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Abstract

We introduce Similarity Group Proposal Network

(SGPN), a simple and intuitive deep learning framework for

3D object instance segmentation on point clouds. SGPN

uses a single network to predict point grouping proposals

and a corresponding semantic class for each proposal, from

which we can directly extract instance segmentation results.

Important to the effectiveness of SGPN is its novel represen-

tation of 3D instance segmentation results in the form of a

similarity matrix that indicates the similarity between each

pair of points in embedded feature space, thus producing

an accurate grouping proposal for each point. Experimen-

tal results on various 3D scenes show the effectiveness of

our method on 3D instance segmentation, and we also eval-

uate the capability of SGPN to improve 3D object detection

and semantic segmentation results. We also demonstrate

its flexibility by seamlessly incorporating 2D CNN features

into the framework to boost performance.

1. Introduction

Instance segmentation on 2D images have achieved

promising results recently [18, 10, 31, 23]. With the rise of

autonomous driving and robotics applications, the demand

for 3D scene understanding and the availability of 3D scene

data has rapidly increased in recently. Unfortunately, the

literature for 3D instance segmentation and object detec-

tion lags far behind its 2D counterpart; scene understanding

with Convolutional Neural Networks (CNNs) [44, 45, 11]

on 3D volumetric data is limited by high memory and com-

putation cost. Recently, deep learning frameworks Point-

Net/Pointnet++ [33, 35] on point clouds open up more effi-

cient and flexible ways to handle 3D data.

Following the pioneering works in 2D scene understand-

ing, our goal is to develop a novel deep learning framework

trained end-to-end for 3D instance-aware semantic segmen-

tation on point clouds that, like established baseline systems

for 2D scene understanding tasks, is intuitive, simple, flexi-

(a)

(b) (c)

Figure 1: Instance segmentation for point clouds using

SGPN. Different colors represent different instances. (a)

Instance segmentation on complete real scenes. (b) Single

object part instance segmentation. (c) Instance segmenta-

tion on point clouds obtained from partial scans.

ble, and effective.

An important consideration for instance segmentation on

a point cloud is how to represent output results. Inspired by

the trend of predicting proposals for tasks with a variable

number of outputs, we introduce a Similarity Group Pro-

posal Network (SGPN), which formulates group proposals

of object instances by learning a novel 3D instance segmen-

tation representation in the form of a similarity matrix .

Our pipeline first uses PointNet/PointNet++ to extract a

descriptive feature vector for each point in the point cloud.

As a form of similarity metric learning, we enforce the idea

that points belonging to the same object instance should

have very similar features; hence we measure the distance

between the features of each pair of points in order to form

a similarity matrix that indicates whether any given pair of
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points belong to the same object instance.

The rows in our similarity matrix can be viewed as in-

stance candidates, which we combine with learned confi-

dence scores in order to generate plausible group proposals.

We also learn a semantic segmentation map in order to clas-

sify each object instance obtained from our group proposals.

We are also able to directly derive tight 3D bounding boxes

for object detection.

By simply measuring the distance between overdeter-

mined feature representations of each pair of points, our

similarity matrix simplifies our pipeline in that we remain

in the natural point cloud representation of defining our ob-

jects by the relationships between points.

In summary, SGPN has three output branches for in-

stance segmentation on point clouds: a similarity matrix

yielding point-wise group proposals, a confidence map for

pruning these proposals, and a semantic segmentation map

to give the class label for each group.

We evaluate our framework on both 3D shapes

(ShapeNet [4]) and real 3D scenes (Stanford Indoor Se-

mantic Dataset [1] and NYUV2 [42]) and demonstrate that

SGPN achieves state-of-the-art results on 3D instance seg-

mentation. We also conduct comprehensive experiments

to show the capability of SGPN on achieving high perfor-

mance on 3D semantic segmentation and 3D object detec-

tion on point clouds. Although a minimalistic framework

with no bells and whistles already gives visually pleasing

results (Figure 1), we also demonstrate the flexibility of

SGPN as we boost performance even more by seamlessly

integrating CNN features from RGBD images.

