments, 4 NVIDIA GeForce GTX
1080ti GPUs are used. In what follows, the term U-MCNs
is short for the unbinarized MCNSs that are the full-precision
MCNs implemented only based on Lg without the bina-
rized process involved.

3.1. Datasets and Implementation Details

Datasets: The MINIST [13] dataset is composed of a train-
ing set of 60,000 and a testing set of 10,000 32 x 32 gray-
scale images of hand-written digits from O to 9.

CIFAR-10 [10] is a natural image classification dataset
containing a training set of 50,000 and a testing set of
10,000 32 x 32 color images across the following 10
classes: airplanes, automobiles, birds, cats, deers, dogs,
frogs, horses, ships, and trucks. Differently CIFAR-100
consists of 100 classes.

The Street View House Numbers (SVHN) dataset [14] is
a real-world image dataset taken from Google Street View
images. It contains MNIST-like 32x32-sized images cen-
tered around a single character, which however includes a
plethora of challenges like illumination changes, rotations
and complex backgrounds. The dataset consists of 600,000
digit images: 73,257 digits for training, 26,032 digits for
testing, and 531,131 additional images. The additional im-
ages are not used in the training of MCNss.

The ImageNet ILSVRC-2012 classification dataset [5]

X X X

Conv 3x3

Conv 3x3

Conv 3x3

MCconv 3x3
McCconv 3x3

®
xl +1 x/+1 x/ 1
(a) Wide-Resnet (b) Wide-Resnet »
basic block bottleneck (¢) MCN basic

Figure 4: Residual blocks. (a) and (b) are for Wide-
ResNets. (c) A basic block for MCNs.

Accuracy (%)

4

1 {
%0 !
P !
. !
87 1
85

01 0.05 0.01 4 08 0,08

0(x10% A (%103

Figure 5: Accuracy with different 6 and A.

consists of 1000 classes, with 1.28 million images for
training and 50,000 images for validation. Different from
MNIST, SVHN and CIFAR, ImageNet consists of images
with much higher resolutions. In addition, each image usu-
ally contains more than one attribute, which may have
a large impact on the classification accuracy. We follow
LBCNN to use a 100-class subset of ImageNet2012 [5]
to evaluate our proposed method. The 100 classes are ran-
domly selected from the full ImageNet dataset, and similar
subsets is also used in [1][9][11].

Implementation Details: On all the datasets, the size of
each M-Filter and also the convolutional filters is 4 x 3 x 3
(K = 4). We replace the spatial convolution layers with
MCconv modules, as shown in Fig. 2. In all the experi-
ments, we adopt Max-pooling and ReLU after the convo-
lution layers, and a dropout layer [8] after the FC layer
to avoid over-fitting. On CIFAR-10, CIFAR-100, SVHN
and 100-class ImageNet datasets, we evaluate MCNs based
on Wide-ResNets. The basic blocks in Wide-ResNets and
MCNs are shown in Fig. 4. The Wide-ResNets divide the
whole network into 4 stages. The bottleneck structure is
not used in MCNss since the 1x1 kernel does not propagate
any M-filter information. The structures of both the Wide-
ResNets and MCNs are the same except that the Conv in
Wide-ResNets is replaced by MCconv. The initial values of
71 and 72 are set to 0.1 and 0.01 respectively. The learning
weight decay is set to 0.2.

0 and \: In Eq. 2, Lg and L), are balanced by ¢ and A
which are related to the filter loss and center loss. The effect
of the parameters 6 and)\ are evaluated on the CIFAR-10
for a 20-layer MCN with width 16-16-32-64, the architec-
ture detail of which can be found in [17]. The Adadelta
optimization algorithm [18] is used during the training pro-
cess, with the batch size 128. Using different values of 6,
the performance of the MCNss is shown in Fig. 5. First only
the effect of 6 is evaluated and then the center loss is im-
plemented based on a finetuning process. It is observed that
the performance is stable with varying 6 and \.

845

100

80

-3
S

Accuracy (%)

&

—— U-MCNs train_acc

20 U-MCNs test_acc

— MCNs train_acc
MCNs test_acc

50 100 150 200
Epoch

Figure 6: Training and testing curves.

95

[MoNs without center loss

I vicNs with center loss

@
S
T

Accuracy (%)

@
@
T

80

2 3 4
Number of clustering centers

Figure 7: Accuracy with different numbers of clustering
centers for 20-layer MCNs with width 16-16-32-64.

Illustration of learning convergence: The MCNs
model is based on a binarized process, which is imple-
mented on Torch platform. For a 20-layer MCN with width
16-16-32-64 that is trained after 200 epochs, the training
process takes about 3 hours with two 1080ti GPUs. We plot
the training and testing accuracy of MCNs and U-MCNs
in Fig. 6. The architecture of U-MCNs is the same as
that of MCNs. Fig. 6 clearly shows that MCNs (the blue
curves) converge in similar speeds to its unbinarized coun-
terpart (the red curves).

