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Abstract

Despite that convolutional neural networks (CNN)

have recently demonstrated high-quality reconstruction for

single-image super-resolution (SR), recovering natural and

realistic texture remains a challenging problem. In this pa-

per, we show that it is possible to recover textures faith-

ful to semantic classes. In particular, we only need to

modulate features of a few intermediate layers in a single

network conditioned on semantic segmentation probability

maps. This is made possible through a novel Spatial Feature

Transform (SFT) layer that generates affine transformation

parameters for spatial-wise feature modulation. SFT layers

can be trained end-to-end together with the SR network us-

ing the same loss function. During testing, it accepts an in-

put image of arbitrary size and generates a high-resolution

image with just a single forward pass conditioned on the

categorical priors. Our final results show that an SR net-

work equipped with SFT can generate more realistic and

visually pleasing textures in comparison to state-of-the-art

SRGAN [27] and EnhanceNet [38].

1. Introduction

Single image super-resolution aims at recovering a high-

resolution (HR) image from a single low-resolution (LR)

one. The problem is ill-posed since a multiplicity of solu-

tions exist for any given low-resolution pixel. To overcome

this problem, contemporary methods such as those based on

deep convolutional neural networks [7, 8, 9, 22, 26, 27, 23,

43, 44] constrain the solution space through learning map-

ping functions from external low- and high-resolution ex-

emplar pairs. To push the solution closer to the natural man-

ifold, new losses are proposed to replace the conventional

pixel-wise mean squared error (MSE) loss [7] that tends to

encourage blurry and overly-smoothed results. Specifically,

perceptual loss [21, 3] is introduced to optimize a super-

resolution model in a feature space instead of pixel space.

Ledig et al. [27] and Sajjadi et al. [38] further propose ad-

versarial loss to encourage the network to favor solutions
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Figure 1. The extracted building and plant patches from two low-

resolution images look very similar. Using adversarial loss and

perceptual loss without prior could add details that are not faithful

to the underlying class. More realistic results can be obtained with

the correct categorical prior. (Zoom in for best view).

that look more like natural images. With these loss func-

tions the overall visual quality of reconstruction is signifi-

cantly improved.

Though great strides have been made, texture recovery

in SR remains an open problem. Examples are shown in

Fig. 1. A variety of different HR patches could have very

similar LR counterparts, as shown by the building and plant

examples. Generating realistic textures faithful to the inher-

ent class is non-trivial. The results obtained by using per-

ceptual and adversarial losses (without prior) do add fine

details to the reconstructed HR image. But if we exam-

ine closely, these details are not reminiscent of the textures

one would usually observe. Without stronger prior informa-

tion, existing methods struggle in distinguishing these LR

patches and restoring natural and realistic textures thereon.

We believe that the categorical prior, which characterizes

the semantic class of a region in an image (e.g., sky, build-

ing, plant), is crucial for constraining the plausible solution

space in SR. We demonstrate the effectiveness of categor-

ical prior using the same example in Fig. 1. Specifically,

we try to restore the visually ambiguous plant and build-

ing pairs using two different CNN models, each of which is

specially trained on a plant dataset and a building dataset.

It is observed that generating realistic textures faithful to
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Figure 2. Comparing different SR approaches with downsampling factor ×4: SRCNN [7], SRGAN [27], EnhanceNet [38], our proposed

SFT-GAN and the original HR image. SRGAN, EnhanceNet, and SFT-GAN clearly outperform SRCNN in terms of perceptual quality,

although they yield lower peak signal-to-noise ratio (PSNR) values. SRGAN and EnhanceNet result in more monotonous textures across

different patches while SFT-GAN is capable of generating richer and visually pleasing textures. (Zoom in for best view).

the inherent class can be better achieved by selecting the

correct class-dedicated model. This phenomenon is previ-

ously documented by Timofte et al. [47]. They train special-

ized models for each semantic category on exemplar-based

methods [50, 46] and show that SR results can be improved

by semantic priors.