2. Related Works

2.1. Object Detection and Instance Segmentation

Recent advances in object detection [39, 14, 24, 37, 38,

26, 13, 25] and instance segmentation [23, 10, 9, 32, 31]

on 2D images have achieved promising results. R-CNN

[15] for 2D object detection established a baseline system

by introducing region proposals as candidate object regions.

Faster R-CNN [39] leveraged a CNN learning scheme and

proposed Region Proposal Networks(RPN). YOLO [37] di-

vided the image into grids and each grid cell produced

an object proposal. Many 2D instance segmentation ap-

proaches are based on segment proposals. DeepMask [31]

learns to generate segment proposals each with a corre-

sponding object score. Dai et al. [10] predict segment can-

didates from bounding box proposals. Mask R-CNN [18]

extended Faster R-CNN by adding a branch on top of RPN

to produce object masks for instance segmentation.

Following these pioneering 2D works, 3D bounding box

detection frameworks have emerged [40, 44, 45, 11, 5].

Song and Xiao [45] use a volumetric CNN to create 3D

RPN on a voxelized 3D scene and then use both the color

and depth data of the image in a joint 3D and 2D object

recognition network on each proposal. Deng and Latecki

[11] regress class-wise 3D bounding box models based on

RGBD image appearance features only. Armeni et al [1]

use a sliding shape method with CRF to perform 3D object

detection on point cloud. To the best of our knowledge, no

previous work exists that learns 3D instance segmentation.

2.2. 3D Deep Learning

Convolutional neural networks generalize well to 3D by

performing convolution on voxels for certain tasks such as

object classification [34, 48, 27, 51, 41, 29, 30], shape

reconstruction [49, 17, 8] of simple objects, and 3D ob-

ject detection as mentioned in Section 2.1. However, vol-

umetric representation carry a high memory and compu-

tational cost and have strong limitations dealing with 3D

scenes [7, 1, 46]. Octree-based CNNs [41, 47, 48] have been

introduced recently, but they are less flexible than volumet-

ric CNNs and still suffer from memory efficiency problems.

A point cloud is an intuitive, memory-efficient 3D repre-

sentation well-suited for representing detailed, large scenes

for 3D instance segmentation using deep learning. Point-

Net/Pointnet++ [33, 35] recently introduce deep neural net-

works on 3D point clouds, learning successful results for

tasks such as object classification and part and semantic

scene segmentation. We base our network architecture

off of PointNet/PointNet++, achieving a novel method that

learns 3D instance segmentation on point clouds.

2.3. Similarity Metric Learning

Our work is also closely related to similarity metric

learning, which has been widely used in deep learning on

various tasks such as person re-identification [52], match-

ing [16], image retrival [12, 50] and face recognition [6].

Siamese CNNs [6, 43, 3] are used on tasks such as track-

ing [22] and one-shot learning [20] by measuring the simi-

larity of two input images. Alejandro et. al [28] introduced

an associative embedding method to group similar pixels for

multi-person pose estimation and 2D instance segmentation

by enforcing that pixels in the same group should have simi-

lar values in their embedding space without actually enforc-

ing what those exact values should be. Our method exploits

metric learning in a different way in that we regress the like-

lihood of two points belonging to the same group and for-

mulate the similarity matrix as group proposals to handle

variable number of instances.

3. Method

The goal of this paper is to take a 3D point cloud as in-

put and produce an object instance label for each point and

a class label for each instance. Utilizing recent develop-

ments in deep learning on point clouds [33, 35], we intro-

duce a Similarity Group Proposal Network (SGPN), which
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consumes a 3D point cloud and outputs a set of instance

proposals that each contain the group of points inside the

instance as well as its class label. Section 3.1 introduces

the design and properties of SGPN. Section 3.2 proposes

an algorithm to merge similar groups and give each point

an instance label. Section 3.3 gives implementation details.

Figure 2 depicts the overview of our system.

