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Abstract

Detecting individual pedestrians in a crowd remains a

challenging problem since the pedestrians often gather to-

gether and occlude each other in real-world scenarios. In

this paper, we first explore how a state-of-the-art pedestrian

detector is harmed by crowd occlusion via experimentation,

providing insights into the crowd occlusion problem. Then,

we propose a novel bounding box regression loss specifi-

cally designed for crowd scenes, termed repulsion loss. This

loss is driven by two motivations: the attraction by target,

and the repulsion by other surrounding objects. The repul-

sion term prevents the proposal from shifting to surrounding

objects thus leading to more crowd-robust localization. Our

detector trained by repulsion loss outperforms the state-of-

the-art methods with a significant improvement in occlusion

cases.

1. Introduction

Occlusion remains one of the most significant challenges

in object detection although great progress has been made

in recent years [10, 9, 24, 19, 1, 20, 11, 3]. In general, occlu-

sion can be divided into two groups: inter-class occlusion

and intra-class occlusion. The former one occurs when an

object is occluded by stuff or objects of other categories,

while the latter one, also referred to as crowd occlusion,

occurs when an object is occluded by objects of the same

category.

In pedestrian detection [31, 14, 6, 5, 7, 21], crowd oc-

clusion constitutes the majority of occlusion cases. The

reason is that in application scenarios of pedestrian de-

tection, e.g., video surveillance and autonomous driving,

pedestrians often gather together and occlude each other.

For instance, in the CityPersons dataset [33], there are a

∗The work was done when Xinlong Wang and Tete Xiao were interns

at Megvii, Inc.
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Figure 1. Illustration of our proposed repulsion loss. The repulsion

loss consists of two parts: the attraction term to narrow the gap be-

tween a proposal and its designated target, as well as the repulsion

term to distance it from the surrounding non-target objects.

total of 3, 157 pedestrian annotations in the validation sub-

set, among which 48.8% of them overlap with another an-

notated pedestrian whose Intersection over Union (IoU) is

above 0.1. Moreover, 26.4% of all pedestrians have con-

siderable overlaps with another annotated pedestrian whose

IoU is above 0.3. The highly frequent crowd occlusion

severely harms the performance of pedestrian detectors.

The main impact of crowd occlusion is that it signif-

icantly increases the difficulty in pedestrian localization.

For example, when a target pedestrian T is overlapped by

another pedestrian B, the detector is apt to get confused

since these two pedestrians have similar appearance fea-

tures. As a result, the predicted boxes which should have

bounded T will probably shift to B, leading to inaccurate

localization. Even worse, as the primary detection results

are required to be further processed by non-maximum sup-

pression (NMS), shifted bounding boxes originally from T
may be suppressed by the predicted boxes of B, in which

T turns into a missed detection. That is, crowd occlusion

makes the detector sensitive to the threshold of NMS: a

higher threshold brings in more false positives while a lower
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threshold leads to more missed detections. Such undesir-

able behaviors can harm most instance segmentation frame-

works [11, 18], since they also require accurate detection

results. Therefore, how to robustly localize each individual

person in crowd scenes is one of the most critical issues for

pedestrian detectors.

In state-of-the-art detection frameworks [9, 24, 3, 19],

the bounding box regression technique is employed for ob-

ject localization, in which a regressor is trained to narrow

the gap between proposals and ground-truth boxes mea-

sured by some kind of distance metrics (e.g., SmoothL1

or IoU). Nevertheless, existing methods only require the

proposal to get close to its designated target, without tak-

ing the surrounding objects into consideration. As shown

in Figure 1, in the standard bounding box regression loss,

there is no additional penalty for the predicted box when

it shifts to the surrounding objects. This observation makes

one wonder whether the locations of its surrounding objects

could be taken into account if we want to detect a target in

a crowd?

Inspired by the characteristics of a magnet, i.e., magnets

attract and repel, in this paper we propose a novel local-

ization technique, referred to as repulsion loss (RepLoss).