In this study, we wish to investigate class-conditional im-

age super-resolution with CNN. This problem is challeng-

ing especially when multiple segments of different classes

and sizes co-exist in a single image. No previous work has

investigated how categorical priors can be obtained and fur-

ther incorporated into the reconstruction process. We make

this attempt by exploring the possibility of using seman-

tic segmentation maps as the categorical prior. Our ex-

periments embrace this choice and show that segmentation

maps encapsulate rich categorical prior up to pixel level. In

addition, semantic segmentation results on LR images are

satisfactory given a contemporary CNN [32, 31, 28] that is

fine-tuned on LR images. The remaining question is to find

a formulation that allows factorized texture generation in an

SR network conditioned on segmentation maps. This is a

non-trivial problem. Training a separate SR model for each

semantic class is neither scalable nor computationally effi-

cient. Combining LR images with segmentation maps as in-

puts, or concatenating segmentation maps with intermediate

deep features cannot make an effective use of segmentation.

In this work, we present a novel approach known as Spa-

tial Feature Transform (SFT) that is capable of altering the

behavior of an SR network through just transforming the

features of some intermediate layers of the network. Specif-

ically, an SFT layer is conditioned on semantic segmenta-

tion probability maps, based on which it generates a pair of

modulation parameters to apply affine transformation spa-

tially on feature maps of the network. The advantages of

SFT are three-fold: (1) It is parameter-efficient. Recon-

struction of an HR image with rich semantic regions can

be achieved with just a single forward pass through trans-

forming the intermediate features of a single network. (2)

SFT layers can be easily introduced to existing SR network

structures. The layers can be trained end-to-end together

with the SR network using conventional loss functions. (3)

It is extensible. While we consider categorical prior in our

study, other priors such as depth maps can also be applied

using the proposed SFT layer. We demonstrate the effec-

tiveness of our approach, named as SFT-GAN, in Fig. 2.

More results, a user study, and ablation experiments are pro-

vided in Sec. 4.

2. Related Work

Single image super-resolution. Many studies have intro-

duced prior information to help address the ill-posed SR

problem. Early methods explore a smoothing prior such as

bicubic interpolation and Lanczos resampling [11]. Image

priors such as edge features [13, 41], statistics [24, 1] and

internal patch recurrence [16] are employed to improve per-

formance. Dong et al. [10] train domain specific dictionar-

ies to better recover local structures in a sparse representa-

tion framework. Sun et al. [42] propose context-constrained

super-resolution by learning from texturally similar training

segments. Timofte et al. [47] investigate semantic priors

by training specialized models separately for each semantic

category on exemplar-based methods [50, 46]. In contrast

to these studies, we explore categorical priors in the form of

segmentation probability maps in a CNN framework.

Contemporary SR algorithms are mostly learning-based

methods, including neighbor embedding [4], sparse cod-

ing [49, 50, 45, 46] and random forest [39]. As an in-

stantiation of learning-based methods, Dong et al. [7] pro-

pose SRCNN for learning the mapping of LR and HR im-

ages in an end-to-end manner. Later on, the field has

witnessed a variety of network architectures, such as a

deeper network with residual learning [22], Laplacian pyra-

mid structure [26], residual blocks [27], recursive learn-

ing [23, 43], and densely connected network [44]. Multi-

scale guidance structure has also been proposed for depth

map super-resolution [18]. Different losses have also been
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proposed. Pixel-wise loss functions, like MSE and Char-

bonnier penalty [26], encourage the network to find an aver-

age of many plausible solutions and lead to overly-smooth

results. Perceptual losses [21, 3] are proposed to enhance

the visual quality by minimizing the error in a feature space.

Ledig et al. [27] introduce an adversarial loss, generating

images with more natural details. Sajjadi et al. [38] de-

velop a similar approach and further explore the local tex-

ture matching loss, partly reducing visually unpleasant arti-

facts. We use the same losses but encourage the network

to find solutions under the categorical priors. Enforcing

category-specific priors in CNN has been attempted in Xu et

al. [48] but they only focus on two classes of images, i.e.,

faces and text. Prior is assumed at image-level rather than

pixel-level. We take a further step to assume multiple cat-

egorical classes to co-exist in an image, and propose an ef-

fective layer that enables an SR network to generate rich

and realistic textures in a single forward pass conditioned

on the prior provided up to the pixel level.