3.1. Similarity Group Proposal Network

SGPN is a very simple and intuitive framework. As

shown in Figure 2, it first passes a point cloud P of size

Np through a feed-forward feature extraction network in-

spired by PointNets [33, 35], learning both global and lo-

cal features in the point cloud. This feature extraction net-

work produces a matrix F . SGPN then diverges into three

branches that each pass F through a single PointNet layer to

obtain sized Np×Nf feature matrices FSIM , FCF , FSEM ,

which we respectively use to obtain a similarity matrix, a

confidence map and a semantic segmentation map. The ith
row in a Np×Nf feature matrix is a Nf -dimensional vector

that represents point Pi in an embedded feature space. Our

loss L is given by the sum of the losses from each of these

three branches: L = LSIM + LCF + LSEM . Our network

architecture can be found in the supplemental.

Similarity Matrix We propose a novel similarity matrix

S from which we can formulate group proposals to directly

recover accurate instance segmentation results. S is of di-

mensions Np × Np, and element Sij classifies whether or

not points Pi and Pj belong to the same object instance.

Each row of S can be viewed as a proposed grouping of

points that form a candidate object instance.

We leverage that points belonging to the same object in-

stance should have similar features and lie very close to-

gether in feature space. We obtain S by, for each pair of

points {Pi, Pj}, simply subtracting their corresponding fea-

ture vectors {FSIMi
, FSIMj

} and taking the L2 norm such

that Sij = ||FSIMi
− FSIMj

||2. This reduces the problem

of instance segmentation to learning an embedding space

where points in the same instance are close together and

those in different object instances are far apart.

For a better understanding of how SGPN captures corre-

lation between points, in Figure 3(a) we visualize the simi-

larity (euclidean distance in feature space) between a given

point and the rest of the points in the point cloud. Points in

different instances have greater euclidean distances in fea-

ture space and thus smaller similarities even though they

have the same semantic labels. For example, in the bottom-

right image of Figure 3(a), although the given table leg point

has greater similarity with the other table leg points than the

table top, it is still distinguishable from the other table leg.

We believe that a similarity matrix is a more natural and

simple representation for 3D instance segmentation on a

point cloud compared to traditional 2D instance segmenta-

tion representations. Most state-of-the-art 2D deep learning

methods for instance segmentation first localize the image

into patches, which are then passed through a neural net-

work and segment a binary mask of the object.

While learning a binary mask in a bounding box is

a more natural representation for space-centric structures

such as images or volumetric grids where features are

largely defined by which positions in a grid have strong sig-

nals, point clouds can be viewed as shape-centric structures

where information is encoded by the relationship between

the points in the cloud, so we would prefer to also define

instance segmentation output by the relationship between

points without working too much in grid space.

Hence we expect that a deep neural network could better

learn our similarity matrix, which compared to traditional

representations is a more natural and straightforward rep-

resentation for instance segmentation in a point cloud.

Double-Hinge Loss for Similarity Matrix As is the case

in [28], in our similarity matrix we do not need to precisely

regress the exact values of our features; we only optimize

the simpler objective that similar points should be close to-

gether in feature space. We define three potential similarity

classes for each pair of points {Pi, Pj}: 1) Pi and Pj belong

to the same object instance; 2) Pi and Pj share the same se-

mantic class but do not belong to the same object instance;

3) Pi and Pj do not share the same semantic class. Pairs

of points should lie progressively further away from each

other in feature space as their similarity class increases. We

define out loss as:

LSIM =

Np
∑

i

Np
∑

j

l(i, j)

l(i, j) =











||FSIMi
− FSIMj

||2 Cij = 1

αmax(0,K1 − ||FSIMi
− FSIMj

||2) Cij = 2

max(0,K2 − ||FSIMi
− FSIMj

||2) Cij = 3

where Cij indicates which of the similarity classes defined

above does the pair of points ({Pi, Pj)} belong to and

α,K1,K2 are constants such that α > 1, K2 > K1.

Although the second and third similarity class are treated

equivalently for the purposes of instance segmentation, dis-

tinguishing between them in LSIM using our double-hinge

loss allows our similarity matrix output branch and our se-

mantic segmentation output branch to mutually assist each

other for increased accuracy and convergence speed. Since

the semantic segmentation network is actually wrongly try-

ing to bring pairs of points in our second similarity class

closer together in feature space, we also add an α > 1 term

to increase the weight of our loss to dominate the gradient

from the semantic segmentation output branch.
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Figure 2: Pipeline of our system for point cloud instance segmentation.