With RepLoss, each proposal is required not only to ap-

proach its designated target T , but also to keep away from

the other ground-truth objects as well as the other propos-

als whose designated targets are not T . In other words, the

bounding box regressor with RepLoss is driven by two mo-

tivations: attraction by the target and repulsion by other sur-

rounding objects and proposals. For example, as demon-

strated in Figure 1, the red bounding box shifting to B
will be given an additional penalty since it overlaps with a

surrounding non-target object. Thus, RepLoss can prevent

the predicted bounding box from shifting to adjacent over-

lapped objects effectively, which makes the detector more

robust to crowd scenes. Our main contributions are as fol-

lows:

• We first experimentally study the impact of crowd oc-

clusion on pedestrian detection. Specifically, on the

CityPersons benchmark [33] we analyze both false

positives and missed detections caused by crowd oc-

clusion quantitatively, which provides important in-

sights into the crowd occlusion problem.

• Two types of repulsion losses are proposed to address

the crowd occlusion problem, namely RepGT Loss and

RepBox Loss. RepGT Loss directly penalizes the pre-

dicted box for shifting to the other ground-truth ob-

jects, while RepBox Loss requires each predicted box

to keep away from the other predicted boxes with dif-

ferent designated targets, making the detection results

less sensitive to NMS.

• With the proposed repulsion losses, a crowd-robust

pedestrian detector is trained end-to-end, which out-

performs all the state-of-the-art methods on both

CityPerson and Caltech-USA benchmarks [7]. It

should also be noted that the detector with repulsion

loss significantly improves the detection accuracy for

occlusion cases, highlighting the effectiveness of re-

pulsion loss. Furthermore, our experiments on the

PASCAL VOC [8] detection dataset show that the Re-

pLoss is also beneficial for general object detection,

besides pedestrians.

2. Related Work

Object Localization. With the recent development of

convolutional neural networks (CNNs) [16, 26, 12], great

progress has been made in object detection, in which ob-

ject localization is generally framed as a regression prob-

lem that relocates an initial proposal to its designated tar-

get. In R-CNN [10], a linear regression model is trained

with respect to the Euclidean distance of coordinates of a

proposal and its target. In [9], the SmoothL1 Loss is pro-

posed to replace the Euclidean distance used in R-CNN for

bounding box regression. [24] proposes the region proposal

network (RPN), in which bounding box regression is per-

formed twice to transform predefined anchors into final de-

tection boxes. Densebox [15] proposes an anchor-free, fully

convolutional detection framework. IoU Loss is proposed

in [29] to maximize the IoU between a ground-truth box and

a predicted box. We note that a method proposed by Desai

et al. [4] also exploits the attraction and repulsion between

objects to capture the spatial arrangements of various object

classes, still, it is to address the problem of object classifica-

tion via a global model. In this work, we will demonstrate

the effectiveness of the Repulsion Loss for object localiza-

tion in crowd scenes.

Pedestrian Detection. Pedestrian detection is the first and

an critical step for many real-world applications. Tradi-

tional pedestrian detectors, such as ACF [5], LDCF [22]

and Checkerboard [32], exploit various filters on Inte-

gral Channel Features (IDF) [6] with sliding window strat-

egy to localize each target. Recently, the CNN-based de-

tectors [17, 30, 21, 14, 28] show great potential in dominat-

ing the field of pedestrian detection. In [28, 30], features

from a Deep Neural Network rather than hand-crafted fea-

tures are fed into a boosted decision forest. [21] proposes

a multi-task trained network to further improve detection

performance. Also in [23, 27, 34], a part-based model is

utilized to handle occluded pedestrians. [13] works on im-

proving the robustness of NMS, but it ends up relying on an

additional network for post-processing. In fact, few of pre-

vious works focus on studying and overcoming the impact

of crowd occlusion.
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Figure 2. Missed detection numbers and MR
−2 scores of our base-

line on the reasonable, reasonable-occ, reasonable-crowd subsets.

Of all missed detection in reasonable-occ subset, crowd occlusion

accounts for ∼60%, making it a main obstacle for addressing oc-

clusion issues.

3. What is the Impact of Crowd Occlusion?

To provide insights into the crowd occlusion problem, in

this section, we experimentally study how much crowd oc-

clusion influences pedestrian detection results. Before delv-

ing into our analysis, first we introduce the dataset and the

baseline detector that we use.