Network conditioning. Our work is inspired by previous

studies on feature normalization. Batch normalization (BN)

is a widely used technique to ease network training by nor-

malizing feature statistics [19]. Conditional Normalization

(CN) applies a learned function of some conditions to re-

place parameters for feature-wise affine transformation in

BN. Some variants of CN have proven highly effective in

image style transfer [12, 17, 15], visual question answer-

ing [6] and visual reasoning [35]. Perez et al. [36] develop

a feature-wise linear modulation layer (FiLM), to exploit

linguistic information for visual reasoning. This layer can

be viewed as a generalization of CN. Perez et al. show that

the affine transformation in CN needs not be placed after

normalization. Features can be directly modulated. FiLM

shows promising results in visual reasoning. Nonetheless,

the formulation cannot handle conditions with spatial infor-

mation (e.g., semantic segmentation maps) since FiLM ac-

cepts a single linguistic input and outputs one scaling and

one shifting parameter for each feature map, agnostic to

spatial location. Preserving spatial information is crucial

for low-level tasks, e.g., SR, since these tasks usually re-

quire adaptive processing at different spatial locations of an

image. Applying FiLM in SR will result in homogeneous

spatial feature modulation, hurting SR quality. The pro-

posed SFT layer addresses this shortcoming. It is capable

of converting spatial conditions for not only feature-wise

manipulation but also spatial-wise transformation.

Semantic guidance. In image generation [20, 5], semantic

segments are used as input conditions to generate natural

images. Gatys et al. [14] use semantic maps to control per-

ceptual factors in neural style transfer. [37] uses semantic

segmentation for video deblurring. Zhu et al. [52] propose

an approach to generate new clothing on a wearer. It first

generates human segmentation maps and then uses them to

render plausible textures by enforcing region-specific tex-

ture rendering. Our work differs from these works mainly

in two aspects. First, we use semantic maps to guide texture

recovery for different regions in SR domain. Second, we

utilize probability maps to capture delicate texture distinc-

tion instead of simple image segments.

3. Methodology

Given a single low-resolution image x, super-resolution

aims at estimating a high-resolution one ŷ, which is as sim-

ilar as possible to the ground truth image y. Current CNN-

based methods use feed-forward networks to directly learn

a mapping function Gθ parametrized by θ as

ŷ = Gθ(x). (1)

In order to estimate ŷ, a specific loss function L is designed

for SR to optimize Gθ on the training samples,

θ̂ = argmin
θ

∑
i
L(ŷi,yi), (2)

where (xi,yi) are training pairs. Perceptual loss [21, 3]

and adversarial loss [27, 38] are introduced to solve the

regression-to-the-mean problem that is usually caused by

conventional MSE-oriented loss functions. These new

losses greatly improve the perceptual quality of recon-

structed images. However, the generated textures tend to

be monotonous and unnatural, as seen in Fig. 1.

We argue that the semantic categorical prior, i.e., know-

ing which region belongs to the sky, water, or grass, is ben-

eficial for generating richer and more realistic textures. The

categorical prior Ψ can be conveniently represented by se-

mantic segmentation probability maps P,

Ψ = P = (P1, P2, . . . , Pk, . . . , PK), (3)

where Pk is the probability map of kth category and K is

the total number of considered categories. To introduce pri-

ors in SR, we reformulate Eqn. (1) as

ŷ = Gθ(x|Ψ), (4)

where Ψ defines the prior upon which the mapping function

can condition. Note that apart from categorical priors, the

proposed formulation is also applicable to other priors such

as depth information, which could be helpful to the recovery

of texture granularity in SR. And one could easily extend

the formulation to consider multiple priors simultaneously.

In the following section, we focus on categorical priors and

the way we use them to influence the behavior of an SR

network.

3.1. Spatial Feature Transform

A Spatial Feature Transform (SFT) layer learns a map-

ping function M that outputs a modulation parameter pair

608



C
o

n
v

R
e

si
d

u
a

l 
b

lo
ck

S
F

T
la

y
e

r

S
F

T
 l

a
y
e

r

C
o

n
v

C
o

n
v

Residual block

total 16 residual blocks

R
e

si
d

u
a

l 
b

lo
ck

S
F

T
 l

a
y
e

r

C
o

n
v

U
p

sa
m

p
li

n
g

C
o

n
v

C
o

n
v

C
o

n
v

⨀ +

C
o

n
v

C
o

n
v

C
o

n
v

C
o

n
v

SFT layer

conditions

features �ࢽ C�ࢼ
o

n
v

C
o

n
v

C
o

n
v

C
o

n
v

Condition Network
Segmentation

probability maps

Shared SFT conditions

DiscriminatorVGG network

Perceptual 

loss
GAN loss

Figure 3. The proposed SFT layers can be conveniently applied to existing SR networks. All SFT layers share a condition network. The

role of the condition network is to generate intermediate conditions from the prior, and broadcast the conditions to all SFT layers for further

generation of modulation parameters.