(a) (b)

Figure 3: (a) Similarity (euclidean distance in feature space)

between a given point (indicated by red arrow) and the rest

of points. A darker color represents lower distance in fea-

ture space thus higher similarity. (b) Confidence map. A

darker color represents higher confidence.

At test time if Sij < ThS where ThS < K1, then points

pair Pi and Pj are in the same instance group.

Similarity Confidence Map SGPN also feeds FCF

through an additional PointNet layer to predict a Np × 1
confidence map CM reflecting how confidently the model

believes that each grouping candidate is indeed a correct

object instance. Figure 3(b) provides a visualization of the

confidence map; points located in the boundary area be-

tween parts have lower confidence.

We regress confidence scores based on ground truth

groups G represented as a Np×Np matrix identical in form

to our similarity matrix. If Pi is a background point that

does not belong to any object in the ground truth then the

row Gi will be all zeros. For each row in Si, we expect the

ground-truth value in the confidence map CMi to be the in-

tersection over union (IoU) between the set of points in the

predicted group Si and the ground truth group Gi. Our loss

LCF is the L2 loss between the inferred and expected CM .

Although the loss LCF depends on the similarity ma-

trix output branch during training, at test time we run the

branches in parallel and only groups with confidence greater

than a threshold ThC are considered valid group proposals.

Semantic Segmentation Network The semantic seg-

mentation map acts as a point-wise classifier. SGPN passes

FSEM through an additional PointNet layer whose archi-

tecture depends on the number of possible semantic classes,

yielding the final output MSEM , which is a Np ×NC sized

matrix where NC is the number of possible object cate-

gories. MSEMij
corresponds to the probability that point

Pi belongs to class Cj .

The loss LSEM is a weighted sum of the cross entropy

softmax loss for each row in the matrix. We use median fre-

quency balancing [2] and the weight assigned to a category

is ac = medianfreq/freq(c), where freq(c) is the total

number of points of class c divided by the total number of

points in samples where c is present, and medianfreq is

the median of these freq(c).
At test time, the class label for a group instance is as-

signed by calculating the mode of the semantic labels of the

points in that group.

3.2. Group Proposal Merging

The similarity matrix S produces Np group proposals,

many of which are noisy or represent the same object. We

first discard proposals with predicted confidence less than

ThC or cardinality less than ThM2. We further prune

our proposals into clean, non-overlapping object instances

by applying Non-Maximum Suppression; groups with IoU

greater than ThM1 are merged together by selecting the

group with the maximum cardinality.

Each point is then assigned to the group proposal that

contains it. In the rare case (∼ 2%) that after the merging

stage a point belongs to more than one final group proposal,

this usually means that the point is at the boundary between

two object instances, which means that the effectiveness of

our network would be roughly the same regardless of which

group proposal the point is assigned to. Hence, with min-

imal loss in accuracy we randomly assign the point to any

one of the group proposals that contains it. We refer to this

process as GroupMerging throughout the rest of the paper.

3.3. Implementation Details

We use an ADAM [19] optimizer with initial learning

rate 0.0005, momentum 0.9 and batch size 4. The learning

rate is divided by 2 every 20 epochs. The network is trained

with only the LSIM loss for the first 5 epochs. In our ex-

periment, α is set to 2 initially and is increased by 2 every

5 epochs. This design makes the network more focused on

separating features of points that belong to different object

instances but have the same semantic labels. K1,K2 are set

to 0.8 and 1.0, respectively. We use per-category histogram

thresholding to get the threshold point Ths for each testing

sample. ThM1 is set to 0.6 and ThM2 is set to 200. ThC is

set to 0.1. Our network is implemented with Tensorflow and

a single Nvidia GTX1080 Ti GPU. It takes 16-17 hours to
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converge. At test time, SGPN takes 40ms on an input point

cloud with size 4096 × 9 with PointNet++ as our baseline

architecture. Further runtime analysis can be found in Sec-

tion 4.2.

