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Abstract

Though quite challenging, leveraging large-scale unla-

beled or partially labeled images in a cost-effective way

has increasingly attracted interests for its great importance

to computer vision. To tackle this problem, many Active

Learning (AL) methods have been developed. However,

these methods mainly define their sample selection crite-

ria within a single image context, leading to the subopti-

mal robustness and impractical solution for large-scale ob-

ject detection. In this paper, aiming to remedy the draw-

backs of existing AL methods, we present a principled

Self-supervised Sample Mining (SSM) process accounting

for the real challenges in object detection. Specifically,

our SSM process concentrates on automatically discovering

and pseudo-labeling reliable region proposals for enhanc-

ing the object detector via the introduced cross image val-

idation, i.e., pasting these proposals into different labeled

images to comprehensively measure their values under dif-

ferent image contexts. By resorting to the SSM process, we

propose a new AL framework for gradually incorporating

unlabeled or partially labeled data into the model learning

while minimizing the annotating effort of users. Extensive

experiments on two public benchmarks clearly demonstrate

our proposed framework can achieve the comparable per-

formance to the state-of-the-art methods with significantly

fewer annotations.

1. Introduction

In the past decade, object detection has gained incredible

improvements both in accuracy and efficiency, benefiting

from the remarkable success of deep Convolutional Neural

Nets (CNNs) [19][33][14]. Through producing candidate

object regions of input images, object detection is converted

into the region classification task, e.g., R-CNN [12]. Re-

cently, more powerful neural network architectures such as

∗Corresponding author is Dongyu Zhang.

ResNet [14] have further pushed the object detection perfor-

mance into new records. Behind these successes, massive

data collection and annotation such as MS-COCO [25] are

indispensable yet quite expensive. Under such a circum-

stance, there is an increasing demand of leveraging large-

scale unlabeled data to promote the detection performance

in an incremental learning manner. However, to achieve this

goal, there remain two technical issues: i) Object annotation

for training is usually labor-intensive. Compared with other

visual recognition task (e.g., image classification), annotat-

ing object requests to provide both the category label and

bounding box of an object. In order to reduce the burden of

active users, it is highly required to develop human-machine

cooperation based approaches to self-annotate most of the

unlabeled data; ii) Picking out the training samples that are

advantageous to boost the detection performance is a non-

trivial task. As figured out in [32, 15], existing detection

benchmarks usually contain an overwhelming number of

“easy” examples and a small number of “hard” ones (i.e.,

informative samples with various illuminations, deforma-

tions, occlusions and other intra-class variations). Utilizing

these “hard” samples is a key to train the model more ef-

fectively and efficiently. However, as pointed out in [39],

due to following a long-tail distribution, these examples are

quite uncommon. Hence, it is a sophisticated task to find

“hard” yet informative samples.

To address the aforementioned issues, we investigate

sample mining techniques to incrementally improve object

detectors with minimal user effort. Recently, Active Learn-

ing (AL) [9, 22, 31, 23, 26] proposed to progressively se-

lect and annotate most informative unlabeled samples for

user annotation to boost the model. Hence, the sample se-

lection criteria play a crucial role in AL, and are typically

defined according to the prediction certainty (confidence)

or other informative criteria like diversity of samples. Re-

cently, many AL methods [37, 24, 36] have been developed

for training deep convolutional neural networks (CNNs).

However, their sample selection criteria are dominantly per-

formed under a single sample context. This make them sen-
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Figure 1. The pipeline of the proposed framework with Self-supervised Sample Mining (SSM) process for object detection. Our framework

includes stages of high-consistency sample pseudo-labeling via the SSM and low-consistency sample selecting via the AL, where the

arrows represent the work-flow, the full lines denote data flow in each mini-batch based training iteration, and the dash lines represent

data are processed intermittently. As shown, our framework presents a rational pipeline for improving object detection from unlabeled and

partially labeled images by automatically distinguishing high-consistency region proposals, which can be easily and faithfully recognized

by computers after the cross image validation, and low-consistency ones, which can be labeled by active users in an interactive manner.

sitive to the bias of classifiers and the unbalance of samples.