3.1. Preliminaries

Dataset and Evaluation Metrics. CityPersons [33] is a

new pedestrian detection dataset on top of the semantic

segmentation dataset CityScapes [2], of which 5, 000 im-

ages are captured in several cities in Germany. A total of

∼35, 000 persons with an additional ∼13, 000 ignored re-

gions, both bounding box annotation of all persons and an-

notation of visible parts are provided. All of our experi-

ments involved CityPersons are conducted on the reason-

able train/validation sets for training and testing, respec-

tively. For evaluation, the log miss rate is averaged over

the false positive per image (FPPI) range of [10−2, 100]
(MR−2) is used (lower is better).

Detector. Our baseline detector is the commonly used

Faster R-CNN [24] detector modified for pedestrian detec-

tion, generally following the settings in Zhang et al. [31]

and Mao et al. [21]. The difference between our implemen-

tation and theirs is that we replace the VGG-16 backbone

with the faster and lighter ResNet-50 [12] network. It is

worth noting that ResNet is rarely used in pedestrian detec-

tion, since the down-sampling rate at convolution layers is

too large for the network to detect and localize small pedes-

trians. To handle this, we use dilated convolution and the

final feature map is 1/8 of input size. The ResNet-based

detector achieves 14.6MR−2 on the validation set, which is

sightly better than the reported result (15.4 MR−2) in [33].
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Figure 3. Errors analysis of our baseline and RepGT. (a) The num-

ber of missed detections in reasonable-crowd subset under differ-

ent detection scores. (b) The proportion of false positives caused

by crowd occlusion of all false positives. RepGT Loss effectively

reduces missed detections and false positives caused by crowd oc-

clusion.

3.2. Analysis on Failure Cases

Missed Detections. With the results of the baseline detec-

tor, we first analyze missed detections caused by crowd oc-

clusion. Since the bounding box annotation of the visible

part of each pedestrian is provided in CityPersons, the oc-

clusion can be calculated as occ , 1 − area(BBoxvisible)
area(BBox) .

We define a ground-truth pedestrian whose occ ≥ 0.1 as

an occlusion case, and one whose occ ≥ 0.1 and IoU ≥
0.1 with any other annotated pedestrian as a crowd occlu-

sion case. By definition, from the total 1, 579 non-ignored

pedestrian annotations in the reasonable validation set, two

subsets are extracted: the reasonable-occ subset, consisting

of 810 occlusion cases (51.3%) and the reasonable-crowd

subset, consisting of 479 crowd occlusion cases (30.3%).

Obviously the reasonable-crowd subset is also a subset of

reasonable-occ subset.

In Figure 2, we report the numbers of missed detec-

tions and MR−2 on the reasonable, reasonable-occ and
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reasonable-crowd subsets. We observe that the performance

drops significantly from 14.6 MR−2 on the reasonable set

to 18.6 MR−2 on the reasonable-occ subset; of all missed

detections at 20, 100, and 500 false positives, occlusion

makes up approximately 60%, indicating that it is a main

factor which harms the performance of the baseline detec-

tor. Of missed detections in the reasonable-occ subset, the

proportion of crowd occlusion stands at nearly 60%, making

it a main obstacle for addressing occlusion issues in pedes-

trian detection. Moreover, the miss rate on the reasonable-

crowd subset (19.1) is even higher than the reasonable-occ

subset (18.6), indicating that crowd occlusion is an even

harder problem than inter-class occlusions; when we lower

the threshold from 100 to 500 false positives, the portion

of missed detections caused by crowd occlusion becomes

larger (from 60.7% to 69.2%). It implies that missed detec-

tions caused by crowd occlusion are hard to be rescued by

lowering the threshold.

In Figure 3(a), the red line shows how many ground-truth

pedestrians are missed in the reasonable-crowd subset with

different detection scores. As in real-world applications,

only predicted bounding boxes with high confidence will

be considered, the large number of missed detections on the

top of the curve implies we are far from saturation for real-

world applications.