4. Experiments

We evaluate SGPN on 3D instance segmentation on the

following datasets:

• Stanford 3D Indoor Semantics Dataset (S3DIS) [1]:

This dataset contains 3D scans in 6 areas including 271
rooms. The input is a complete point cloud generated

from scans fused together from multiple views. Each

point has semantic labels and instance annotations.

• NYUV2 [42]: Partial point clouds are generated from

single view RGBD images. The dataset is annotated

with 3D bounding boxes and 2D semantic segmenta-

tion masks. We use the improved annotation in [11].

Since both 3D bounding boxes and 2D segmentation

masks annotations are given, ground truth 3D instance

segmentation labels for point clouds can be easily gen-

erated We follow the standard split with 795 training

images and 654 testing images.

• ShapeNet [4, 53] Part Segmentation: ShapeNet con-

tains 16, 881 shapes annotated with 50 types of parts

in total. Most object categories are labeled with two

to five parts. We use the official split of 795 training

samples and 654 testinn percentageg samples in our

experiments.

We also show the capability of SGPN to improve seman-

tic segmentation and 3D object detection. To validate the

flexibility of SGPN, we also seamlessly incorporate 2D

CNN features into our network to boos performance on the

NYUV2 dataset.

4.1. S3DIS Instance Segmentation and 3D Object
Detection

We perform experiments on Stanford 3D Indoor Seman-

tic Dataset to evaluate our performance on large real scene

scans. Following experimental settings in PointNet [33],

points are uniformly sampled into blocks of area 1m× 1m.

Each point is labeled as one of 13 categories (chair, table,

floor, wall, clutter etc.) and represented by a 9D vector

(XYZ, RGB, and normalized location as to the room). At

train time we uniformly sample 4096 points in each block,

and at test time we use all points in the block as input.

SGPN uses PointNet as its baseline architecture for this

experiment.1 Figure 5 shows instance segmentation results

1PointNet [33] proposed a 3D detection system while PointNet++ [35]

does not. To make fair comparison, we use PointNet as our baseline ar-

chitecture for this experiment while using PointNet++ in Sections 4.2 and

4.3.

on S3DIS with SGPN. Different colors represent different

instances. Point colors of the same group are not necessarily

the same as their counterparts in the ground truth since ob-

ject instances are unordered. To visualize instance classes,

we also add semantic segmentation results. SGPN achieves

good performance on various room types.

We also compare instance segmentation performance

with the following method (which we call Seg-Cluster):

Perform semantic segmentation using our network and then

select all points as seeds. Starting from a seed point, BFS

is used to search neighboring points with the same label. If

a cluster with more than 200 points has been found, it is

viewed as a valid group. Our GroupMerging algorithm is

then used to merge these valid groups.

We calculate the IoU on points between each predicted

and ground truth group. A detected instance is considered

as true positive if the IoU score is greater than a threshold.

The average precision (AP) is further calculated for instance

segmentation performance evaluation. Table 1 shows the

AP for every category with IoU threshold 0.5. To the best

of our knowledge, there are no existing instance segmenta-

tion method on point clouds for arbitrary object categories,

so we further demonstrate the capability of SGPN to handle

various objects by adding the 3D detection results of Ar-

meni et al. [1] on S3DIS to Table 1. The difference in

evaluation metrics between our method and [1] is that the

IoU threshold of [1] is 0.5 on a 3D bounding box and the

IoU calculation of our method is on points. Despite this dif-

ference in metrics, we can still see our superior performance

on both large and small objects.

We see that a naive method like Seg-Cluster tends to

properly separate regions far away for large objects like the

ceiling and floor. However for small object, Seg-Cluster

fails to segment instances with the same label if they are

close to each other. Mean APs with different IoU thresh-

olds (0.25, 0.5, 0.75) are also evaluated in Table 2. Figure 4

shows qualitative comparison results.

Once we have instance segmentation results, we can

compute the bounding box for every instance and thus pro-

duce 3D object detection predictions. In Table 3, we com-

pare out method with the 3D object detection system intro-

duced in PointNet [33], which to the best of our knowledge

is the state-of-the-art method for 3D detection on S3DIS.