Attempting to overcome the above-mentioned drawback

of the existing AL approaches, this paper develops a Self-

supervised Sample Mining (SSM) process for automati-

cally mining valuable samples in terms of boosting per-

formance of object detectors. Our developed SSM process

is motivated by the recently popular self-supervised learn-

ing [10, 5, 38] technique. In stead of designing to learn a

optimal visual representation as [38, 5], we concentrate on

developing a rational pipeline of using the self-supervision

to significantly decrease the amount of user annotations for

improving detection performance. In the proposed SSM

process, given the region proposals from unlabeled or par-

tially labeled images, we evaluate their estimation consis-

tency by performing the cross image validation, i.e., past-

ing them into different annotated images to validate its pre-

diction consistency by the up-to-date object detector. Note

that, to avoid ambiguity, the images for validation are ran-

domly picked out from the labeled samples that do not be-

long to the estimated category of the under-processing pro-

posal. Through a simple ranking mechanism, those incor-

rectly pseudo-labeled proposals have a large chance to be

filtered due to the challenges inside various image contexts.

In this way, the bias of classifiers and unbalance of sam-

ples can be effectively alleviated. Then, we propose to pro-

visionally assign disposable pseudo-labels to the ones with

high estimation consistency, and retrain the detectors within

each mini-batch iteration. Since the pseudo-annotations

may still contain errors, small amount of user interactions

is necessary to keep our SSM under well control.

By resorting to our SSM, we further propose a novel in-

cremental learning framework to gradually incorporate un-

labeled samples to enhance object detectors, as illustrated

in Fig. 1. In our framework, inspired by the recently pro-

posed techniques: Curriculum Learning (CL) [2] and Self-

paced Learning (SPL) [20][18], we formulate the combin-

ing of the SSM and the AL as a concise optimization prob-

lem. Specifically, the SSM or AL process in our framework

can jointly collaborate with each other. This is done by

imposing a set of latent variables to progressively include

samples into training. These variables determine whether a

sample should be selected for pseudo-labeling or annotat-

ing. Meanwhile, the misleading of pseudo-labeled errors

can be suppressed since the sample selection criterion is

progressively optimized together with the batch-based in-

cremental learning. In fact, the ambiguity of incorrectly

annotated samples by users can also be eliminated, thanks

to the correction of the majority pseudo-labeled samples.

Hence, our SSM can further improve the robustness of clas-

sifiers against noisy samples/outliers in the pursuit of detec-

tion accuracy.

The main contributions of this work are two-fold. First,

we propose a novel self-supervised process for automati-

cally discovering and pseudo-labeling reliable region pro-

posals via the cross image validation, which is compatible

with the mini-batch based training for large-scale practi-

cal scenarios. Second, through fusing the proposed SSM

process with the AL, we propose a principled framework

with a concise optimization formulation and an alterna-

tive optimization algorithm. Extensive experiments demon-

strate that our proposed framework can not only achieve a

clear performance gain by mining additional unlabeled data,

but also outperform the dominantly state-of-the-art methods

with significantly fewer annotations.

2. Related Work

Active Learning. This branch of works mainly focuses

on the sample selection strategy, i.e., how to pick out the

most informative unlabeled samples for annotation. One

1606



of the most common strategies is the certainty-based se-

lection [22, 34], in which the certainties are measured ac-

cording to the prediction confidence on new unlabeled sam-

ples. The diversity of the selected instance over the unla-

beled data has been also considered in [3]. Recently, El-

hamifar et al. [6] proposed to consider both the uncertainty

and diversity measure via convex programming. Freytag

et al. [8] presented a concept that generalizes previous

methods based on the expected model change and incorpo-

rates the underlying data distribution. Vijayanarasimhan et

al. [36] proposed a novel active learning approach in crowd-

sourcing settings for live learning of object detectors, in

which the system autonomously identifies the most uncer-

tain instances via a hashing based solution. Rhee et al. [29]

