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Abstract

Understanding shadows from a single image consists of

two types of task in previous studies, containing shadow de-

tection and shadow removal. In this paper, we present a

multi-task perspective, which is not embraced by any exist-

ing work, to jointly learn both detection and removal in an

end-to-end fashion that aims at enjoying the mutually im-

proved benefits from each other. Our framework is based on

a novel STacked Conditional Generative Adversarial Net-

work (ST-CGAN), which is composed of two stacked CGAN-

s, each with a generator and a discriminator. Specifically,

a shadow image is fed into the first generator which pro-

duces a shadow detection mask. That shadow image, con-

catenated with its predicted mask, goes through the second

generator in order to recover its shadow-free image conse-

quently. In addition, the two corresponding discriminators

are very likely to model higher level relationships and glob-

al scene characteristics for the detected shadow region and

reconstruction via removing shadows, respectively. More

importantly, for multi-task learning, our design of stacked

paradigm provides a novel view which is notably different

from the commonly used one as the multi-branch version.

To fully evaluate the performance of our proposed frame-

work, we construct the first large-scale benchmark with

1870 image triplets (shadow image, shadow mask image,

and shadow-free image) under 135 scenes. Extensive ex-

perimental results consistently show the advantages of ST-

CGAN over several representative state-of-the-art methods

on two large-scale publicly available datasets and our new-

ly released one.
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Figure 1. We propose an end-to-end stacked joint learning archi-

tecture for two tasks: shadow detection and shadow removal.

1. Introduction

Both shadow detection and shadow removal reveal their

respective advantages for scene understanding. The accu-

rate recognition of shadow area (i.e., shadow detection) pro-

vides adequate clues about the light sources [25], illumina-

tion conditions [38, 39, 40], object shapes [37] and geom-

etry information [19, 20]. Meanwhile, removing the pres-

ence of shadows (i.e., shadow removal) in images is of great

interest for the downstream computer vision tasks, such as

efficient object detection and tracking [3, 32]. Till this end,

existing researches basically follow one of the following

pipelines for understanding shadows:

Detection only. In the history of shadow detection, a

series of data-driven statistical learning approaches [15, 26,

50, 59, 22, 49] have been proposed. Their main objective is

to find the shadow regions, in a form of an image mask that

separates shadow and non-shadow areas.

Removal only. A list of approaches [7, 5, 58, 10, 47,

1, 54, 29, 43] simply skips the potential information gained

from the discovery of shadow regions and directly produces

the illumination attenuation effects on the whole image,

which is also denoted as a shadow matte [43], to recover

the image with shadows removed naturally.

Two stages for removal. Many of the shadow removal

methods [11, 12, 23, 8, 51] generally include two seperated

steps: shadow localization and shadow-free reconstruction

by exploiting the intermediate results in the awareness of
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Figure 2. The architecture of the proposed ST-CGAN. It consists of two stacked CGANs: one for shadow detection and another for shadow

removal, which are marked in different colors. The intermediate outputs are concatenated together as the subsequent components’ input.

shadow regions.

It is worth noting that the two targets: shadow mask in

detection and shadow-free image in shadow removal, share

a fundamental characteristic essentially. As shown in Figure

1, the shadow mask is a two-binary map that segments the

original image into two types of region: shadow and non-

shadow. Meanwhile, shadow removal mainly focuses on the

shadowed area and needs to discover the semantic relation-

ship between the two regions, which indicates strong corre-

lations and possible mutual benefits between two tasks.

Besides, most of the previous methods, including shad-

ow detection [15, 26, 50, 59, 22, 49] and removal [8, 54, 1]

are heavily based on local region classifications or low-level

feature representations, failing to reason about the global

scene semantic structure and illumination conditions. Con-

sequently, a most recent study [36] in shadow detection in-

troduced a Conditional Generative Adversarial Network (C-

GAN) [33] which is proved to be effective for the global

consistency. For shadow removal, Qu et al. [43] also pro-

posed a multi-context architecture with an end-to-end man-

ner, which maintained a global view of feature extraction.