Detection performance is evaluated over 4 categories AP

with IoU threshold 0.5.

The method introduced in PointNet clusters points given

semantic segmentation results and uses a binary classifica-

tion network for each category to separate close objects with

same categories. Our method outperforms it by a large mar-

gin, and unlike PointNet does not require an additional net-

work, which unnecessarily introduces additional complex-

ity during both train and test time and local minima dur-

ing train time. SGPN can effectively separate the difficult
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Mean ceiling floor wall beam column window door table chair sofa bookcaseboard

Armeni et al. [1] 49.93 71.61 88.70 72.86 66.67 91.77 25.92 54.11 46.02 16.15 6.78 54.71 3.91

Seg-Cluster 20.39 43.58 35.52 16.64 12.59 15.90 23.86 15.75 22.63 10.33 3.92 43.33 10.71

SGPN 54.35 79.44 66.29 88.77 77.98 60.71 66.62 56.75 46.90 40.77 6.38 47.61 11.05

Table 1: Results on instance segmentation in S3DIS scenes. The metric is AP(%) with IoU threshold 0.5. To the best of our

knowledge, there are no existing instance segmentation methods on point clouds for arbitrary object categories. The result of

Armeni et al. [1] is on 3D object detection and IoU is calculated on 3D bounding boxes, while Seg-Cluster and SGPN are

on points.

AP0.25 AP0.5 AP0.75

Seg-Cluster 25.56 20.39 16.08

SGPN 59.85 54.35 43.09

Table 2: Comparison results on instance segmentation with

different IoU thresholds in S3DIS scenes. Metric is mean

AP(%) over 13 categories.

Mean table chair sofa board

PointNet [33] 24.24 46.67 33.80 4.76 11.72

Seg-Cluster 18.72 33.44 22.8 5.38 13.07

SGPN 30.20 49.90 40.87 6.96 13.28

Table 3: Comparison results on 3D detection in S3DIS

scenes. SGPN uses PointNet as baseline. The metric is AP

with IoU threshold 0.5.

Mean IoU Accuracy

PointNet [33] 49.76 79.66

SGPN 50.37 80.78

Table 4: Results on semantic segmentation in S3DIS scenes.

SGPN uses PointNet as baseline. Metric is mean IoU(%)

over 13 classes (including clutter).

cases of objects of the same semantic class but different in-

stances (c.f. Figure 4) since points in different instances are

far apart in feature space even though they have the same

semantic label. We further compare our semantic segmen-

tation results with PointNet in Table 4. SGPN outperforms

its baseline with the help of its similarity matrix.

4.2. NYUV2 Object Detection and Instance Seg­
mentation Evaluation

We evaluate the effectiveness of our approach on partial

3D scans on the NYUV2 dataset. In this dataset, 3D point

clouds are lifted from a single RGBD image. An image of

size H × W can produce H × W points. We subsample

this point cloud by resizing the image to H
4
× W

4
and get the

corresponding points using a nearest neighbor search. Both

our training and testing experiments are conducted on such

a point cloud. PointNet++ is used as our baseline.

In [36], 2D CNN features are combined 3D point cloud

for RGBD semantic segmentation. By leveraging the flexi-

bility of SGPN, we also seamlessly integrate 2D CNN fea-

tures from RGB images to boost performance. A 2D CNN

consumes an RGBD map and extracts feature maps F2 with

(a) (b) (c) (d) (e)

Figure 4: Comparison results on S3DIS. (a) Ground Truth

for instance segmentation. Different colors represents dif-

ferent instances. (b) SGPN instance segmentation results.