proposed to improve object detection performance by lever-

aging a collaborative sampling strategy, which integrates

the uncertainty and diversity criteria from the AL and the

feature similarity measurement of semi-supervised learn-

ing philosophy. However, these mentioned AL approaches

usually emphasize those low-confidence samples (e.g., un-

certain or diverse samples) while ignoring the rest major-

ity of high-confidence samples. More recently, attempting

to leverage these ignored samples, several works [24, 37]

have been proposed to progressively select the minority

of most informative samples and pseudo-label the major-

ity of high prediction confidence samples for network fine-

tuning. Though these approaches have achieved promising

performances, they have limitations due to that their defined

hyper-parameters for pseudo-labeling is empirically set and

updated within a single image context. Furthermore, these

methods do not support mini-batch based training. There-

fore, none of them has successfully proved their capability

on handling large-scale object detection task.

Self-paced Learning. Inspired by the cognitive prin-

ciple of humans/animals, Bengio et al. [2] initialized the

concept of curriculum learning (CL), in which a model is

learned by gradually including samples into training from

easy to complex. To make it more implementable, Kumar

et al. [20] substantially prompted this learning philosophy

by formulating the CL principle as a concise optimization

model named self-paced learning (SPL). Recently, several

works [18, 16, 41] provided more comprehensive under-

standing of the learning insight underlying CL/SPL, and

formulated the learning model as a general optimization

problem.

Based on this framework, multiple SPL variants [16,

17, 41, 18] have been proposed for object detection. Lee

et al. [21] introduced a self-paced approach to focus on

the easiest instances first, and progressively expands its

repertoire to include more complex objects. Sangineto et

al. [30] presented a self-paced learning protocol for object

detection that iteratively selects the most reliable images

and boxes according to class-specific confidence levels and

inter-classifier competitions. Dong et al. [1] proposed an

object detection framework that uses only a few bounding

box labels per category by consistently alternating between

detector amelioration and reliable sample selection.

Self-supervised Learning. Aiming at training the fea-

ture representation without additional manual labeling, self-

supervised learning (SSL) has first been introduced in [28]

for vowel class recognition, and further extended for object

extraction in [10]. Recently, plenty of SSL methods[5, 38]

have been proposed, e.g., Wang et al. [38] proposed to em-

ploy visual tracking to provide the supervision for learn-

ing visual representations among thousands of unlabeled

videos. Doersch et al. [5] investigated multiple self-

supervised methods to encourage the network to factorize

the information in its representation. Different from these

methods that focus on learning an optimal visual represen-

tation, our SSM intends to use the self-supervision to mine

valuable information from unlabeled and partially labeled

data.

3. Self-supervised Sample Mining

3.1. Formulation

In the context of object detection, suppose that we have
n region proposals from m object categories. Denote the
training sample set as D = {xi}

n
i=1 ⊂ Rd, where xi is the

i-th region proposal generated from the training images. We
have m detectors/classifiers (including the background) for
recognizing each proposal by the one-vs-rest strategy. Cor-
respondingly, we denote the label set of xi as yi = {yi}

m
j=1,

where y
(j)
i corresponds to the label of xi for the j-th object

category. i.e., if y
(j)
i = 1, this means that xi is catego-

rized as an instance of the j-th object category. We should
give two necessary remarks on our problem setting. One
is that most of sample labels Y = {yi}

n
i=1 are unknown

and need to be completed in the learning process. The ini-
tially annotated images are denoted by I. The other remark
is that the data {xi}

n
i=1 might possibly be fed into the sys-

tem in an incremental way. This means that the data scale
might be consistently growing. The whole loss function for
our proposed framework with SSM process is formulated as
follows:

Loss = Lloc(W) + LAL
cls(W) + LSSM

cls (W,V), (1)

where Lloc(W) denotes the bounding box regression loss
defined in [11]. LAL

cls(W) and LSSM
cls (W,V) imply the

classification loss for the AL and SSM processes, re-
spectively. We define the AL process as LAL

cls(W) =
1

|ΩI |

∑

i∈ΩI

∑m

j=1 ℓj(xi,W), where ΩI denotes the la-

beled proposals from the currently annotated image I (I
∈ I). ℓj(xi,W) means the softmax loss of the proposal
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xi in the j-th classifier:

ℓj(xi,W) = −
(1 + y

(j)
i

2
log φj(xi;W)+

1− y
(j)
i

2
log(1− φj(xi;W))

)

,

where W represents the parameter of the CNN for all m

categories (including background), φj(xi;W) denotes the

probability of belonging to the j-th category for each region

proposal xi.
To adaptively select xi for pseudo-labeling to update its

yi, our SSM process introduces a set of latent weight vari-

ables, i.e., V = {v(j)}mj=1 = {[v
(j)
1 , · · · , v

(j)
n ]T }mj=1, and

is formulated as:

LSSM
cls (W,V) =

1

|ΩI |

∑

i∈ΩI

m
∑

j=1

v
(j)
i ℓj(xi,W) +R(xi, v

(j)
i ,W)

s.t.

m
∑

j=1

|y
(j)
i + 1| ≤ 2, y

(j)
i ∈ {−1, 1},

(2)

where ΩI denotes the unlabeled proposals from the unla-
beled or partially labeled image I . The regularization func-
tion R(·) penalizes the sample weights linearly in terms of
the loss. In this paper, we utilize the hard weighting regular-
izer due to its well adaptability to complex scenarios. The
hard weighting regularizer is defined as:

R(xi, v
(j)
i ,W) = −f(xi,W)v

(j)
i . (3)

Finally, we can directly calculate v
(j)
i as:

v
(j)
i =

{

1, ℓj(xi,W) ≤ f(xi,W),

0, otherwise.
(4)

In contrast to the existing works [24, 37] that rely on only
an empirical hyper-parameter for each category to control
the loss tolerance, we exploit a sample-dependent manner,
i.e., the cross image validation f(·), to include samples into
training. Therefore, our model can be considered as a self-
supervised self-paced learning framework. As illustrated in
Fig. 2, the cross image validation is regarded as the estima-
tion consistency of reliable region proposals. Specifically,
f(·) is defined as:

f(xi,W) =

λ

|Ωj

I |

∑

p∈Ω
j

I

1
(

IoU
(

BI(xi), BI(xp)
)

≥ γ
)

φj(xp;W), (5)

where Ωj
I represents the labeled region proposals from the

annotated image I without j-th category objects for con-

sistency evaluation. λ denotes the pace parameter. BI(xi)
denotes the bounding box of the proposal xi in the selected

image I , while IoU
(

BI(xi), BI(xp)
)

implies the intersec-

tion of union between two bounding boxes BI(xi) and

Unlabeled Image j-th category 

Pasted Image

(predicted)

Figure 2. The illustration of the proposed cross image validation.

The proposal xi from the unlabeled image, predicted to belong to

the j-th category, is randomly pasted into a certain annotated im-

age without j-th category objects for consistency evaluation. The

red bounding boxes BI(xp) and BI(xq) denote the newly gen-

erate region proposals xp and xq from the newly pasted image

by the up-to-date classifier, respectively. As shown, the unlabeled

and annotated images have entirely different context information

(denoted in different color).

BI(xp). Note that, γ represents the threshold parameter

to identify whether these two bounding boxes correspond

to the same object, and it is set to 0.5 in all experiments ac-

cording to the evaluation protocol of object detection. 1(·)
is the indicator function. If the proposal xp generated by the

up-to-date detector from the newly pasted image includes

the same object as xi, i.e., IoU
(

BI(xi), BI(xp)
)

≥ γ, then

we calculate its estimation consistency value φj(xp;W),
which denotes the possibility of xp being the j-th category

during the cross image validation.