Since no existing approaches have explored the join-

t learning aspect of these two tasks, in this work, we pro-

pose a STacked Conditional Generative Adversarial Net-

work (ST-CGAN) framework and aim to tackle shadow de-

tection and shadow removal problems simultaneously in an

end-to-end fashion. Through the stacked adversarial com-

ponents, the potential mutual promotions between the t-

wo tasks can be fully used, and the global perceptions are

well preserved. Further, our design of stacked modules is

not only to achieve a multi-task purpose, but also inspired

from the connectivity pattern of DenseNet [14] and MixNet

[53], where outputs of all preceding tasks are used as in-

puts for all subsequent tasks. The densely connected path

has also been proved effective in many low-level vision

fields[56, 46]. Specifically, we construct ST-CGAN by s-

tacking two generators along with two discriminators. In

Figure 2, each generator takes every prior target of tasks

(including the input) and stacks them as its input. Similarly,

the discriminator attempts to distinguish the concatenation

of all the previous tasks’ targets from the real corresponding

ground-truth pairs or triplets.

Importantly, the design of the proposed stacked compo-

nents offers a novel perspective for multi-task learning in

the literature. Different from the commonly used multi-

branch paradigm (e.g., Mask R-CNN [13], in which each

individual task is assigned with a branch), we stack all the

tasks that can not only focus on one task once a time in dif-

ferent stages, but also share mutual improvements through

forward/backward information flows. Instead, the multi-

branch version aims to learn a shared embedding across

tasks by simply aggregating the supervisions from each in-

dividual task.

To validate the effectiveness of the proposed framework,

we further construct a new large-scale Dataset with Im-

age Shadow Triplets (ISTD) consisting of shadow, shadow

mask and shadow-free image to match the demand of multi-

task learning. It contains 1870 image triplets under 135 dis-

tinct scenarios, in which 1330 is assigned for training whilst

540 is for testing.
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Extensive experiments on two large-scale publicly avail-

able benchmarks and our newly released dataset show that

ST-CGAN performs favorably on both detection and re-

moval aspects, comparing to several state-of-the-art meth-

ods. Further, we empirically demonstrate the advantages of

our stacked joint formula over the widely used multi-branch

version for shadow understanding. To conclude, the main

contributions of this work are listed as follows:

• It is the first end-to-end framework which jointly learns

shadow detection and shadow removal with superior

performances on various datasets and on both the two

tasks.

• A novel STacked Conditional Generative Adversari-

al Network (ST-CGAN) with a unique stacked join-

t learning paradigm is proposed to exploit the advan-

tages of multi-task training for shadow understanding.

• The first large-scale shadow dataset which contains im-

age triplets of shadow, shadow mask and shadow-free

image is publicly released.

2. Related Work

Shadow Detection. To improve the robustness of shadow

detection on consumer photographs and web quality im-

ages, a series of data-driven approaches [15, 26, 59] have

been taken and been proved to be effective. Recently, Khan

et al. [22] first introduced deep Convolutional Neural Net-

works (CNNs) [45] to automatically learn features for shad-

ow regions/boundaries that significantly outperforms the

previous state-of-the-art. A multikernel model for shadow

region classification was proposed by Vicente et al. [49]

and it is efficiently optimized based on least-squares SVM

leave-one-out estimates. More recent work of Vicente et al.

[50] used a stacked CNN with separated steps, including

first generating the image level shadow-prior and training a

patch-based CNN which produces shadow masks for local

patches. Nguyen et al. [36] presented the first application

of adversarial training for shadow detection and developed

a novel conditional GAN architecture with a tunable sensi-

tivity parameter.

Shadow Removal. Early works are motivated by physical

models of illumination and color. For instance, Finlayson

et al. [5, 7] provide the illumination invariant solutions that

work well only on high quality images. Many existing ap-

proaches for shadow removal include two steps in gener-

al. For the removal part of these two-stage solutions, the

shadow is erased either in the gradient domain [6, 35, 2]

or the image intensity domain [1, 11, 12, 8, 23]. On the

contrary, a few works [47, 55, 42] recover the shadow-free

image by intrinsic image decomposition and preclude the

need of shadow prediction in an end-to-end manner. How-

ever, these methods suffer from altering the colors of the

non-shadow regions. Qu et al. [43] further propose a multi-

context architecture which consists of three levels (global

localization, appearance modeling and semantic modeling)

of embedding networks, to explore shadow removal in an

end-to-end and fully automatic framework.

CGAN and Stacked GAN. CGANs have achieved im-

pressive results in various image-to-image translation prob-

lems, such as image superresolution [27], image inpaint-

ing [41], style transfer [28] and domain adaptation/transfer

[18, 60, 30]. The key of CGANs is the introduction of the

adversarial loss with an informative conditioning variable,

that forces the generated images to be with high quality

and indistinguishable from real images. Besides, recent re-

searches have proposed some variants of GAN, which main-

ly explores the stacked scheme of its usage. Zhang et al.