The number of clustering centers: In Section 2.2.1,
we show the binary quantization with 2 clustering centers
in Eq. 6. In this experiment, we investigate the effect of
more numbers of clustering centers with MCNs on CIFAR-
10.

The results are shown in Fig. 7, where we can see that
the accuracy increases with the number of clustering cen-
ters and the center loss can also be used to improve the per-
formance. However, to save storage space and to compare
with other binary networks, we focus on using two cluster-
ing centers for MCNs.

BN: BatchNormilzation D: Dropout RiReLU

nput copy nccov [mecov [{n wmccov [{n wceow W e R Lo
MEN image e T 4320 [N axda,a0 W axda,e0 MW axa, 160 MW MP g0z 5L

Figure 8: Network architectures of CNNs and MCNss.

3.2. Results on MINST, SVHN, and CIFAR-10/100

Table 2 demostrates the image classification results from
our experiments on various datasets. MCNs are compared
to state-of-the-art methods such as LBCNN [9], BinaryCon-
nect [3], Binarized Neural Networks (BNN) [4], XNOR-
Net [15], ResNet-101 [7], Maxout Network [6], and Net-
work in Network (NIN) [12]. For each dataset, the training
methods and parameters of the MCNs models are described
in the following sections.

MNIST: Fig. 8 shows the details of the network architec-
tures of MCNs used on MINIST. Due to the easy task on
MNIST, the architectures of our MCNs are based on a sim-
ple CNN. The MCNs contain four MCconv layers and one
full-connected layer. For this model, we adopt Max-pooling
and ReLu after the convolution layers, and a dropout layer
[8] after the FC layer to avoid over-fitting. We report the
performance of our algorithm on a test set after 200 epochs
on the average over 5 predictions. The results are shown
in Table 2. It is observed from the experiments that the
MCNs achieve 99.52% accuracy on the MINST test, which
is better than other binary methods and comparable to other
full-precision models.

SVHN:The network depth is set to 28 and the stage is set to
64-64-128-256. The total training epochs are 200 and the
learning rate is reduced per 30 epochs. The results are list
in Table 2. The LBCNN utilized on SVHN has 80 convo-
lutional layers (40 LBCNN modules), 512 LBC filters, 16
output channels, and 512 hidden units in the fully connected
layer. Compared to LBCNN, MCNs obtains a better perfor-
mance with 1.2% improvement. Note that we only use a
subset of the whole SVHN to train our MCNs, while other
models use the whole set (including the additional images)
to do their training.

CIFAR-10/100: The models and training parameters of
MCNs used on CIFAR-10 and CIFAR-100 datasets are the
same. The architecture of MCNs has 34 layers with the ba-
sic block(c) in Fig. 4, 64-64-128-256 network stage, and
512 hidden units in the fully connected layer. The accuracy
of MCNs on CIFAR-10 and CIFAR-100 reaches to 95.39%
and 78.13% respectively. Table 2 shows that MCNs ob-
tain the best performance compared with the other state-
of-art binary methods and other CNNs on both CIFAR-10
and CIFAR-100. Compared with ResNet-101, MCNs also
achieve better performances, which further validates the ef-
fectiveness of our model. Besides, the bracket shows the

846

Table 2: Classification accuracy (%) on 4 datasets.

Method ‘MCNs(U-MCNs) LBCNN [9] BinaryConnect [3] BNN{[4] XNOR-Net[15] ResNet-101[17] Maxout[6] NIN[]‘

MINIST 99.52 99.51 98.99 98.60 - - 99.55 99.53
CIFAR-10 95.39(95.75) 92.99 91.73 89.85 89.83 93.57 90.65 91.19
SVHN 96.87 94.50 97.85 97.49 - - 97.53 97.65
CIFAR-100 78.13 - - - - 74.84 61.43 64.32

accuracy of corresponding U-MCN. Note that the accuracy
of MCNs only decreases a little when the binarized filters
are used.

