
SINT++: Robust Visual Tracking via Adversarial Positive Instance Generation

Xiao Wang, Chenglong Li, Bin Luo, Jin Tang

School of Computer Science and Technology, Anhui University, Hefei, China 230601

{wangxiaocvpr, lcl1314}@foxmail.com, {luobin, tj}@ahu.edu.cn

Abstract

Existing visual trackers are easily disturbed by occlu-

sion, blur and large deformation. We think the performance

of existing visual trackers may be limited due to the follow-

ing issues: i) Adopting the dense sampling strategy to gen-

erate positive examples will make them less diverse; ii) The

training data with different challenging factors are limited,

even through collecting large training dataset. Collecting

even larger training dataset is the most intuitive paradigm,

but it may still can not cover all situations and the positive

samples are still monotonous. In this paper, we propose to

generate hard positive samples via adversarial learning for

visual tracking. Specifically speaking, we assume the tar-

get objects all lie on a manifold, hence, we introduce the

positive samples generation network (PSGN) to sampling

massive diverse training data through traversing over the

constructed target object manifold. The generated diverse

target object images can enrich the training dataset and en-

hance the robustness of visual trackers. To make the tracker

more robust to occlusion, we adopt the hard positive trans-

formation network (HPTN) which can generate hard sam-

ples for tracking algorithm to recognize. We train this net-

work with deep reinforcement learning to automatically oc-

clude the target object with a negative patch. Based on the

generated hard positive samples, we train a Siamese net-

work for visual tracking and our experiments validate the

effectiveness of the introduced algorithm. The project page

of this paper can be found from the website 1.

1. Introduction

Visual tracking aims at covering the give target object

using an adaptive bounding box (BBox) and moves the

BBox along with target. It requires the tracker can robustly

model invarances to illumination, deformation, occlusions

and scale variation, et al. The most intuitive paradigm to

handle these invariances is to collect large-scale training

videos which contain video frames under different chal-

1https://sites.google.com/view/

cvpr2018sintplusplus/

Figure 1. Due to only one target object provided in visual tracking

and most existing trackers adopt the dense positive sampling strat-

egy, which cause the positive training data lack of diversity. More-

over, we argue that occlusions and deformations follow a long-tail

distribution, in another word, some occlusions and deformations

are rare in training data. In this paper, we introduce two strategies

to improve aforementioned situations via the generation of hard

positive samples.

lenging factors. They hope these videos could capture all

possible variations of target object and the algorithm can

then effectively model invariance to them. These data in-

deed learning invariances to some extent, and this maybe

the main reasons why CNNs have been so successful in the

visual tracking.

However, according to our observation, the target object

of visual tracking could be anything, even occlusions and

deformations are all following a long-tail distribution. In

other word, some occlusions and deformations are so rare

that they may still not occur in large-scale datasets, sim-

ilar claims can be found in [43]. Hence, the learning of

invariance to such rare/uncommon occlusions and deforma-

tions needs to be tackled urgently. Collecting even larger

datasets is a possible scheme, but it is not likely to scale due
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to the long-tail statistics. Another issue is that deep neu-

ral networks (DNNs) need massive labelled training data to

obtain robust feature representation, however, only one pos-

itive sample is given in visual tracking. Hence, there exists

a gap between data-driven DNNs and visual tracking. As

shown in Fig. 1, most of existing deep learning based track-

ers adopt the dense sampling strategy, which extract pos-

itive samples according to Intersection over Union (IoU)

compared with ground truth BBox. This operation may

cause the positive samples not diverse enough for DNNs

and hence a sub-optimal tracking performance maybe ob-

tained. One possible solution is the data augmentation

which is an essential part of the training process applied

to deep learning models. The dominant data augmentation

approach in the field assumes that new training samples can

be obtained via random geometric or appearance transfor-

mations applied to annotated training samples, but this is a

strong assumption because it is unclear if this is a reliable

generative model for producing new training samples as il-

lustrated in [41].