[57] first put forward the StackGAN to progressively pro-

duce photo-realistic image synthesis with considerably high

resolution. Huang et al. [16] design a top-down stack of

GANs, each learned to generate lower-level representations

conditioned on higher-level representations for the purpose

of generating more qualified images. Therefore, our pro-

posed stacked form is distinct from all the above relevant

versions in essence.

Multi-task Learning. The learning hypothesis is biased

to prefer a shared embedding learnt across multiple tasks.

The widely adopted architecture of multi-task formulation

is a shared component with multi-branch outputs, each for

an individual task. For example, in Mask R-CNN [13]

and MultiNet [48], 3 parallel branches for object classifica-

tion, bounding-box regression and semantic segmentation

respectively are utilized. Misra et al. [34] propose “cross-

stitch” unit to learn shared representations from multiple

supervisory tasks. In Multi-task Network Cascades[4], all

tasks share convolutional features, whereas later task also

depends the output of a preceding one.

3. A new Dataset with Image Shadow Triplets

– ISTD

Existing publicly available datasets are all limited in the

view of multi-task settings. Among them, SBU [52] and

UCF [59] are prepared for shadow detection only, whilst

SRD [43], UIUC [12] and LRSS [10] are constructed for

the purpose of shadow removal accordingly.

Dataset Amount Content of Images Type

SRD [43] 3088 shadow/shadow-free pair

UIUC [12] 76 shadow/shadow-free pair

LRSS [10] 37 shadow/shadow-free pair

SBU [52] 4727 shadow/shadow mask pair

UCF [59] 245 shadow/shadow mask pair

ISTD (ours) 1870 shadow/shadow mask/shadow-free triplet

Table 1. Comparisons with other popular shadow related datasets.

Ours is unique in the content and type, whilst being in the same

order of magnitude to the most large-scale datasets in amount.
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Figure 3. An illustration of several shadow, shadow mask and

shadow-free image triplets in ISTD.

To facilitate the evaluation of shadow understanding

methods, we have constructed a large-scale Dataset with

Image Shadow Triplets called ISTD2. It contains 1870

triplets of shadow, shadow mask and shadow-free image un-

der 135 different scenarios. To the best of our knowledge,

ISTD is the first large-scale benchmark for simultaneous e-

valuations of shadow detection and shadow removal. De-

tailed comparisons with previous popular datasets are listed

in Table 1.

In addition, our proposed dataset also contains a variety

of properties in the following aspects:

• Illumination: Minimized illumination difference be-

tween a shadow image and the shadow-free one is

obtained. When constructing the dataset, we pose a

camera with a fixed exposure parameter to capture the

shadow image, where the shadow is cast by an object.

Then the occluder is removed in order to get the cor-

responding shadow-free image. More evidences are

given in the 1st and 3rd row of Figure 3.

• Shapes: Various shapes of shadows are built by differ-

ent objects, such as umbrellas, boards, persons, twigs

and so on. See the 2nd row of Figure 3.

• Scenes: 135 different types of ground materials, e.g.,

3th-5th column in Figure 3, are utilized to cover as

many complex backgrounds and different reflectances

as possible.

Note that even these shadow and shadow-free image

pairs are taken within a very short period of time by a fixed

camera, illumination noises are unavoidable due to the s-

light changes of ambient light. As illustrated in Figure 4

(c), 4 (d) and 4 (e), obtaining the final shadow mask for

each image generally consists of three steps.

4. Proposed Method

We propose STacked Conditional Generative Adversari-

al Networks (ST-CGANs), a novel stacked architecture that

2ISTD dataset is publicly available at https://github.com/

DeepInsight-PCALab/ST-CGAN

(a) (b) (c) (d) (e)

Figure 4. The pipeline for annotating shadow masks of ISTD. (a)

– shadow image by camera; (b) – shadow-free image by camera;

(c) – thresholding the difference between (a) and (b); (d) – mor-

phological filtering; (e) – manually adjusting label mask for each

erroneous pixel.

enables the joint learning for shadow detection and shad-

ow removal, as shown in Figure 2. In this section, we first

describe the formulations with loss functions, training pro-

cedure, and then present the network details of ST-CGAN,

followed by a subsequent discussion.