False Positives. We also analyze how many false positives

are caused by crowd occlusion. We cluster all false pos-

itives into three categories: background, localization and

crowd error. A background error occurs when a predicted

bounding box has IoU < 0.1 with any ground-truth pedes-

trian, while a localization error has IoU ≥ 0.1 with only

one ground-truth pedestrian. Crowd errors are those who

have IoU ≥ 0.1 with at least two ground-truth pedestrians.

After that we count the number of crowd errors and cal-

culate its proportion of all false positives. The red line in

Figure 3(b) shows that crowd errors contribute to a relative

large proportion (about 20%) of all false positives. Through

visualization in Figure 4, we observe that the crowd er-

rors usually occur when a predict box shifts slightly or dra-

matically to neighboring non-target ground-truth objects, or

bounds the union of several overlapping ground-truth ob-

jects together. Moreover, the crowd errors usually have

relatively high confidences thus leading to top-ranked false

positives. It indicates that to improve the robustness of de-

tectors to crowd scenes, more discriminative loss is needed

when performing bounding box regression. More visualiza-

tion examples can be found in supplementary material.

Conclusion. The analysis on failure cases validates our ob-

servation: pedestrian detectors are surprisingly tainted by

crowd occlusion, as it constitutes the majority of missed de-

tections and results in more false positives by increasing the

difficulty in localization. To address these issues, in Sec-

Figure 4. The visualization examples of the crowd errors. Green

boxes are correct predicted bounding boxes, while red boxes are

false positives caused by crowd occlusion. The confidence scores

outputted by detectors are also attached. The errors usually occur

when a predict box shifts slightly or dramatically to neighboring

ground-truth object (e.g., top-right one), or bounds the union of

several overlapping ground-truth objects (e.g., bottom-right one).

tion 4, the repulsion loss is proposed to improve the robust-

ness of pedestrian detectors to crowd scenes.

4. Repulsion Loss

In this section we introduce the repulsion loss to address

the crowd occlusion problem in detection. Inspired by the

characteristics of magnet, i.e., magnets attract and repel,

the Repulsion Loss is made up of three components, defined

as:

L = LAttr + α ∗ LRepGT + β ∗ LRepBox, (1)

where LAttr is the attraction term which requires a pre-

dicted box to approach its designated target, while LRepGT

and LRepBox are the repulsion terms which require a pre-

dicted box to keep away from other surrounding ground-

truth objects and other predicted boxes with different desig-

nated targets, respectively. Coefficients α and β act as the

weights to balance auxiliary losses.

For simplicity we consider only two-class detection in

the following, assuming all ground-truth objects are from

the same category. Let P = (lP , tP , wP , hP ) and G =
(lG, tG, wG, hG) be the proposal bounding box and ground-

truth bounding box which are represented by their coordi-

nates of left-top points as well as their widths and heights,

respectively. P+ = {P} is the set of all positive propos-

als (those who have a high IoU (e.g., IoU ≥ 0.5) with at

least one ground-truth box are regarded as positive samples,

while negative samples otherwise), and G = {G} is the set

of all ground-truth boxes in one image.
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Attraction Term. With the objective to narrow the gap

between predicted boxes and ground-truth boxes measured

by some kind of distance metrics1, e.g., Euclidean dis-

tance [10], SmoothL1 distance [9] or IoU [29], attraction

loss has been commonly adopted in existing bounding box

regression techniques. To make a fair comparison, in this

paper we adopt SmoothL1 distance for the attraction term

as in [21, 33]. We set smooth parameter in SmoothL1 as

2. Given a proposal P ∈ P+, we assign the ground-truth

box who has the maximum IoU as its designated target:

GP
Attr = argmaxG∈G IoU(G,P ). BP is the predicted box

regressed from proposal P . Then the attraction loss could

be calculated as:

LAttr =

∑

P∈P+
SmoothL1(B

P , GP
Attr)

|P+|
. (2)

Repulsion Term (RepGT). The RepGT Loss is designed to

repel a proposal from its neighboring ground-truth objects

which are not its target. Given a proposal P ∈ P+, its

repulsion ground-truth object is defined as the ground-truth

object with which it has the largest IoU region except its

designated target:

GP
Rep = argmax

G∈G\{GP
Attr

}

IoU(G,P ). (3)

Inspired by IoU Loss in [29], the RepGT Loss is calcu-

lated to penalize the overlap between BP and GP
Rep. The

overlap between BP and GP
Rep is defined by Intersection

over Ground-truth (IoG): IoG(B,G) ,
area(B∩G)
area(G) . As

IoG(B,G) ∈ [0, 1], we define RepGT Loss as:

LRepGT =

∑

P∈P+
Smoothln

(

IoG(BP , GP
Rep)

)

|P+|
, (4)

where

Smoothln =







− ln (1− x) x ≤ σ

x− σ

1− σ
− ln (1− σ) x > σ

(5)

is a smoothed ln function which is continuously differen-

tiable in (0, 1), and σ ∈ [0, 1) is the smooth parameter to

adjust the sensitiveness of the repulsion loss to the outliers.

Figure 5 shows its curve with different σ. From Eqn. 4 and

Eqn. 5 we can see that the more a proposal tends to over-

lap with a non-target ground-truth object, a larger penalty

will be added to the bounding box regressor by the RepGT

Loss. In this way, the RepGT Loss could effectively stop

a predicted bounding box from shifting to its neighboring

objects which are not its target.

1Here the distance is simply a measurement of difference of two bound-

ing boxes. It may not satisfy triangle inequality.
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Figure 5. The curves of Smoothln under different smooth param-

eter σ. The smaller σ is, the less sensitive loss is to the outliers.

Repulsion Term (RepBox). NMS is a necessary post-

processing step in most detection frameworks to merge the

primary predicted bounding boxes which are supposed to

bound the same object. However, the detection results will

be affected significantly by NMS especially for the crowd

cases. To make the detector less sensitive to NMS, we

further propose the RepBox Loss whose objective is to

repel each proposal from others with different designated

targets. We divide the proposal set P+ into |G| mutu-

ally disjoint subsets based on the target of each proposal:

P+ = P1 ∩ P2 ∩ . . . ∩ P|G|. Then for two proposals ran-

domly sampled from two different subsets, Pi ∈ Pi and

Pj ∈ Pj where i, j = 1, 2, . . . , |G| and i 6= j, we expect

that the overlap of predicted box BPi and BPj will be as

small as possible. Therefore, the RepBox Loss is calculated

as:

LRepBox =

∑

i 6=j Smoothln
(

IoU(BPi , BPj )
)

∑

i 6=j 1[IoU(BPi , BPj ) > 0] + ǫ
, (6)

where 1 is the identity function and ǫ is a small constant

in case divided by zero. From Eqn. 6 we can see that to

minimize the RepBox Loss, the IoU region between two

predicted boxes with different designated targets needs to

be small. That means, the RepBox Loss is able to reduce the

probability that the predicted bounding boxes with different

regression targets are merged into one after NMS, which

makes the detector more robust to the crowd scenes.

4.1. Discussion

Distance Metric. It is worth noting that we choose the IoG

or IoU rather than SmoothL1 metric to measure the distance

between two bounding boxes in the repulsion term. The rea-

son is that the values of IoG and IoU are bounded in range

[0, 1] while SmoothL1 metric is boundless, i.e., if we use

SmoothL1 metric in the repulsion term, in the RepGT Loss

for example, it will require the predicted box to keep away

from its repulsion ground-truth object as far as possible. On
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the contrary, IoG criteria only requires the predicted box to

minimize the overlap with its repulsion ground-truth object,

which better fits our motivation.

In addition, IoG is adopted in RepGT Loss rather than

IoU because, in the IoU-based loss, the bounding box re-

gressor may learn to minimize the loss by simply enlarg-

ing the bounding box size to increase the denominator

area(BP ∪ GP
Rep). Therefore, we choose IoG whose de-

nominator is a constant for a particular ground-truth object

to minimize the overlap area(BP ∩GP
Rep) directly.