(γ,β) based on some prior condition Ψ. The learned pa-

rameter pair adaptively influences the outputs by applying

an affine transformation spatially to each intermediate fea-

ture maps in an SR network. During testing, only a single

forward pass is needed to generate the HR image given the

LR input and segmentation probability maps.

More precisely, the prior Ψ is modeled by a pair of affine

transformation parameters (γ,β) through a mapping func-

tion M : Ψ 7→ (γ,β). Consequently,

ŷ = Gθ(x|γ,β), (γ,β) = M(Ψ). (5)

After obtaining (γ,β) from conditions, the transformation

is carried out by scaling and shifting feature maps of a spe-

cific layer:

SFT(F|γ,β) = γ ⊙ F + β, (6)

where F denotes the feature maps, whose dimension is the

same as γ and β, and ⊙ is referred to element-wise multipli-

cation, i.e., Hadamard product. Since the spatial dimensions

are preserved, the SFT layer not only performs feature-wise

manipulation but also spatial-wise transformation.

Figure 3 shows an example of implementing SFT lay-

ers in an SR network. We provide more details of the SR

branch in Sec. 3.2. Here we focus on the conditioning part.

The mapping function M can be arbitrary functions. In this

study, we use a neural network for M so that it can be op-

timized end-to-end with the SR branch. To further share

parameters among multiple SFT layers for efficiency, we

use a small condition network to generate shared intermedi-

ate conditions that can be broadcasted to all the SFT layers.

Meanwhile, we still keep few parameters inside each SFT

layer to further adapt the shared conditions to the specific

parameters γ and β, providing fine-grained control to the

features.

Segmentation probability maps as prior. We provide a

brief discussion on the segmentation network we used. The

details are provided in the supplementary material. The

LR image is first upsampled to the desired HR size with

bicubic interpolation. It is then fed into a segmentation

network [31] as the input. The network is pretrained on

the COCO dataset [30] and then fine-tuned on the ADE

dataset [51] with additional animal and mountain images.

We train the network separately from the main SR network.

For a sanity check, we study the accuracy of segmen-

tation maps obtained from LR image. In a typical setting

of SR studies, LR images are downsampled with a scal-

ing factor of ×4 from HR images. We find that under this

resolution, satisfactory segmentation results can still be ob-

tained even on LR images given a modern CNN-based seg-

mentation model [32, 31]. Some LR images and the cor-

responding segmentation results are depicted in Fig. 4. As

can be observed in Fig. 4, LR segmentation is close to that

of HR. We have not yet tried segmentation on small objects

as this remains a challenging problem in the image segmen-

tation community. During testing, classes that fall outside

the pre-defined K segmentation classes will be categorized

as ‘background’ class. In this case, our method would still

generate a set of default γ and β, degenerating itself as SR-

GAN, i.e., treating all classes equally.

Discussion. There are alternative ways to introduce cat-

egorical priors to an SR network. For instance, one can

concatenate the segmentation probability maps with the in-

put LR image as a joint input to the network. We find

that this method is ineffective in altering the behavior of

CNN (see Sec. 4.3). Another method is to directly con-

catenate the probability maps with feature maps in the SR

branch. This approach resembles the multi-texture synthe-

sis network [29]1. This method, though not as parameter

efficient as SFT, amounts to simply adding a post-layer for

feature-wise conditional bias. It is thus a special case of

1The approach in [29] is not applicable in our work since it can only

generate outputs with a fixed size due to the upsampling operation from

one-hot vector.
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Figure 4. Some examples on segmentation. First row: LR im-

ages. Second row: segmentation results on LR images. Third row:

segmentation results on HR images. Forth row: Ground-truth seg-

mentation.

SFT. Another more brute-force approach is to first decom-

pose the LR image based on the predicted semantic class

and process each region separately using a model trained

specifically for that class. These models may share features

to save computation. The final output is generated by com-

bining the output of each model class-wise. This method is

computationally inefficient as we need to perform forward

passes with several CNN models for a single input image.

3.2. Architecture

Our framework is based on adversarial learning, inspired

by [27, 38]. Specifically, it consists of one generator Gθ

and one discriminator Dη , parametrized by θ and η respec-

tively. They are jointly trained with a learning objective

given below:

min
θ

max
η

Ey∼pHR
logDη(y)+Ex∼pLR

log(1−Dη(Gθ(x))),

where pHR and pLR are the empirical distributions of HR and

LR training samples, respectively.