4.1. STacked Conditional Generative Adversarial
Networks

Generative Adversarial Networks (GANs) [9] consists of

two players: a generator G and a discriminator D. These t-

wo players are competing in a zero-sum game, in which

the generator G aims to produce a realistic image given an

input z, that is sampled from a certain noise distribution.

The discriminator D is forced to classify if a given image is

generated by G or it is indeed a real one from the dataset.

Hence, the adversarial competition progressively facilitates

each other, whilst making it hard for D to differentiate G’s

generation from the real data. Conditional Generative Ad-

versarial Networks (CGANs) [33] extends GANs by intro-

ducing an additional observed information, named condi-

tioning variable, to both the generator G and discriminator

D.

Our ST-CGAN consists of two Conditional GANs in

which the second one is stacked upon the first. For the first

CGAN of ST-CGAN in Figure 2, both the generator G1 and

discriminator D1 are conditioned on the input RGB shadow

image x. G1 is trained to output the corresponding shadow

mask G1(z,x), where z is the random sampled noise vec-

tor. We denote the ground truth of shadow mask for x as y,

to which G1(z,x) is supposed to be close. As a result, G1

needs to model the distribution pdata(x,y) of the dataset.

The objective function for the first CGAN is:

LCGAN1
(G1, D1) = Ex,y∼pdata(x,y)[logD1(x,y)]+

Ex∼pdata(x),z∼pz(z)[log(1−D1(x, G1(z,x)))]. (1)

We further eliminate the random variable z to have a de-

terministic generator G1 and thus the Equation (1) is sim-
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Network Layer Cv0 Cv1 Cv2 Cv3 Cv4 (×3) Cv5 CvT6 CvT7 (×3) CvT8 CvT9 CvT10 CvT11

G1/G2

#C in 3/4 64 128 256 512 512 512 1024 1024 512 256 128
#C out 64 128 256 512 512 512 512 512 256 128 64 1/3
before – LReLU LReLU LReLU LReLU LReLU ReLU ReLU ReLU ReLU ReLU ReLU

after – BN BN BN BN – BN BN BN BN BN Tanh

link → CvT11 → CvT10 → CvT9 → CvT8 → CvT7 – – Cv4 → Cv3 → Cv2 → Cv1 → Cv0 →

Table 2. The architecture for generator G1/G2 of ST-CGAN. Cvi means a classic convolutional layer whilst CvTi stands for a transposed

convolutional layer that upsamples a feature map. Cv4 (×3) indicates that the block of Cv4 is replicated for additional two times, three in

total. “#C in” and “#C out” denote for the amount of input channels and output channels respectively. “before” shows the immediate layer

before a block and “after” gives the subsequent one directly. “link” explains the specific connections that lie in U-Net architectures [44] in

which → decides the direction of connectivity, i.e., Cv0 → CvT11 bridges the output of Cv0 concatenated to the input of CvT11. LReLU

is short for Leaky ReLU activation [31] and BN is a abbreviation of Batch Normalization [17].

Network Layer Cv0 Cv1 Cv2 Cv3 Cv4

D1/D2

#C in 4/7 64 128 256 512
#C out 64 128 256 512 1
before – LReLU LReLU LReLU LReLU

after – BN BN BN Sigmoid

Table 3. The architectures for discriminator D1/D2 of ST-CGAN.

Annotations are kept the same with Table 2.

plified to:

LCGAN1
(G1, D1) = Ex,y∼pdata(x,y)[logD1(x,y)]+

Ex∼pdata(x)[log(1−D1(x, G1(x)))]. (2)

Besides the adversarial loss, the classical data loss is

adopted that encourages a straight and accurate regression

of the target:

Ldata1
(G1) = Ex,y∼pdata(x,y)||y −G1(x)||. (3)

Further in the second CGAN of Figure 2, by applying

the similar formulations above, we have:

Ldata2
(G2|G1) = E

x,r∼pdata(x,r)||r−G2(x, G1(x))||, (4)

LCGAN2
(G2, D2|G1) = Ex,y,r∼pdata(x,y,r)[logD2(x,y, r)]

+Ex∼pdata(x)[log(1−D2(x, G1(x), G2(x, G1(x))))],
(5)

where r denotes for x’s corresponding shadow-free im-

age and G2 takes a combination of x and G1(x) as inputs

whereas D2 differentiates the concatenation of outputs from

G1 and G2, conditioned on x, from the real pairs. Till

this end, we can finally conclude the entire objective for

the joint learning task which results in solving a mini-max

problem where the optimization aims to find a saddle point:

min
G1,G2

max
D1,D2

Ldata1
(G1) + λ1Ldata2

(G2|G1) +

λ2LCGAN1
(G1, D1) + λ3LCGAN2

(G2, D2|G1). (6)

It is regarded as a two-player zero-sum game. The first

player is a team consisting of two generators (G1, G2).