In this paper, we propose a novel approach to address

aforementioned issues through the generation of positive

and hard training samples. Specifically speaking, our

pipeline contains three main modules, i.e., positive sam-

ple generation network (PSGN), hard positive transforma-

tion network (HPTN) and two streaming Siamese instance

search network, as shown in Figure 2. We first propose the

positive sample generation module, which is a variational

auto-encoder (VAE) [16], for generating samples from en-

coded hidden space. The assumption of this idea is that the

target objects are all lie on a manifold, hence, we can decode

the samples which similar to encoded target object but with

more diversity and some degree of deformation and motion

blur. We can obtain massive diverse positive samples via

this network and bridge the gap between data-driven deep

neural networks and one target provided in visual tracking

task. In addition, we also propose the hard positive trans-

formation network (HPTN) to generate more challenging

hard positve samples. The HPTN is trained via deep re-

inforcement learning technique which can learn to occlude

the target object with background image patch. These data

will address the sparse issue of challenging video frames

in training data and make the visual tracker more robust to

some challenging factors, such as illuminaton, occlusion.

Our contributions can be summarized as follows: Firstly,

we propose a novel and general positive sample generation

strategy to bridge the gap between data hunger deep neu-

ral networks and visual tracking task. We assume the target

objects lie on a manifold, hence, we can decode massive

diverse and some degree of deformation positive samples

to training the DNNs for tracking. Secondly, we introduce

the hard positive transformation network which can gener-

ate massive hard positive samples. We take this hard posi-

tive generation process as decision making problem which

can be optimized by deep reinforcement learning. Finally,

based on aforementioned policies, we propose the SINT++

which improves tracking performance of the two streaming

Siamese network.

2. Related Works

We will give a brief review about visual tracking, deep

generative models and deep reinforcement learning in this

section.

Visual Tracking. We discuss the tracking methods that

are most related to our work in this section, and refer the

readers to a thorough review on object tracking survey

[47] [24] and benchmark evaluations [38] [45]. Existing

deep learning based trackers can be divided into two main

streams, i.e. trackers that combine correlation filter and

deep features, and neural network based trackers. Directly

applying correlation filters on the multi-dimensional feature

maps of deep Convolutional Neural Networks (CNNs) is

one straight-forward way of integrating deep learning for

tracking. The DCF tracker usually trained on every con-

volutional layer are combined by a hierarchical ensemble

method [26] or an adaptive hedge algorithm [32]. Danelljan

et al. [10] recently introduced a continuous spatial domain

formulation C-COT, to enable efficient integration of multi-

resolution deep features. Other CNN based methods either

combine several CNN models (e.g. the DeepTrack model

[23]) or establish an end-to-end CNN model, such as the

GOTURN tracker [13] with no online training but offline

learn a generic relationship between object motion and ap-

pearance from large number of videos. Apart from CNN

models, other deep models, such as Siamese network [1]

[5] [40] and Recurrent Neural Networks (RNNs), are also

employed in the tracking problem. For instance, the SIAM

tracker [1] learns a similarity metric offline by a Siamese

network, RDM [5] proposed a template selection strategy

based on a Siamese network, and the RTT tracker [6] de-

scribes a multidirectional RNN to capture long-range con-

textual cues.

Deep Generative Models. Recently, deep learning based

generative models have been discussed widely, such as

Pixel-RNN [30], Pixel-CNN [35] [31], variational auto-

encoder (VAE) [17] and generative adversarial networks

(GANs) [12]. There are many applications utilize these gen-

erative models to achieve better performance, such as object

detection [43], super-resolution [21], text to image transfor-

mation [46]. VAE [17] allows us to formalize this problem

in the framework of probabilistic graphical models where

we are maximizing a lower bound on the log likelihood of

the data. Kihyuk Sohn et al. propose a deep conditional

generative models (CGMs) for output representation learn-

ing and structured prediction in [39]. Jacob Walker et al.

[42] propose a conditional variational autoencoder as a so-
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Figure 2. The pipeline of our proposed SINT++, which contain three main modules, i.e. positive sample generation network (PSGN), hard

positive transformation network (HPTN) and two streaming Siamese network. The target object manifold is constructed by VAE, and the

output can be directly input to the HPTN. The HPTN takes the reconstructed image as input, and learn to occlude the target which become

hard for visual tracker to measure via deep reinforcement learning. We train SINT++ with the generated hard positive samples and improve

its robustness significantly.

lution to forecasting from static images. In this framework,

direct inference from the image shapes the distribution of

possible trajectories while latent variables encode informa-

tion that is not available in the image. Zhang et al. [50] pro-

pose Conditional Adversarial Auto-Encoder (CAAE) net-

work which achieve age progression/regression on the basis

of assumption that the face images are lie on a manifold.