(c) Seg-Cluster instance segmentation results. (d) Ground

Truth for semantic segmentation. (e) Semantic Segmenta-

tion and 3D detection results of SGPN. The color of the

detected bounding box for each object category is the same

as the semantic labels.

size H
4
× W

4
×NF2. Since there are H

4
× W

4
sub-sampled

points for every image, a feature vector of size Nf2 can

be extracted from F2 at each pixel location. Every fea-

ture vector is concatenated to F (a Np × NF feature ma-

trix produced by PointNet/PointNet++ as mentioned in Sec-

tion 3.1) for each corresponding point, yielding a feature

map of size NP × (NF + NF2), which we then feed to

our output branches. Figure 6 illustrates this procedure;

we call this pipeline SGPN-CNN. In our experiments, we

use a pre-trained AlexNet model [21] (with the first layer

stride 1) and extract F2 from the conv5 layer. We use

H × W = 316 × 415 and Np = 8137. The 2D CNN

and SGPN are trained jointly.

Evaluation is performed on 19 object categories. Fig-

ure 7 shows qualitative results on instance segmentation of

SGPN. Table 5 shows comparisons between Seg-Cluster

and our SGPN and CNN-SGPN frameworks on instance

segmentation. The evaluation metric is average precision

(AP) with IoU threshold 0.25.

The margin of improvement for SGPN compared to Seg-

Cluster is not as high as it is on S3DIS, because in this
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Mean

Seg-Cluster 38.8 43.3 83.9 28.2 2.9 53.6 43.0 41.4 5.4 49.0 56.4 24.4 3.1 30.9 36.1 68.4 49.3 32.1 12.2 74.1

SGPN 40.1 46.4 84.1 30.9 5.8 54.6 44.8 40.1 6.0 51.4 56.1 27.6 4.1 30.9 35.1 67.1 50.1 34.9 15.0 76.3

SGPN-CNN 43.5 54.4 83.2 45.9 7.7 56.6 43.6 42.0 5.2 50.1 54.3 35.4 5.3 37.8 40.3 66.6 59.1 43.6 18.1 77.6

Table 5: Results on instance segmentation in NYUV2. The metric is AP with IoU 0.25.

Figure 5: SGPN instance segmentation results on S3DIS.

The first row is the prediction results. The second row is

groud truths. Different colors represent different instances.

The third row is the predicted semantic segmentation re-

sults. The fourth row is the ground truths for semantic seg-

mentation.
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Figure 6: Incorporating CNN features in SGPN.

dataset objects with the same semantic label are usually far

apart in Euclidean space. Additionally, naive methods like

Seg-Cluster benefit since it is easy to separate a single in-

stance into parts since the points are not connected due to

occlusion in partial scanning. Table 5 also illustrates that

(a) (b) (c) (d)

Figure 7: SGPN instance segmentation results on NYUV2.

(a) Input point clouds. (b) Ground truths for instance seg-

mentation. (c) Instance segmentation results with SGPN.

(d) Instance segmentation results with SGPN-CNN.

Mean

Deep Sliding Shapes [45] 37.55 58.2 36.1 27.2 28.7

Deng and Latecki [11] 35.55 46.4 33.1 33.3 29.4

SGPN 36.25 44.4 30.4 46.1 24.4

SGPN-CNN 41.30 50.8 34.8 49.4 30.2

Table 6: Comparison results on 3D detection (AP with IoU

0.25) in NYUV2. Please note we use point groups as infer-

ence while [45, 11] use large bounding box with invisible

regions as ground truth. Our prediction is the tight bound-

ing box on points which makes the IoU much smaller than

[45, 11].

SGPN can effectively utilize CNN features. Instead of con-

catenating fully-connected layer of 2D and 3D networks as

in [45], we combine 2D and 3D features by considering

their geometric relationships.

We further calculate bounding boxes with instance seg-

mentation results. Table 6 compares our work with the

state-of-the-art works [45, 11] on NYUV2 3D object detec-

tion. Following the evaluation metric in [44], AP is calcu-

lated with IoU threshold 0.25 on 3D bounding boxes. The

NYUV2 dataset provides ground truth 3D bounding boxes

that encapsulate the whole object including the part that is

invisible in the depth image. Both [45] and [11] use these

large ground truth bounding boxes for inference. In our

method, we infer point groupings, which lack information
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Mean
air-

plane
bag cap car chair

head

phone
guitar knife lamp laptopmotor mug pistol rocket

skate

board
table

[35] 84.6 80.4 80.9 60.0 76.8 88.1 83.7 90.2 82.6 76.9 94.7 68.0 91.2 82.1 59.9 78.2 87.5

SGPN 85.8 80.4 78.6 78.8 71.5 88.6 78.0 90.9 83.0 78.8 95.8 77.8 93.8 87.4 60.1 92.3 89.4

Table 7: Semantic segmentation results on ShapeNet part dataset. Metric is mean IoU(%) on points.