The second player is a team containing two discriminators

(D1, D2). In order to defeat the second player, the members

of the first team are encouraged to produce outputs that are

close to their corresponding ground-truths.

4.2. Network Architecture and Training Details

Generator. The generator is inspired by the U-Net architec-

ture [44], which is originally designed for biomedical im-

age segmentation. The architecture consists of a contract-

ing path to capture context and a symmetric expanding path

that enables precise localization. The detailed structure of

G1/G2, similar to [18], is listed in the Table 2.

Discriminator. For D1, it receives a pair of images as in-

puts, composed of an original RGB scene image and a shad-

ow mask image that generates 4-channel feature-maps as

inputs. The dimensionality of channels increases to 7 for

D2 as it accepts an additional shadow-free image. Table 3

gives more details of these two discriminators.

Training/Implementation settings. Our code is based on

pytorch [21]. We train ST-CGAN with the Adam solver

[24] and an alternating gradient update scheme is applied.

Specifically, we first adopt a gradient ascent step to update

D1, D2 with G1, G2 fixed. We then apply a gradient de-

scent step to update G1, G2 with D1, D2 fixed. We initial-

ize all the weights of ST-CGAN by sampling from a zero-

mean normal distribution with standard deviation 0.2. Dur-

ing training, augmentations are adopted by cropping (image

size 286 → 256) and flipping (horizontally) operations. A

practical setting for λ, where λ1 = 5, λ2 = 0.1, λ3 = 0.1, is

used. The Binary Cross Entropy (BCE) loss is assigned for

the objective of image mask regression and L1 loss is uti-

lized for the shadow-free image reconstruction respectively.

4.3. Discussion

The stacked term. The commonly used form of multi-

task learning is the multi-branch version. It aims to learn a

shared representation, which is further utilized for each task

in parallel. But our stacked design differs quite a lot from

it. We conduct the multi-task learning in such a way that

each task can focus on its individual feature embeddings,

instead of a shared embedding across tasks, whilst they stil-

l enhance each other through the stacked connections, in a
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Using ISTD Train Detection Aspects StackedCNN [52] cGAN [36] scGAN [36] ours

SBU [52] (%)

Shadow 11.29 24.07 9.1 9.02

Non-shadow 20.49 13.13 17.41 13.66

BER 15.94 18.6 13.26 11.34

UCF [59] (%)

Shadow 10.56 23.23 9.09 8.77

Non-shadow 27.58 15.61 23.74 23.59

BER 18.67 19.42 16.41 16.18

ISTD (%)

Shadow 7.96 10.81 3.22 2.14

Non-shadow 9.23 8.48 6.18 5.55

BER 8.6 9.64 4.7 3.85

Table 4. Detection with quantitative results using BER, smaller is better. For our proposed architecture, we use image triplets of ISTD

training set. These models are tested on three datasets. The best and second best results are marked in red and blue colors, respectively.

Using SBU Train Detection Aspects StackedCNN [52] cGAN [36] scGAN [36] ours

SBU [52] (%)

Shadow 9.6 20.5 7.8 3.75

Non-shadow 12.5 6.9 10.4 12.53

BER 11.0 13.6 9.1 8.14

UCF [59] (%)

Shadow 9.0 27.06 7.7 4.94

Non-shadow 17.1 10.93 15.3 17.52

BER 13.0 18.99 11.5 11.23

ISTD (%)

Shadow 11.33 19.93 9.5 4.8

Non-shadow 9.57 4.92 8.46 9.9

BER 10.45 12.42 8.98 7.35

Table 5. Detection with quantitative results using BER, smaller is better. For our proposed architecture, we use image pairs of SBU training

set together with their roughly generated shadow-free images by Guo et al. [12] to form image triplets for training. The best and second

best results are marked in red and blue colors, respectively.

form of a forward/backward information flow. The follow-

ing experiments also confirm the effectiveness of our archi-

tecture on the two tasks, compared with the multi-branch

one, which can be found in Table 8.