And images are clustered according to their ages and per-

sonality by a different direction. Our neural network for the

positive samples generation is also based on VAE and this

is also the first attempt to introduce the VAE into the visual

tracking community.

Deep Reinforcement Learning. Deep reinforcement

learning was first proposed by Mnih et al. [28] in 2013

which utilize deep neural networks, i.e. Deep Q-learning

Networks (DQN) to parametrize an action-value function to

play Atari games, reaching human-level performance. The

most relevant and successful application of reinforcement

learning maybe the game of Go which combined policy net-

work and value network and beat many world-class profes-

sional player [36] [37]. Asynchronous deep reinforcement

learning was also introduced in [27] to tackle the training

efficiency issue by Mnih et al. On the aspect of computer vi-

sion applications, DQN also applied to many domains, such

as object detection [3], visual tracking [49], Face Halluci-

nation [4].

3. The Overview of SINT++

The main target of this paper is to improve the robust-

ness of visual tracking through the generation of hard pos-

itive samples. As shown in Figure 2, our SINT++ contains

three modules, i.e. positive sample generation, hard pos-

itive transformation and Siamese instance search network.

We will give a brief introduction about these modules, re-

spectively.

The goal of positive sample generation network is to

generate diverse similar positive samples based on the as-

sumption that the target objects lie on a high-dimensional

manifold, on which traversing along certain direction could

decode diverse positive samples. However, modeling the

high-dimensional manifold is complicated, and it is difficult

to directly manipulate (traversing) on the manifold. There-

fore, we will learn a mapping between the manifold and

a lower-dimensional space, referred to as the latent space,

which is easier to manipulate.

On the other hand, hard positive transformation network

is introduced to learn an visual tracker which is robust to

different conditions, such as occlusion, deformation and il-
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lumination. Since it is impossible to cover all potential oc-

clusions and deformations even in large-scale datasets, we

actively generate examples which are hard for the visual

tracker to recognize instead of relying heavily on the dataset

or sifting through data to find hard examples.

With these two networks, we can obtain massive positive

samples which are hard and diverse for the training of deep

learning based visual trackers. The basic visual tracker used

in this paper is Siamese INstance search Tracker (SINT)

[40], it simply matches the initial target in the first frame

with the candidates in a new frame and returns the most

similar one by the learnt matching function, without updat-

ing the target, tracker combination, occlusion detection and

alike,

x̂t = argxj,t
maxm(xt=0, xj,t), (1)

where xj,t are all the candidate boxes at frame t, m is the

learned matching function, m(x, y) = f(x)T f(y) . We

prefer readers to check [40] to further understand the SINT

tracker.

4. SINT++: Approach Details

We will first introduce the positive sample generation

network, followed by describing the hard positive transfor-

mation network. In particular, we focus on generating dif-

ferent types of motion blur and occlusions in this paper.

4.1. The Positive Sample Generation Network

In order to maximize the number of samples for the train-

ing of deep neural networks, traditional methods usually

sample positive data from a candidate region. The candidate

region usually take the center of ground truth bounding box

(BBox) and enlarge a little. If the intersection-over-union

(IOU) between proposal and ground truth BBox larger than

a pre-defined threshold, it is treated as positive sample; oth-

erwise, negative sample. As shown in Figure 1, however,

the extracted positive data are almost the same, in other

words, the positive training data is not diverse. This may

lead to under-fitting of learned classifier for visual tracking.

In this paper, we propose to utilize the variational auto-

encoder (VAE) to learn the target object manifold. With the

constructed manifold, we can decode massive samples by

traversing over it. As shown in Figure 1, we can not only

sample out similar target objects, but also the target object

which not occured in training data, such as target object be-

tween video frames.

4.1.1 Review of Variational Auto-Encoders

We use x to denote the data we want to model, z denotes

latent variable, p(x) means the probability distribution of

the data, p(z) denotes the probability distribution of latent

variables, and p(x|z) means the distribution of generating

data given latent variable.

The VAE is a deep directed graph model with latent vari-

able z. As we know, the inference of posterior pθ(z|x) is

intractable to compute. qθ(z|x) is introduced in the VAE

framework to approximate the true posterior by optimizing

the variational lower bound. VAE map the input image into

continuous latent variables qθ(z|x) via encoder and map la-

tent variables to reconstructed image pθ(x|z) with decoder.