3.2. Alternative Optimization Strategy

The alternative minimization is readily employed to

solve this optimization. Specifically, the algorithm is de-

signed by alternatively updating the sample importance

weight set V via the SSM process, the label set Y via

pseudo-labeling and the AL process, and the network pa-

rameters W via standard backpropagation. In the follow-

ing, we introduce the details of these optimization steps.

The convergence of this algorithm to the practical imple-

mentation of our framework will also be discussed.

Updating V: Fixing the {Y,X,W}, we can directly

calculate f(xi,W) via Eqn. (5), and further obtain V via

Eqn. (4).
Updating Y: After obtaining V, we calculate the con-

sistency score si for sample selection as:

j
∗ = arg max

j∈[m]
φj(xp;W),

si =
1

|I|

∑

I∈I

1

|Ωj∗

I |

∑

p∈Ω
j∗

I

φj∗(xp;W).
(6)

where j∗ represents the predicted category by the current

detector with highest confidence. Note that, to reduce the

computation cost, we only randomly pick out at most N

annotated images for evaluating the consistency of the pro-

posal xi. In all the experiments, we empirically set N = 5
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for the trade-off between the accuracy and efficiency. Given

S = {si}
n
i=1, we rank all unlabeled samples in a descend-

ing order for each classifier as [16], and pick out top-k non-

zero ones at most for each object category. H is regarded

as high-consistency samples with assigned pseudo-labels.

Specifically, these important samples for m categories are

defined as H = [H1, ..., Hj , ..., Hm](|Hj | ≤ k), where k

is an empirical parameter to control the number of selected

samples for each category.
Fixing {W,V, {xi}

H
i=1}, we optimize yi of Eqn. (2)

which corresponds to solve the following problem for each
high-consistency sample i ∈ H with its important weight
vector vi 6= 0:

min
yi∈{−1,1}m,i∈H

m
∑

j=1

v
(j)
i ℓj(xi,W), s.t.

m
∑

j=1

|y
(j)
i +1| ≤ 2, (7)

where vi is fixed, and can be treated as constant. The con-

straint
∑m

j=1 |y
(j)
i +1| ≤ 2 largely excludes all samples for

pseudo-labeling except under the following two conditions:

i) when y
(j)
i is predicted to be positive by one classifier but

all other classifiers produce negative predictions, or ii) when

all classifiers predict y
(j)
i to be negative, i.e., xi is rejected

by all classifiers and identified as belonging to an undefined

object category. These are the rational cases for practical

object detection in large-scale scenarios. Note that we op-

timize Y by exhaustively attempting to assign -1 or 1 to

each sample for all m categories to minimize Eqn. (7). The

computational cost of this process is acceptable because we

only need to take m + 1 attempts. Through this fashion,

Eqn. (7) always has a clear solution by enforcing pseudo-

labels on those top-ranked high-consistency sample set H.

This is exactly the mechanism underlying a re-ranking tech-

nique [16]. Compared with the previous methods [37, 24],

our framework can effectively suppress the error accumu-

lation during the incremental pseudo-labeling via the fol-

lowing two advantages: (i) The cross image validation can

provide more accurate and robust estimations under various

challenging image contexts; (ii) All the pseudo-labels are

disposable. They will be discarded after each mini-batch it-

eration. These advantages are beneficial for the detector to

avoid being misled by the accumulate errors.

Low-consistency Sample Annotating: After pseudo-

labeling high-consistency samples in such a self-supervised

manner, we employ the AL process to update the annotated

image set I by providing more informative guidance based

on human knowledge. The AL process aims to select most

informative unlabeled samples and to label them as either

positive or negative by requesting user annotation. Our se-

lection criteria are based on the classical uncertainty-based

strategy [22, 34]. Specifically, we collect those samples

with quite small si after performing the cross image val-

idation. Then, we utilize the current classifiers to predict

their labels. Those predicted as more than two positive la-

Algorithm 1 Alternative Optimization Strategy

Input: Input dataset {xi}
n
i=1

Output: Output model parameters {W}
1: Initialize network parameters W with pre-trained