Smooth Parameter σ. Compared to [29] which directly

uses − ln(IoU) as loss function, we introduce a smoothed

ln function Smoothln and a smooth parameter σ in both

RepGT Loss and RepBox Loss. As shown in Figure 5, we

can adjust the sensitiveness of the repulsion loss to the out-

liers (the pair of boxes with large overlap) by the smooth

parameter σ. Since the predicted boxes are much denser

than the ground-truth boxes, a pair of two predicted boxes

are more likely to have a larger overlap than a pair of one

predicted box and one ground-truth box. It means that there

will be more outliers in RepBox than in RepGT. So, in-

tuitively, RepBox Loss should be less-sensitive to outliers

(with small σ) than RepGT Loss. More detailed studies

about the smooth parameter σ as well as the auxiliary loss

weights α and β are provided Section 5.2.

5. Experiments

The experiment section is organized as follows: we first

introduce the basic experiment settings as well as the imple-

mentation details of repulsion loss in Section 5.1; then the

proposed RepGT Loss and RepBox Loss are evaluated and

analyzed on the CityPersons [33] benchmark respectively in

Section 5.2; finally, in Section 5.3, the detector with repul-

sion loss is compared with the state-of-the-art methods side-

by-side on both CityPersons [33] and Caltech-USA [7].

5.1. Experiment Settings

Datasets. Besides the CityPersons [33] benchmark intro-

duced in Section 3, we also carry out experiments on the

Caltech-USA dataset [7]. As one of several predominant

datasets and benchmarks for pedestrian detection, Caltech-

USA has witnessed inspiring progress in this field. A total

of 2.5-hour video is divided into training and testing subsets

with 42, 500 frames and 4, 024 frames respectively. In [31],

Zhang et al. provide refined annotations, in which training

data are refined automatically while testing data are metic-

ulously re-annotated by human annotators. We conduct all

experiments related to Caltech-USA on the new annotations

unless otherwise stated.

Training Details. Our framework is implemented on our

self-built fast and flexible deep learning platform. We train

MR−2 Improvement

σ 0 0.5 1.0 0 0.5 1.0

RepGT 14.3 14.5 13.7 +0.3 +0.1 +0.9

RepBox 13.7 14.2 14.3 +0.9 +0.4 +0.3

Table 1. The MR
−2 of RepGT and RepBox Losses and their im-

provements with different smooth parameters σ on the validation

set of CityPersons.

α (RepGT) 0.3 0.4 0.5 0.6 0.7

β (RepBox) 0.7 0.6 0.5 0.4 0.3

MR−2 13.9 13.9 13.2 13.3 14.1

Table 2. We balance the RepGT and RepBox Losses by adjusting

the weights α and β. Empirically, α = 0.5 and β = 0.5 yields

the best performance. The results are obtained on CityPersons

validation subset.
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Figure 6. Results with RepBox Loss across various NMS thresh-

olds at FPPI = 10
−2. The curve of RepBox is smoother than that

of baseline, indicating it is less sensitive to the NMS threshold.

the network for 80k iterations and 160k iterations, with the

base learning rate set to 0.016 and decreased by a factor of

10 after the first 60k and 120k iterations for CityPersons

and Caltech-USA, respectively. The Stochastic Gradient

Descent (SGD) solver is adopted to optimize the network on

4 GPUs. A mini-batch involves 1 image per GPU. Weight

decay and momentum are set to 0.0001 and 0.9. Multi-scale

training/testing are not applied to ensure fair comparisons

with previous methods. For Caltech-USA, we use the 10x

set (∼42k frames) for training. Online Hard Example Min-

ing (OHEM) [25] is used to accelerate convergence.