The variational lower bound for individual sample xi can be

written as:

L(θ, φ, xi) = −DKL(qφ(z|xi)||pθ(z)) + Eqφ(z|xi)[log pθ(xi|z)]
(2)

The first term in above equation is the KL divergence of

the approximate from the true posterior. And the second one

is expected reconstructed loss, w.r.t. the approximated pos-

terior qφ(z|xi). We can differentiate L(θ, φ, xi) and do gra-

dient descent with standard back propagation algorithm to

optimize the lower bound. Usually, we assume the qφ(z|xi)
and pθ(z) are all gaussian, hence, we can integrate KL di-

vergence term analytically.

−DKL(qφ(z|xi)||pθ(z)) =
1

2

J
∑

j=1

(1+ log(σ2
j )− µ2

j − σ2
j )

(3)

where J is the dimension of z. The mean µ and σ are sim-

ply outputs of encoder function of x and the variational pa-

rameter φ. Since the gradient of Eqφ(z|xi)[log pθ(xi|z)] is

not straightforward for the expected reconstructed term , we

can reparameterize the random variable z using a differen-

tiable transformation with auxiliary noise random variable

ǫ as [16] [33]. Hence, the resulting estimator for a sample

xi can be written as:

L(θ, φ; xi) ≈
1

2

J∑

j=1

(1+log(σ2
j )−µ

2
j−σ

2
j )+

1

L

L∑

l=1

log pθ(xi|zi,l))

(4)

where zi,l = µi + σi ⊙ ǫl and ǫl ∼ N (0, I).

We can compute µ and σ with deterministic encoder net-

work. Bernoulli cross-entropy loss function with determin-

istic decoder network can be used to compute log pθ(x|z).
More details can be found in [16].

4.1.2 The Network Architecture

The detailed structure of VAE network can be found in Fig.

2 (i.e. the Positive Sample Generation Network). We ex-

tract the target object from video frames and resize the res-

olution into 64 × 64. We reshape each target object into a

vector and take it as the input of VAE network whose di-

mension is 12288(64 × 64 × 3). The dimension of latent

code and intermediate fully connected layer is 2 and 512,

respectively. The output dimension is 12288 and the recon-

structed image can be obtained by reshape this vector into
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64× 64× 3. In addition, the convolutional architecture can

also be a good choice for the design of VAE network.

To obtain a relatively purer manifold, we implement this

part separately, in other word, we train one VAE model for

each train video using extracted target object. The opti-

mization algorithm is RMSprop [20], learning rate is 0.001,

the mini-batch size is the number of target objects, and we

training each model for 20, 000 epoches. We visualize some

video sequence to demonstrate the effectness of the mani-

fold construction in Fig. 3.

4.2. The Hard Positive Transformation Network

We propose the Hard Positive Transformation Network

(HPTN) to create occlusions on the target objects using im-

age patch extracted from background. There are two prob-

lems we need to consider here, i.e. i). which part of target

object should we occlude ? ii). what do we use to occlude

the target object ?

The two problems have one common properties: they all

need to locate one image region (one for target object to

occlude and one for background to extract). This process

can be achieved by taking the selection of image patch as

the sequential decision making process of a goal-directed

agent interacting with a visual environment. At each point

in time, the agent observes the environment (i.e. the ob-

served region) and chooses one action to execute. After

implementation of these sequential actions, the agent can

finally locate one region by choosing terminate action. At

each step, the agent receives a scalar reward (which depends

on the actions the agent has executed and can be delayed),

and the goal of the agent is to maximize the total sum of

such rewards. We cast the problem as a Markov Decision

Process (MDP), that provides a framework to model deci-

sion making when outcomes are partly uncertain.

4.2.1 Occlusion Region Localization as Dynamic Deci-

sion Process

In order to understand the models for the critical area local-

ization task that we have developed, we first define how the

Markov Decision Process is parameterized.

State. The state is the descriptor of current region. We

resize the current region into 224× 224 and extract the fea-

ture from the 8-th layer of VGG network as the state.

Actions. There are two types of possible actions: move-

ment actions that imply a change in the current observed

region, and the terminal action to indicate that the occlude

location is found and terminate the search process. In this

paper, we define 8 movement actions and one terminal ac-

tion, as shown in Figure 4.