The adversarial term. Moreover, Conditional GANs (C-

GANs) are able to effectively enforce higher order consis-

tencies, to learn a joint distribution of image pairs or triplets.

This confers an additional advantage to our method, as we

implement our basic component to be CGAN and perform a

stacked input into the adversarial networks, when compared

with nearly most of previous approaches.

5. Experiments

To comprehensively evaluate the performance of our

proposed method, we perform extensive experiments on a

variety of datasets and evaluate ST-CGAN in both detection

and removal measures, respectively.

5.1. Datasets

We mainly utilize two large-scale publicly available

datasets including SBU [52] and UCF [59], along with our

newly collected dataset ISTD.

SBU [52] has 4727 pairs of shadow and shadow mask im-

age. Among them, 4089 pairs are for training and the rest is

for testing.

UCF [59] has 245 shadow and shadow mask pairs in total,

which are all used for testing in the following experiments.

ISTD is our new released dataset consisting of 1870 triplet-

s, which is suitable for multi-task training. It is randomly

divided into 1330 for training and 540 for testing.

5.2. Compared Methods and Metrics

For detection part, we compare ST-CGAN with the state-

of-the-art StackedCNN [52], cGAN [36] and scGAN [36].

To evaluate the shadow detection performance quantitative-

ly, we follow the commonly used terms [36] to compare the

provided ground-truth masks and the predicted ones with

the main evaluation metric, which is called Balance Error

Rate (BER):

BER = 1−
1

2
(

TP

TP + FN
+

TN

TN + FP
), (7)

along with separated per pixel error rates per class (shadow

and non-shadow).

For removal part, we use the publicly available source

codes [12, 55, 8] as our baselines. In order to perform a

quantitative comparison, we follow [12, 43] and use the root

mean square error (RMSE) in LAB color space between the

ground truth shadow-free image and the recovered image

as measurement, and then evaluate the results on the whole
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Dataset Removal aspects Original Guo et al. [12] Yang et al. [55] Gong et al. [8] ours

ISTD

Shadow 32.67 18.95 19.82 14.98 10.33

Non-shadow 6.83 7.46 14.83 7.29 6.93

All 10.97 9.3 15.63 8.53 7.47

Table 6. Removal with quantitative results using RMSE, smaller is better. The original difference between the shadow and shadow-free

images is reported in the third column. We perform multi-task training on ISTD and compare it with three state-of-the-art methods. The

best and second best results are marked in red and blue colors, respectively.

Task Type Aspects Ours Ours (-D1) Ours (-D2) Ours (-G1 -D1) Ours (-G2 -D2)

Removal

Shadow 10.33 10.36 10.38 12.12 –

Non-shadow 6.93 6.96 7.03 7.45 –

All 7.47 7.51 7.56 8.19 –

Detection (%)

Shadow 2.14 2.62 2.49 – 3.4

Non-shadow 5.55 6.18 6.03 – 5.1

BER 3.85 4.4 4.26 – 4.25

Table 7. Component analysis of ST-CGAN on ISTD by using RMSE for removal and BER for detection, smaller is better. The metrics

related to shadow and non-shadow part are also provided. The best and second best results are marked in red and blue colors, respectively.

image as well as shadow and non-shadow regions separate-

ly.

5.3. Detection Evaluation

For detection, we utilize the cross-dataset shadow detec-

tion schedule, similar in [36], to evaluate our method. We

first train our proposed ST-CGAN on the ISTD training set.

The evaluations are thus conducted on three datasets with

three state-of-the-art approaches in Table 4. As can be seen,

ST-CGAN outperforms StackedCNN and cGAN by a large

margin. In terms of BER, we obtain a significant 14.4%

error reduction on SBU and 18.1% on ISTD respectively,

compared to scGAN.

Next, we switch the training set to SBU’s training da-

ta. Considering our framework requires image triplets that

SBU cannot offer, we make an additional pre-processing

step. In order to get the corresponding shadow-free im-

age, we use the shadow removal code [12] to generate them

as coarse labels. We also test these trained models on the

three datasets. Despite the inaccurate shadow-free ground-

truths, our proposed framework still significantly improves

the overall performances. Specifically, on the SBU test set,

ST-CGAN achieves an obvious improvement with 10.5%

error reduction of BER over the previous best record from

scGAN.