The architecture of Gθ is shown in Fig. 3. It consists of

two streams: a condition network and an SR network. The

condition network takes segmentation probability maps as

input, which are then processed by four convolution layers.

It generates intermediate conditions shared by all the SFT

layers. To avoid interference of different categorical regions

in one image, we restrict the receptive field of the condition

network by using 1×1 kernels for all the convolution layers.

The SR network is built with 16 residual blocks with the

proposed SFT layers, which take the shared conditions as

input and learn (γ,β) to modulate the feature maps by ap-

plying affine transformation. Skip connection [27] is used

to ease the training of deep CNN. We upsample features

by using nearest-neighbor upsampling followed by a con-

volution layer. The upsampling operation is performed in

the latter part of the network and thus most computation is

done in the LR space. Although we have not tried other

architectures for the SR network, we believe many contem-

porary models such as DRRN [43] and MemNet [44] are

applicable and can equally be benefited from the SFT layer.

For discriminator Dη , we apply a VGG-style [40] net-

work of strided convolutions to gradually decrease the spa-

tial dimensions. The full architecture and details are pro-

vided in the supplementary material.

3.3. Loss Function

We draw inspiration from [27, 38] and apply perceptual

loss and adversarial loss in our model. The perceptual loss

measures the distance in a feature space. To obtain the fea-

ture maps, we use a pre-trained 19-layer VGG network [40],

denoted as φ,

LP =
∑

i
‖φ(ŷi)− φ(yi)‖

2

2
. (7)

Similar to [27], we use the feature maps obtained by the

forth convolution before the fifth max-pooling layer and

compute the MSE on their feature activations.

The adversarial loss LD from GAN is also used to en-

courage the generator to favor the solutions in the manifold

of natural images,

LD =
∑

i
log(1−Dη(Gθ(xi))). (8)

4. Experiments

Implementation details. In this work, we focus on out-

door scenes since their textures are rich and well-suited for

our study. For example, the sky is smooth and lacks sharp

edges, while the building is rich of geometric patterns. The

water presents smooth surface with waves, while the grass

has matted textures. We assume seven categories, i.e., sky,

mountain, plant, grass, water, animal and building. A ‘back-

ground’ category is used to encompass regions that do not

appear in the aforementioned categories.

Following [27], all experiments were performed with a

scaling factor of ×4 between LR and HR images. We ini-

tialized the SR network by parameters pre-trained with per-

ceptual loss and GAN loss on ImageNet dataset. After

removing low resolution images of size below 30kB, we

obtained roughly 450k training images. During training,

we followed existing studies [7, 27] to obtain LR images

by downsampling HR images using MATLAB bicubic ker-

nel. The mini-batch size was set to 16. The spatial size of

cropped HR and LR sub-images were 96× 96 and 24× 24,

respectively.

After initialization, with the same training setting, we

fine-tuned our full network on outdoor scenes condition-
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Bicubic SRCNN[7] VDSR[22] LapSRN[26] DRRN[43] MemNet[44] EnhanceNet[38] SRGAN[27] SFT-GAN (ours) GT

Figure 5. GAN-based methods (SRGAN [27], EnhanceNet [38] and ours) clearly outperform PSNR-oriented approaches in term of per-

ceptual quality. Our proposed SFT-GAN is capable of generating richer and more realistic textures among different categories. The first

and second restored images show that our method captures the characteristics of animal fur and building brick. In the third image, SRGAN

tends to produce unpleasant water waves. (Zoom in for best view).

ally on the input segmentation probability maps. In particu-

lar, we collected a new outdoor dataset by querying images

from search engines using the defined categories as key-

words. The dataset was divided into training and test par-

titions (OutdoorSceneTrain and OutdoorSceneTest)2. For

OutdoorSceneTrain, we cropped each image so that only

one category exists, resulting in 1k to 2k images for each

category. Background images were randomly sampled from

ImageNet. The total number of training images is 10,324.

The OutdoorSceneTest partition consists of 300 images and

they are not pre-processed. Segmentation probability maps

were generated by the segmentation network (Sec. 3.1).

For optimization, we used Adam [25] with β1 = 0.9.