Table 3: Classification accuracy (%) on 100-class ImageNet

[Method | LBCNN | MCNs | WRNs |

top-1 63.24 83.82 | 84.96
top-5 - 94.8 95.64

3.3. Results on 100-class ImageNet

To further show the effectiveness of the proposed MCNs
method, we evaluate it on the 100-class ImageNet [5]
dataset. For the experiment, we train a 34-layer MCN with
width 32-64-128-256. The corresponding WRNss are used
as baselines. The MCN:s is trained after 120 epochs. The
learning rate is initialized to 0.1 and decreases to 0.1 times
per 30 epochs. Top-1 and Top-5 errors are evaluated and
the results are shown in Table 3. The testing error curves
are shown in Fig. 9, where we can see that both have simi-
lar convergence rates after 30 epochs. Meanwhile, the best
result of LBCNN [9] on 100-ImageNet is presented to com-
pare with ours. The LBCNN has 48 convolutional layers
(24 LBC modules), 512 LBC filters, 512 output channels,
0.9 sparsity, and 4096 hidden units in the fully connected
layer. It is observed that our MCNs gain an advantage over
LBCNN by 20.58%. Compared with WRNs, our MCNs
have only a little performance drop with the same architec-
ture.

Top-1 error £= Top-8 seror

AN
—CHS.

Figure 9: Testing error curves for the 100-class ImageNet
experiment.

4. Conclusion

We have developed a new deep learning model, mod-
ulated convolutional networks (MCNs), which can signif-
icantly reduce the storage requirement on computationally
limited devices. MCNs are implemented by a set of binary
filters and the proposed M-Filters. In MCNs, we use M-
Filters to build an end-to-end framework and a new archi-
tecture to calculate the network model. Both the binarized
filters and M-Filters are obtained in the same pipeline as in
the back propagation algorithm. The convolution operation
is further approximated via the center loss method. MCNs
can reduce the storage by a factor of 32, in contrast to the
full-precision models, while achieving a much better perfor-
mance than state-of-the-art binarized models. Our MCNs
based on a highly compressed model also achieve a compa-
rable performance to well-known full-precision Resnets or
Wide-Resnets.

As a general convolutional layer, the M-Filters can also
be used on other deep models and various tasks, which is
our future work.

Acknowledgment

The work was supported by the Natural Science Foun-
dation of China under Contract 61601466, 61672079 and
61473086. This work was supported by the National Ba-
sic Research Program of China (2015CB352501), the Open
Projects Program of National Laboratory of Pattern Recog-
nition, and Shenzhen Peacock Plan. Baochang Zhang is
also corresponding author. Xiaodi Wang and Baochang
Zhang have the equal contribution to the paper.

References

[1] A. Banerjee and V. Iyer. Cs231n project report—tiny im-
agenet challenge. http://cs231ln.stanford.edu/
2015/reports.html, 2015. 6

[2] Y.-L. Boureau, J. Ponce, and Y. LeCun. A theoretical anal-
ysis of feature pooling in visual recognition. In Proceedings
of the International Conference on Machine Learning, pages
111-118, 2010. 1

[3] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect:
Training deep neural networks with binary weights during
propagations. In Advances in Neural Information Processing
Systems, pages 3123-3131, 2015. 1,7, 8

847

(4]

(3]

(6]

(7]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and
Y. Bengio. Binarized neural networks: Training deep neu-
ral networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016. 1,7, 8

J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and F. F. Li. Im-
agenet: A large-scale hierarchical image database. In /EEE
Conference on Computer Vision and Pattern Recognition,
pages 248-255, 2009. 6, 8

1. J. Goodfellow, D. Wardefarley, M. Mirza, A. Courville,
and Y. Bengio. Maxout networks. In International Confer-
ence on Machine Learning, 2013. 7, 8

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 770-778, 2016. 7

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov. Improving neural networks by pre-
venting co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012. 6,7

F. Juefei-Xu, V. N. Boddeti, and M. Savvides. Local binary
convolutional neural networks. In /[EEE Conference on Com-
puter Vision and Pattern Recognition, 2016. 1,6, 7, 8

A. Krizhevsky and G. Hinton. Learning multiple layers of
features from tiny images. 2009. 6

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in Neural Information Processing Systems, pages
1097-1105, 2012. 6

M. Lin, Q. Chen, and S. Yan. Network in network. In Inter-
national Conference on Learning Representations, 2014. 7,
8

Y. Lcun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278-2324, 1998. 6

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.
Ng. Reading digits in natural images with unsupervised fea-
ture learning. In NIPS Workshop on Deep Learning and Un-
supervised Feature Learning, volume 2011, page 5, 2011. 6
M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-
net: Imagenet classification using binary convolutional neu-
ral networks. In European Conference on Computer Vision,
2016. 1,2,7,8

Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A discrimina-
tive feature learning approach for deep face recognition. In
European Conference on Computer Vision, pages 499-515.
Springer, 2016. 6

S. Zagoruyko and N. Komodakis. Wide residual networks.
In British Machine Vision Conference, 2016. 6, 8

M. D. Zeiler. Adadelta: An adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012. 6

Y. Zhou, Q. Ye, Q. Qiu, and J. Jiao. Oriented response net-
works. In IEEE Conference on Computer Vision and Pattern
Recognition, 2017. 1

848