Reward. The target of agent is to obtain the maximum

rewards, thus, the design of reward function will be the key

to success of the learned policy. We assume the predicted

score of occluded target object at time t as St and previous

score as St−1. The reward for the movement actions can be

computed as:

Ra(s, s
′) =

{

+ 1, if St − St−1 < 0

− 1, else
(5)

where s and s′ are current and next state, respectively.

The trigger action does not has the next state, hence, we

design another reward function for the trigger action:

Rt(s, s
′) =

{

+ η, if S ≤ φ

− η, else
(6)

where φ is a pre-defined thresholding parameter. This func-

tion denotes that if the agent choose the trigger action, we

will compute the final predicted score of positive sample

by visual tracker. If the predicted score below a threshold

φ, we give a positive reward +η to the agent; otherwise, a

negative reward η.

4.2.2 The Training of Deep Q-Network

The parameters of deep Q-network are initialized randomly.

The agent is setted to interact with the environment in mul-

tiple episodes, each representing a different training image.

We also take a ǫ-greedy to train the Q-network, which grad-

ually shifts from exploration to exploitation based on the

value of ǫ. When exploration, the agent selects actions ran-

domly to observe different transitions and collects a varied

set of experienes. During exploitation, the agent will choose

actions according to the learned policy and learn from its

own successes and mistakes.

The utilization of target network and experience replay

in DQN algorithm is the key ingredient of their success.

The target network with parameters θ− is copied every τ

steps from online network and kept fixed on all other steps,

thus, we could have θ−i = θi. The target in DQN can be

described as the following formulation:

Y
DQN
i ≡ r + γmaxa′Q(s′, a′; θi) (7)

A replay memory is used to store the experiences of the past

episodes, which allows one transition to be used in multiple

model updates and breaks the short-time strong correlations

between training samples. Each time Q-learning update is

applied, and a mini-batch randomly sampled from the re-

play memory is used as the training samples. The update

for the network weights at the ith iteration θi given transi-

tion samples (s, a, r, s′) is as follows:

θi+1 = θi+α(r+γmaxa′Q(s′, a′; θi)−Q(s, a; θi))∇θiQ(s, a; θi).
(8)

where a′ represents the actions that can be taken at state s′,

α is the learning rate and γ is the discount factor.

The pseudo-code for training the hard positive sample

generation network can be found in Algorithm 1.
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Figure 3. The targe object manifold constructed based on video butterfly from VOT dataset and the sampled images with our proposed

methods on other videos are shown in left and right column respectively (the column with blue rectangle are target object in corresponding

videos and best viewed in color).

Figure 4. Illustration of the actions in the proposed MDP, giving 4

degrees of freedom to the agent for transforming boxes.

5. Experiments

In this section, we will first discuss the datasets utilized

in this paper for training/testing and the evaluation criterion.

We will compare our proposed algorithm with other state-

of-the-art trackers on three benchmarks datasets. We also

introduce the ablation studies to further analyze the pro-

posed algorithm. Finally, we discuss the difference of our

algorithm from related works.

5.1. Experimental Settings

Training Dataset. We conduct our experiments on three

public visual tracking benchmarks datasets, i.e. OTB-50

[44], OTB-100 [45] and VOT-2014 [19]. For the evalua-

tion of OTB-50 and OTB-100 dataset, we adopt some anno-

tated videos from VOT-2013 [19], 2014 [19] and 2016 [18]

datasets to train the introduced two streaming Siamese net-

work. To quickly validate the effectiveness of our proposed

hard positive transformation network, we only implement

this experiments on 10 videos from VOT dataset , the video

list can be found here 2. It is also worthy to note that, the

videos occured in the test dataset are all removed from the

training dataset for fair comparison. For the evaluation of

VOT-2014 dataset, we adopt 15 videos from the challenge

competition of ImageNet Video Object Detection [34] for

training.

Evaluation Criterion. Two widely used evaluation pro-

tocols are utilized in this paper: success rate and precision

rate. These two criterions are all aiming at measure the

2bag,ball,ball1,ball2,bicyle,birds1,birds2,

blanket,bmx,book

percentage of successfully tracked frames. For the success

rate, a frame is declared to be successfully tracked if the

estimated bounding box and the groundtruth box have an

interaction-over-union overlap larger than a certain thresh-

old. For precision rate, tracking on a frame is considered

successful if the distance between the center of the predicted

box and the groundtruth box is under some threshold.