5.2. Ablation Study

RepGT Loss. In Table 1, we report the results of RepGT

Loss with different parameter σ for Smoothln loss. When

set σ as 1.0, adding RepGT Loss yields the best perfor-

mance of 13.7 MR−2 in terms of reasonable evaluation

setup. It outperforms the baseline with an improvement of

0.9 MR−2. Setting σ = 1 that means we directly sum over
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Method +RepGT +RepBox +Segmentation Scale Reasonable Heavy Partial Bare

Zhang et al. [33]

×1 15.4 55.0 18.9 9.3

X ×1 14.8 - - -

×1.3 12.8 - - -

Baseline ×1 14.6 60.6 18.6 7.9

RepLoss X ×1 13.7 57.5 17.3 7.2

X ×1 13.7 59.1 17.2 7.8

X X ×1 13.2 56.9 16.8 7.6

X X ×1.3 11.6 55.3 14.8 7.0

X X ×1.5 10.9 52.9 13.4 6.3

Table 3. Pedestrian detection results using RepLoss evaluated on the CityPersons [33]. Models are trained on train set and tested on

validation set. We use ResNet-50 as our back-bone architecture. The best 3 results are highlighted in red, blue and green, respectively.

− ln (1− IoG) with no smooth at all, similar to the loss

function used in IoU Loss [29].

We also provide comparisons on missed detections and

false positives between RepGT and baseline. In Figure 3(a),

adding RepGT Loss effectively decreases the number of

missed detections in the reasonable-crowd subset. The

curve of RepGT is consistently lower than that of base-

line when the threshold of detection score is rather high,

but two curves agree when the score is at 0.5. The sat-

uration points of curves are both at ∼ 0.9, also a com-

monly used threshold for real applications, where we re-

duce the quantity of missed detections by relatively 10%.

In Figure 3(b), false positives produced by RepGT Loss due

to crowd occlusion cover less proportion than the baseline

detector. This demonstrates that RepGT Loss is effective

on reducing missed detections and false positives in crowd

scenes.

RepBox Loss. For RepBox Loss, we experiment with a

different smooth parameter σ, reported in the fourth line

of Table 1. When setting σ as 0, RepBox Loss yields the

best performance of 13.7 MR−2, on par with RepGT with

σ = 1.0. Setting σ as 0 means we completely smooth a

ln function into a linear function and sum over IoU. We

conjure that RepBox Loss tends to have more outliers than

RepGT Loss since predicted boxes are much denser than

ground-truth boxes.

As mentioned in Section 1, detectors in crowd scenes

are sensitive to the NMS threshold. A high NMS threshold

may lead to more false positives, while a low NMS thresh-

old may lead to more missed detections. In Figure 6 we

show our results with RepBox Loss across various NMS

thresholds at FPPI = 10−2. In general, the performance

of detector with RepBox Loss is smoother than baseline.

It is worth noting that at the NMS threshold of 0.35, the

gap between baseline and RepBox is 3.5 points, indicating

that the latter is less sensitive to NMS threshold. Through

visualization in Figure 7, there are fewer predictions lying

in between two adjacent ground-truths of RepBox, which

Method
Reasonable

IoU=0.5 IoU=0.75

Zhang et al. [33] 5.8 30.6

Mao et al. [21] 5.5 43.4

Zhang et al. [33]* 5.1 25.8

Baseline 5.6 28.7

+RepGT 5.0 27.1

+RepBox 5.3 26.2

+RepGT & RepBox 5.0 26.3

+RepGT & RepBox* 4.0 23.0

Table 4. Results on Calech-USA test set (reasonable), evaluated

on the new annotations [31]. On a strong baseline, we further

improve the state-of-the-art to a remarkable 4.0 MR
−2 under 0.5

IoU threshold. The consistent gain when increasing IoU threshold

to 0.75 demonstrates effectiveness of repulsion loss. *: indicates

pre-training network using CityPersons dataset.

is desirable in crowd scenes. More examples are shown in

supplementary material.

Balance of RepGT and RepBox The introduced RepGT

and RepBox Loss help detectors do better in crowd scenes

when added alone, but we have yet studied how to balance

these two losses. Table 2 shows our results with different

settings of α and β. Empirically, α = 0.5 and β = 0.5
yields the best performance.