CNN, initially annotated samples I, sample weight set

V and the corresponding consistency score set S;

2: while true do

3: for all mini-batch = 1, ..., T do

4: Update V and S by the SSM process via Eqn. (4)

and Eqn. (6), respectively;

5: Update H by the re-ranking;

6: Update {yi}i∈H by pseudo-labeling via Eqn. (7);

7: Update W by standard backpropagation Eqn.(8);

8: end for

9: Update low-consistency sample set U ;

10: if U is not empty do

11: Update the annotated region proposals {ΩI}I∈I

with {yi}i∈U by the AL;

12: else

13: break;

14: end if

15: end while

16: return W;

bels (i.e., predicted as the corresponding object category)

actually represent these samples making the current clas-

sifiers ambiguous. We thus adopt them as so called “low-

consistency” samples and randomly add z of them into low-

consistency sample set U for further manually annotation by

active users. Actually, other similar criterion can be utilized

in this step. We employed this simple strategy just due to its

intuitive rationality and efficiency.

Updating W: Fixing {D,V,Y}, the original model in
Eqn. (1) can be approximated as:

min
W

1

|H ∪ {ΩI}I∈I|

∑

i∈H∪{ΩI}I∈I

m
∑

j=1

ℓj(xi,W) + Lloc(W).

(8)

Thus, we can update the network parameters W by standard

backpropagation. Note that, we do not consider the regular-

ization function R(·), which is introduced to regularize the

latent variable set V.

The entire algorithm can then be summarized into Algo-

rithm 1. It is easy to see that this algorithm finely accords

with the pipeline of our proposed framework in Fig. 1.

Convergence Analysis: Our framework can guarantee

the convergence to a local optimum based on its imple-

mentation. The reason is three-fold: (i) the objective func-

tion Eqn. (2) w.r.t V is convex; (ii) network fine-tuning in

Eqn. (8) via backpropagation can converge to a local op-

timal; (iii) as the model becomes mature, the AL process

stops when no low-consistency samples are found.
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4. Experiments

To justify the effectiveness of our proposed SSM pro-

cess and framework, we have conducted a number of ex-

periments on the public VOC 2007/2012 benchmarks [7],

whose data are usually divided into two-fold: trainval and

test. To evaluate the model performance on the VOC 2007

benchmark, we regard the VOC 2007 trainval as the ini-

tial annotated samples, and consider the VOC 2012 train-

val data as unlabeled data that need to be mined. There-

fore, the active user annotating process equals to fetch the

VOC 2012 annotations. As for the VOC 2012 benchmark,

we employ the VOC 2007 trainval and test set for initial-

ization. Moreover, we regard the large-scale object detec-

tion dataset COCO [25] as the ‘secondary’ unlabeled data.

In other words, we will perform sample mining on it only

when all the VOC 2012 trainval annotations have been used.

As for the annotation key ‘annotated’ and ‘pseudo’, the first

one represents the proportion of the user annotations ap-

pended/fetched during the training over the pre-given an-

notations (i.e., the VOC 2007 trainval), which are used for

initializing the object detectors. ‘pseudo’ implies the per-

centage of pseudo-labeled object proposals from unlabeled

data over the pre-given annotations. The lower ‘annotated’

value is, the less user efforts for annotating are required.

The higher ‘pseudo’ value is, the more pseudo-labeled sam-

ples are obtained. Hence, when achieving the same per-

formance, a superior method should have lower ‘annotated’

but higher ‘pseudo’ values.