Implementation Details. Our SINT++ is implemented

based on Caffe and Keras, and all the experiments are exe-

cuted on desktop with Unbuntu 14.04, I7-6700k, 32G RAM

and GPU NVIDIA GTX1080. The learning rate for the

Siamese network is 0.0001, mementum is 0.9 and weight

decay parameter is 0.0005. For the HPTN, the mini-batch

size is 100, optimization method is Adam [15], and initial

learning rate is 1e-6.

5.2. Evaluation on Tracking Benchmarks

We compare the proposed SINT++ with state-of-the-art

trackers including MDNet [29], SOWP [14], DSST [8],

DGT [2], ReGLe [22], CCOT [10], ECO [7], ADNet [48],

CSRDCF [25], SRDCF [9], et al. The tracking results of

these trackers can be found in Fig. 5 and Fig. 6 (sub-figure

(a) and (b)). We will give a detailed observations and con-

clusions on these benchmarks datasets, respectively.

For the OTB-100 dataset, we can find that the proposed

SINT++ (Our) achieves better tracking performance com-

pared with baseline trackers (SINTVOT) according to our

experimental results. It fully validates the effectiveness of

hard positive samples generated by the proposed algorithm.

Although limited by the adopted baseline (Siamese network

based tracker), the overall tracking results still achieve com-

parable performance compared with other state-of-the-art

visual tracker. From the point of view of efficiency, our

visual tracker achieves similar performance compared with

SINT [40]. This is because the hard positive sample gen-

eration is all implemented in the training phase, and does

not increase the time cost when testing (tracking). It is also
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Algorithm 1 The Training of Deep Q-Network for Hard

Positive Samples Generation.

Input: Target objects {f1, f2, ..., fN}, initial mask loca-

tion p0, pre-trained SINT.

1: Initialize replay memory D to capacity N
2: Initialize action history H

3: Initialize action-value function Q with random weights

θ

4: Initialize target action-value function Q̂ with weights

θ− = θ

5: for episode = 1,M do

6: for target objects f2 to fN do

7: Initialise sequence s1 = (Ot, H) and prepro-

cessed sequence φ1 = φ(s1)
8: for step t = 1, T do

9: if random numbter δ < ǫ then

10: select a random action at
11: else

12: select at = argmaxa Q(φ(st); a; θ)
13: end if

14: Execute action at to move the bbox xt and ob-

serve reward rt and new location xt+1

15: Set st+1 = st and preprocess φt+1 = φ(st+1)
16: Store transition (φt, at, rt, φt+1) in D
17: Sample random mini-batch of transitions

(φj , aj , rj , φj+1) from D
18: if episode terminates at step j + 1 then

19: yj = rj
20: else

21: yj = rj + γmaxa′ Q̂(φj+1, a
′; θ−)

22: end if

23: Perform a gradient descent step on (yj −
Q(φj , aj ; θ))

2 with respect to the network pa-

rameters θ

24: reset Q̂ = Q for every C steps

25: end for

26: end for

27: end for

worthy to note that this hard positive sample generation al-

gorithm can also combined with other strong visual track-

ers, such as MDNet [29]. We leave this for our future works.

For the tracking results on OTB-50 and VOT-2014

datasets, we can draw similar conclusions as mentioned

above, and detailed results can be found from Fig. 5 (sub-

figure (a)) and Fig. 6 (sub-figure (b)), respectively.

5.3. Ablation Study

To better demonstrate the effectiveness of proposed hard

positive sample generation network, we give a detailed anal-

ysis about the PSGN and HPTN in the following subsec-

tions.

Figure 5. Tracking Results on OTB-50 and OTB-100 dataset.

Figure 6. TRE results on OTB-100 dataset (sub-figure(a)) and

OPE results on VOT-2014 dataset (sub-figure(b)).

The Analysis of PSGN. To illustrate the effectiveness of

this network, we remove the HPTN, that is to say, only the

PSGN remained to check the tracking performance.