In Figure 5, we demonstrate the comparisons of the de-

tection results qualitatively. As shown in Figure 5 (a) and

5 (b), ST-CGAN is not easily fooled by the lower bright-

ness area of the scene, comparing to cGAN and scGAN.

Our method is also precise in detecting shadows cast on

bright areas such as the line mark in Figure 5 (c) and 5 (d).

The proposed ST-CGAN is able to detect more fine-grained

shadow details (e.g., shadow of leaves) than other methods,

as shown in Figure 5 (e) and 5 (f).

5.4. Removal Evaluation

For removal, we compare our proposed ST-CGAN with

the three state-of-the-art methods on ISTD dataset, as

shown in Table 6. The RMSE values are reported. We e-

valuate the performance of different methods on the shad-

ow regions, non-shadow regions, and the whole image. The

proposed ST-CGAN achieves the best performance among

all the compared methods by a large margin. Notably, the

error of non-shadow region is very close to the original one,

which indicates its strong ability to distinguish the non-

shadow part of an image. The advantage of removal also

partially comes from the joint learning scheme, where the

well-trained detection block provides more clear clues of

shadow and shadow-free areas.

We also demonstrate the comparisons of the removal re-

sults. As shown in Figure 5, although Yang [55] can recover

shadow-free image, it alters the colors of both shadow and

nonshadow regions. Guo [11] and Gong [8] fail to detect

shadow accurately, thus both of their predictions are incom-

plete especially in shadow regions. Moreover, due to the d-

ifficulty of determining the environmental illuminations and

global consistency, all the compared baseline models pro-

duce unsatisfactory results on the semantic regions.

5.5. Component Analysis of ST­CGAN

To illustrate the effects of different components of ST-

CGAN, we make a series of ablation experiments by pro-

gressively removing different parts of it. According to both

the removal and the detection performances in Table 7, we

find that each individual component is necessary and indis-

pensable for the final excellent predictions. Moreover, the

last two columns of Table 7 also demonstrate that without

the stacked joint learning, a single module consisting of one

generator and one discriminator performs worse consistent-
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Image cGAN scGAN Ours        Gong        Yang        Guo        GT        Ours        GT Mask    

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5. Comparison of shadow detection and removal results of different methods on ISTD dataset. Note that our proposed ST-CGAN

simultaneously produces the detection and removal results, whilst others are either for shadow detection or for shadow removal.

Task Type Aspects Multi-branch Ours

Removal

Shadow 11.54 10.33

Non-shadow 7.13 6.93

All 7.84 7.47

Detection (%)

Shadow 2.34 2.14

Non-shadow 7.2 5.55

BER 4.77 3.85

Table 8. Comparisons between stacked learning (ours) and multi-

branch learning with removal and detection results on ISTD

dataset.

ly. It further implies the effectiveness of our multi-task ar-

chitecture on both shadow detection and shadow removal.

5.6. Stacked Joint vs. Multi­branch Learning

We further modify our body architecture into a multi-

branch version, where each branch is designed for one task

respectively. Therefore, the framework aims to learn a

shared embedding which is supervised by two tasks. For

a clear explanation, the illustration of comparisons between

ours and the multi-branch one is also given. With all oth-

er training settings fixed, we fairly compare our proposed

ST-CGAN with the multi-branch version quantitatively on

the measurements of both detection and removal on IST-

D dataset. Table 8 reports that our stacked joint learning

paradigm consistently outperforms the multi-branch version

in every single aspect of the metrics.

6. Conclusion

In this paper, we have proposed STacked Condition-

al Generative Adversarial Network (ST-CGAN) to jointly

learn shadow detection and shadow removal. Our frame-

work has at least four unique advantages as follows: 1) it is

the first end-to-end approach that tackles shadow detection

and shadow removal simultaneously; 2) we design a novel

stacked mode, which densely connects all the tasks in the

purpose of multi-task learning, that proves its effectiveness

and suggests the future extension on other types of multiple

tasks; 3) the stacked adversarial components are able to pre-

serve the global scene characteristics hierarchically, thus it

leads to a fine-grained and natural recovery of shadow-free

images; 4) ST-CGAN consistently improves the overall per-

formances on both the detection and removal of shadows.

Moreover, as an additional contribution, we publicly release

the first large-scale dataset which contains shadow, shadow

mask and shadow-free image triplets.
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