The learning rate was set to 1×10−4 and then decayed by a

factor of 2 every 100k iterations. We alternately optimized

the generator and discriminator until the model converged at

about 5×105 iterations. Inspired by [34], our discriminator

not only distinguishes whether the input is real or fake, but

also predicts which category the input belongs to. This is

possible since our training images were cropped to contain

only one category. This restriction was not applied on test

images. We find this strategy facilitates the generation of

images with more realistic textures.

2All data, codes and models can be downloaded from http://

mmlab.ie.cuhk.edu.hk/projects/SFTGAN/.

We did not conduct our main evaluation on standard

benchmarks such as Set5 [2], Set14 [50] and BSD100 [33]

since these datasets are lack of regions with well-defined

categories. Nevertheless, we will show that our method

still perform satisfactorily on out-of-category examples in

Sec. 4.3. Results (PSNR, SSIM) on standard benchmarks

are provided in the supplementary material.

4.1. Qualitative Evaluation

Figure 5 shows the qualitative results of different mod-

els including PSNR-oriented methods, such as SRCNN [7],

VDSR [22], LapSRN [26], DRRN [43], MemNet [44],

and GAN-based methods, such as SRGAN [27] and En-

hanceNet [38]. More results are provided in the supple-

mentary material. For SRGAN, we re-implemented their

method and fine-tuned the model with the same setting as

ours. We directly used the released test code of EnhanceNet

since no training code is available. Despite of preserv-

ing sharp edges, PSNR-oriented methods always produce

blurry textures. SRGAN and EnhanceNet largely improve

the high-frequency details, however, they tend to gener-

ate monotonous and unnatural textures, like water waves

in Fig. 5. Our method employs categorical priors to help

capture the characteristics of each category, leading to more

natural and realistic textures.
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Figure 6. User study results of ranking SRCNN [7], MemNet [44],

SFT-GAN (ours), and the original HR image. Our method outper-

forms PSNR-oriented methods by a large margin.

4.2. User Study

We performed a user study to quantify the ability of

different approaches to reconstruct perceptually convinc-

ing images. To better compare our method against PSNR-

oriented baselines and GAN-based approaches, we divided

the evaluations into two sessions. In the first session, we

focused on PSNR-oriented baselines. The users were re-

quested to rank 4 versions of each image: SRCNN [7],

MemNet [44] (the state-of-the-art PSNR-oriented method),

our SFT-GAN, and the original HR image according to their

visual quality. We used 30 random images chosen from

OutdoorSceneTest and all images were presented in a ran-

domized fashion. In the second session, we focused on

GAN-based methods so that the user can concentrate on the

texture quality. The subjects were shown the super-resolved

image pairs (enlarged texture patches were depicted to fa-

cilitate the comparison). Each pair consists of an image of

the proposed SFT-GAN and the counterpart generated by

SRGAN [27] or EnhanceNet [38]. The users were asked to

pick the image with more natural and realistic textures. This

session involved 96 randomly selected images in total.

We asked 30 users to finish our user study. The results

of the first and second sessions are presented in Fig. 6 and

Fig. 7, respectively. The results of the first session show

that SFT-GAN outperforms the PSNR-oriented methods by

a large margin. This is not surprising since PSNR-oriented

methods always produce blurry results especially in texture

regions. Our method sometimes generates good-quality im-

ages comparable to HR causing confusion within the users.

In the second session, our method is ranked higher than

SRGAN [27] and EnhanceNet [38], especially in building,

animal, and grass categories. Comparable performance is

found on sky and plant categories.

4.3. Ablation Study

From segmentation probability maps to feature modu-

lation parameters. Our method modulates intermediate

features based on segmentation probability maps. We in-

vestigate the relationship between the probability and fea-

ture modulation parameters, as depicted in Fig. 8. All SFT

layers exhibit similar behavior so that we only present its

54.5

76.4
68 75

56.4
68.7 65.7

sky building grass animal plant water mountain

67 33

85 15Ours

Ours

EnhanceNet

SRGAN

Figure 7. First row: the results of user studies, comparing our

method with SRGAN [27] and EnhanceNet [38]. Second row:

our methods produce visual results that are ranked higher in all

categories in comparison with SRGAN [27].

��������� map

RestoredLR patch

������ map � map of �. � map of �0Input

Figure 8. The modulation parameters γ and β have a close rela-

tionship with probability maps P and contain spatial information.

The boundary of different categories is clear without interference.