5.3. Comparisons with Stateoftheart Methods

To demonstrate our effectiveness under different occlu-

sion levels, we divide the reasonable subset (occlusion ≤
35%) into the reasonable-partial subset (10% < occlusion

≤ 35%), denoted as Partial subset, and the reasonable-bare

subset (occlusion ≤ 10%), denoted as Bare subset. For an-

notations whose occlusion is above 35% (not in the reason-

able set), we denote them as Heavy subset. Table 3 summa-

rizes our results on CityPersons. In general, RepGT Loss

and RepBox Loss show improvement across all evaluation
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(b) Baseline (c) +RepBox(a) Input

Figure 7. Visualized comparison of predicted bounding boxes be-

fore NMS of baseline and RepBox. In the results of RepBox, there

are fewer predictions lying in between two adjacent ground-truths,

which is desirable in crowd scenes. More examples are shown in

supplementary material.
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Figure 8. Comparisons with state-of-the-art methods on the new

Caltech test subset.

subsets. Combined together, our proposed repulsion loss

achieves 13.2 MR−2, which is an absolute 1.4-point im-

provement over our baseline. In terms of different occlu-

sion levels, performance with RepLoss on the Heavy subset

is boosted by a remarkably large margin of 3.7 points, and

on the Partial subset by a relatively smaller margin of 1.8
points, while causing non-obvious improvement on the Bare

subset. It is in accordance with our intention that RepLoss

is specifically designed to address the occlusion problem.

We also evaluate RepLoss on new Caltech-USA dataset.

Results are shown in Table 4. On a strong reference, Re-

pLoss achieves MR−2 of 5.0 at .5 IoU matching thresh-

old and 26.3 at .75 IoU matching threshold. The consis-

tent and even larger gain when increasing IoU threshold

demonstrates the ability of our framework to handle occlu-

sion problem, for it that occlusion is known for its tendency

of being more sensitive at a higher matching threshold. Re-

sult curves are shown in Figure 8.

6. Extensions: General Object Detection

Our RepLoss is a generic loss function for object detec-

tion in crowd scenes and can be used in applications other

Method mAP mAP on Crowd

Faster R-CNN [12] 76.4 -

Faster R-CNN (ReIm) 79.5 38.7

+ RepGT 79.8 40.8

Table 5. General object detection results evaluated on PASCAL

VOC 2007 [8] benchmark. ReIm is our re-implemented Faster R-

CNN. Crowd subset contains ground-truth objects who has over-

laps above 0.1 IoU region with at least another ground-truth object

of the same category. Our RepGT Loss outperforms baseline by

2.1 mAP on crowd subset.

than pedestrian detection. In this section, we apply the re-

pulsion loss to general object detection.

We conduct our experiments on the PASCAL VOC

dataset [8], a common evaluation benchmark for general ob-

ject detection. This dataset consists of over 20 object cate-

gories. Standard evaluation metric for VOC dataset is mean

Average Precision (mAP) over all categories. We adopt

the vanilla Faster R-CNN [24] framework, using ImageNet-

pretrained ResNet-101 [12] as the backbone. The NMS

threshold is set as 0.3. The model is trained on the train

and validation subsets of PASCAL VOC 2007 and PAS-

CAL VOC 2012, and is evaluated on the test subset of PAS-

CAL VOC 2007. Our re-implemented baseline is better

than original one by 3.4 mAP.

Results are shown in Table 5. The gain over the entire

dataset is not significant. Nevertheless, when evaluated on

the crowd subset (objects have intra-class IoU greater than

0.1), RepLoss outperforms the baseline by 2.1 mAP. These

results demonstrate that our method is generic and can be

extended to general object detection.

7. Conclusion

In this paper, we have carefully designed the repulsion

loss (RepLoss) for pedestrian detection, which improves

detection performance, particularly in crowd scenes. The

main motivation of the repulsion loss is that the attraction-

by-target loss alone may not be sufficient for training an

optimal detector, and repulsion-by-surrounding can be very

beneficial.

To implement the repulsion energy, we have introduced

two types of repulsion losses. We have achieved the best

reported performance on two popular datasets: Caltech and

CityPersons. Significantly, our result on CityPersons with-

out using pixel annotation outperforms the previously best

result [33] that uses pixel annotation by about 2%. Detailed

experimental comparison have demonstrated the value of

the proposed RepLoss, which improves detection accuracy

by a large margin in occlusion scenarios. Results on generic

object detection (PASCAL VOC) further show its useful-

ness. We expect wide application of the proposed loss in

many other object detection tasks.
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