(a)

(b)

(c)

(d)

Figure 8: Qualitative results on ShapeNet Part Dataset.

(a) Generated ground truth for instance segmentation. (b)

SGPN instance segmentation results. (c) Semantic segmen-

tation results of PointNet++. (d) Semantic segmentation re-

sults of SGPN.

of the invisible part of the object. Our output is the derived

tight bounding box around the grouped points in the partial

scan, which makes our IoUs much smaller than [45, 11].

However, we can still see the effectiveness of SGPN on the

task of 3D object detection on partial scans as our method

achieves better performance on small objects.

Computation Speed To benchmark the testing time with

[45, 11] and make fair comparison, we run our framework

on an Nvidia K40 GPU. SGPN takes 170ms and around

400M GPU memory per sample. CNN-SGPN takes 300ms

and 1.4G GPU memory per sample. GroupMerging

takes 180ms on an Intel i7 CPU. However, the detection net

in [11] takes 739ms on an Nvidia Titan X GPU. In [45],

RPN takes 5.62s and ORN takes 13.93s per image on an

Nvidia K40 GPU. Our model improves the efficiency and

reduces GPU memory usage by a large margin.

4.3. ShapeNet Part Instance Segmentation

Following the settings in [35], point clouds are gener-

ated by uniformly sampling shapes from Shapenet [4]. In

our experiments we sample each shape into 2048 points.

The XYZ of points are fed into network as input with size

2048 × 3. To generate ground truth labels for part instance

segmentation from semantic segmentation results, we per-

form DBSCAN clustering on each part category of an object

to group points into instances. This experiment is conducted

as a toy example to demonstrate the effectiveness of our ap-

proach on instance segmentation for pointclouds.

We use Pointnet++ as our baseline. Figure 8(b) illus-

trates the instance segmentation results. For instance re-

sults, we again use different colors to represent different

instances, and point colors of the same group are not nec-

essarily the same as the ground truth. Since the generated

ground truths are not “real” ground truths, only qualitative

results are provided. SGPN achieves good results even un-

der challenging conditions. As we can see from the Fig-

ure 8, SGPN is able to group the chair legs into four in-

stances even though even in the ground truth DBSCAN can

not separate the chair legs apart.

The similarity matrix can also help the semantic segmen-

tation branch training. We compare SGPN to PointNet++

(i.e. our framework with solely a semantic segmentation

branch) on semantic segmentation in Table 7. The inputs

of both networks are point clouds of size 2048. Evaluation

metric is mIoU on points of each shape category. Our model

performs better than PointNet++ due to the similarity ma-

trix. Qualitative results are shown in Figure 8. Some false

segmentation prediction is refined with the help of SGPN.

5. Conclusion

We present SGPN, an intuitive, simple, and flexible

framework for 3D instance segmentation on point clouds.

With the introduction of the similarity matrix as our out-

put representation, group proposals with class predictions

can be easily generated from a single network. Experiments

show that our algorithm can achieve good performance on

instance segmentation for various 3D scenes and facilitate

the tasks of 3D object detection and semantic segmentation.

Future Work While a similarity matrix provides an intu-

itive representation and an easily defined loss function, one

limitation of SGPN is that the size of the similarity matrix

scales quadratically as Np increases. Thus, although much

more memory efficient than volumetric methods, SGPN

cannot process extremely large scenes on the order 105 or

more points. Future research directions can consider gener-

ating groups using seeds that are selected based on SGPN

to reduce the size of the similarity matrix. SGPN can also

be extended in future works to learn in a more unsupervised

setting or to learn more different kinds of data representa-

tions beyond instance segementation.
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