Ci denotes the i
th channel of the first SFT layer. (Zoom in for

best view)

� map of �#$

Restored

LR patch ������ map

������ map

� map of �$

� map of �$/ � map of �#

Figure 9. The SFT layer can provide delicate feature transform

under the segmentation probability. Ci denotes the i
th channel of

the first SFT layer. (Zoom in for best view)

first layer for this analysis. In the top row, we show an im-

age where building and grass co-exist. It is observed that

modulation parameters γ and β are different for various

categorical regions to exert meaningful spatial-wise trans-

formation. From the heat map of γ and β, we can see that

the modulation parameter maps are closely related to the

segmentation probability maps. The boundary of building

and grass is clear with a sharp transition. With the guidance

of the probability map, our model is able to generate build-

ing and grass textures simultaneously without interference

of different categories.

Some classes, like plant and grass, may not be clearly

distinguishable by their visual appearance. They interlace

with each other without a clear boundary. Despite the am-

biguity, the probability maps are still capable of capturing

the semantics to certain extent and the SFT layers reflect

the subtle differences between categories in its spatial trans-

formation. In Fig. 9, the upper row shows the probability
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map and modulation parameters activated for plant while

the lower row shows those for grass. Distinct activations

with smooth transition can be observed. As a result, tex-

tures generated by SFT-GAN become more realistic.

Robustness to out-of-category examples. Our model

mainly focuses on outdoor scenes and it is effective given

segmentation maps of the pre-defined K classes. Despite

the assumption, it is also robust to other scenes where seg-

mentation results are not available. As shown in Fig. 10,

the SFT-GAN can still produce comparative results with

SRGAN when all the regions are deemed as ‘background’.

More results are provided in the supplementary material.

SRGAN SRGANOurs Ours

Figure 10. When facing with other scenes or the absence of seg-

mentation probability maps, our model degenerates itself as SR-

GAN and produces comparative results with SRGAN. (Zoom in

for best view)

Comparison with other conditioning methods. We qual-

itatively compare with several alternatives for conditioning

SR network, which are already discussed in Sec. 3.1.

1) Input concatenation – This method concatenates the seg-

mentation probability maps with the LR image as a joint

input to the network. This is equivalent to adding SFT con-

ditional bias at the input layer.

2) Compositional mapping – This method is identical to

Zhu et al. [52]. It decomposes an LR image based on the

predicted semantic classes and processes each region sepa-

rately using a specific model for that class. Different models

share parameters at lower layers.

3) FiLM [36] – This method predicts one parameter for each

feature map without spatial information and then uses these

parameters to modulate the feature maps.

As can be observed from Fig. 11, the proposed SFT-

GAN yields outputs that are perceptually more convincing.

Naive input concatenation is not sufficient to exert the nec-

essary condition for class-specific texture generation. Com-

positional mapping produces good results but it is not pa-

rameter efficient (×2.5 parameters as ours). It is also com-

putationally inefficient as we need to forward several times

for a single input image. FiLM [36] cannot handle the situa-

tions where multiple categorical classes co-exist in an image

Input 
concatenation

Compositional
mapping FiLMSFT-GAN

(ours)

Figure 11. Comparison with other conditioning methods - input

concatenation, compositional mapping and FiLM [36].

since it predicts one parameter for each feature map, agnos-

tic to spatial information. For example, in the first image of

Fig. 11, the road and sky interfere with the building’s struc-

ture and thus noisy bricks are generated. Similarly in the

second image, the animal’s fine texture is severely affected

by the grass.

5. Discussion and Conclusion

We have explored the use of semantic segmentation

maps as categorical prior for constraining the plausible

solution space in SR. A novel Spatial Feature Transform

(SFT) layer has been proposed to efficiently incorporate

the categorical conditions into a CNN-based SR network.

Thanks to the SFT layers, our SFT-GAN is capable of gen-

erating distinct and rich textures for multiple semantic re-

gions in a super-resolved image in just a single forward

pass. Extensive comparisons and a user study demonstrate

the capability of SFT-GAN in generating realistic and visu-

ally pleasing textures, outperforming previous GAN-based

methods [27, 38].

Our work currently focuses on SR of outdoor scenes.

Despite robust to out-of-category images, it does not con-

sider priors of finer categories, especially for indoor scenes,

e.g., furniture, appliance and silk. In such a case, it puts for-

ward challenging requirements for segmentation tasks from

an LR image. Future work aims at addressing these short-

comings. Furthermore, segmentation and SR may benefit

from each other and jointly improve the performance.
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