As shown in Fig. 3, we construct the manifold accord-

ing to given training video frames and sample massive di-

verse positive samples to training the neural network. This

figure fully demonstrates the effectiveness of the manifold

constructed by the HPGN from the angle of qualitative anal-

ysis. On the other hand, we also perform experiment with

the generated positive samples to validate the effectiveness

of this network from the view of quantitative analysis. As il-

lustrated in Fig. 5 and Fig. 6, the visual tracker (SINTVOT-

VAE) achieves better tracking performance compared with

baseline tracking results SINTVOT on the used tracking

benchmark datasets. Hence, it is an interesting and effec-

tive way to introduce the positive sample generation mech-

anism to bridge the gap between data-hunger deep neural

networks and the scarcity of diverse positive samples in

practical tracking process.
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The Analysis of HPTN. To validate the effective of

HPTN, we train the SINT with data generated from PSGN

and HPTN. The occluded positive samples generated by

HPTN will further increase the robustness of visual tracker.

Because the occlusion is sparse in normal tracking videos

but acturally dangerous issue which often lead to tracking

failure. As shown in Fig. 5 and Fig. 6 (sub-figure (a)), we

can find that the tracking performance indeed improves by

this policy (The overall performance 0.768/0.574 is better

than SINTVOTVAE 0.754/0.558).

In addition, we also compare our HPGN with one naive

method, i.e. randomly selecting the occlusion region. Ac-

cording to our experimental results in Figure 5 and Figure 6

(sub-figure (a)), we can find this naive method (SINTVOT-

VAERO) achieves improvement compared with baseline

tracking result, but worse than our method (Our). In one

word, the proposed hard positive generation network is effi-

cient and effective to improve the robustness of visual track-

ers.

5.4. Comparisons with Adversarial Networks

Our method is related with A-Fast-RCNN [43], which

is a state-of-the-art object detection algorithm trained with

adversarial hard positive samples. They use adversarial

spatial dropout network and spatial transformer network

to improve the detection performance of Fast-RCNN [11].

Our method has the following advantages compared with

theirs: Firstly, we can sample more positive data through

the traversing on the constructed manifold. These sampled

data may not exist in the training dataset at all. Due to the

nature of VAE, the reconstructed samples are blur compared

with original target which makes the tracker robust to mo-

tion blur. They utilize spatial transformation network (STN)

to generate hard samples, however, it is still unclear if this is

a reliable generative model for producing new training sam-

ples as illustrated in [41]. Secondly, we treat the hard sam-

ple generation as desion-making problem optimized with

deep reinforcement learning technique which could gen-

erate various occlusion shapes. This makes our algorithm

could handling different shapes of target object in practical

tracking process. They directly drop out the features in the

occlusion region, which does not fit natural occlusion. The

features after drop out and features extracted from occluded

images are different as the input to the convolutional filters

is different. Hence, our occlusion method is closer to the

natural occlusion case.

To demonstrate the advantages of our method, we con-

duct extra experiment on adversarial network (STN + Ran-

dom Occlusion), i.e., we train SINT with hard positive sam-

ples generated from this network. As shown in Table 1,

we can find that our method achieved better results com-

pared with adversarial network. In short, our algorithm

could achieve better tracking performance than normal data

augmentation.

Table 1. Tracking performance of Adversarial-Network (Adv-Net

for short) and the proposed method on public tracking benchmark

OTB50 and OTB100 dataset. The precision plot and success plot

are lie on the left and right of oblique line.

Methods OTB-50 (%) OTB-100 (%)

Adv-Net 83.7/62.2 76.0/56.7

Our 83.9/62.4 76.8/57.4

6. Conclusion

In this paper, we propose an novel and efficient hard

positive sample generation network to bridge the gap be-

tween data-hunger deep neural networks and scanty of pos-

itive samples in practical tracking process. Specifically

speaking, our proposed algorithm contains three main sub-

networks, i.e. positive sample generation network (PSGN),

hard positive transformation network (HPTN) and a two

streaming Siamese network. In the training phase of the

proposed algorithm, PSGN is used to construct manifold

of each tracking video sequence and massive positive sam-

ples could be sampled from this manifold. This method

will greatly enrich the positive samples from the angle of

sample diversity compared with traditional dense sampling

method. HPGN is utilize to generate hard occluded sam-

ples, we treat it as decision-making problem and optimize

this network by deep reinforcement learning technique. To-

gether with these hard positve samples generation strategy,

we train the Siamese network to implement the tracking

process based on the framework of tracking-by-detection.

Extensive experiments on public visual tracking benchmark

datasets demonstrate the effectiveness of proposed algo-

rithm.
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