We adopt the PASCAL Challenge protocol, i.e., a cor-

rect detection should has more than 0.5 IoU with the ground

truth bounding-box, and exploit the mean Average Precision

(mAP) as for the evaluation metric. In all experiments, we

set parameters {λ, k, N , γ, z} = {0.9, 500, 5, 0.5, 100}. The

fine-tuning manner for the RFCN pipeline is the same as [4],

except that we treat the COCO trainval set as unlabeled data

for mining rather than pre-train the network. In the testing

phase, we use a single scale of 600 pixels as input except

for the VOC 2012 test set, which we use a multi-scale test

as [13]. All the experiments are conducted on a desktop

with Intel CPU 3.4GHz and four Titan Xp GPUs. The test-

ing time of our framework is 120 millisecond/image, and

our training time is 620 millisecond/image. As for the base

line method (i.e., RFCN), its testing time is 120 millisec-

ond/image and training time is 150 millisecond/image.

In order to demonstrate that our proposed framework is

general to different network architecture and object recog-

nition framework, we have incorporated our framework

into the Fast R-CNN (FRCN) pipeline with AlexNet [19]

and the new state-of-the-art RFCN [4] with ResNet-

101 [14]. We denote these variants as “FRCN+Ours”

and “RFCN+Ours”, respectively. To validate the superior

performance of the proposed framework, we have com-

pared it with the CEAL [37] and K-EM [40] approaches.
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Figure 3. Quantitative comparison of detection performance

(mAP) on the PASCAL VOC 2007 test set

Note that, since the CEAL is designed for image classifi-

cation and is not mini-batch friendly, we extended it for

object detection by alternatively performing sample selec-

tion and fine-tuning the CNN. Since the source code of K-

EM [40] is not publicly available, we have obtained the

results from their paper [40] directly. We denote these

methods as “FRCN+CEAL,” and “FRCN+K-EM”, respec-

tively. Moreover, we have also included five baseline meth-

ods that ignore the pseudo-labeling of unlabeled samples:

“FRCN+RAND”, which randomly selects region propos-

als for user annotations, FRCN+EMC (Expected-Model-

Change) [8], FRCN+Entropy [31], FRCN+ELC (Expected-

Labeling-Change) [27] and FRCN+Density [31]. For a

fair comparison, we initialize all the methods by pro-

viding only 5% annotations, and allow FRCN+Ours and

FRCN+CEAL to mine unlabeled samples only from the

VOC 2007 train/val set. Moreover, we repeat the testing by

five trails to report the average mAP with standard variance

to present a comprehensive evaluation.

4.1. Results and Comparisons

The Fig. 3 demonstrates the comparison of detection

performance using the Fast-RCNN (FRCN) pipeline with

AlexNet [19] on the VOC 2007 test set. As illustrated in

Fig. 3, our proposed framework FRCN+Ours consistently

outperforms all the compared methods by clear margins un-

der all annotation settings. Specifically, FRCN+Ours can

achieve the equivalent of a fully supervised performance

(i.e., FRCN with 100% user annotations) when fetching

only approximately 30% user annotations, while most of

the compared methods require nearly 60%. These results

indicate the superior performance of our framework.

To demonstrate the feasibility and great potential of our

framework, we have conducted amount of experiments to

fine-tune RFCN with ResNet-101 (well pre-trained on Im-

ageNet) on the VOC 2007/2012 trainval set by using our

framework and the compared baseline RFCN+RAND. The

compared results on the VOC 2007 and 2012 benchmarks

are illustrated in Tab. 1 (a)(b), respectively. By control-

ling the number of training iterations, RFCN+Ours and

RFCN+RAND can fetch different amounts of annotations
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Table 1. Test set mAP for VOC 2007/2012 under the RFCN [4]

pipeline. The entries with the best APs with each sub-table are

bold-faced. Annotation key: ‘annotated’ denotes the proportion of

the user annotations appended/fetched from the VOC 2012 train-

val set during the training over the initial annotations (i.e., 07 de-

notes the VOC 2007 trainval set, while 07+ denotes the VOC 2007

trainval and test sets), which are used for initializing the object de-

tectors; ‘pseudo’ implies the percentage of pseudo-labeled object

proposals from unlabeled data (i.e., the VOC 2012/COCO trainval

set) over the pre-given annotations.

Method initial test annotated pseudo mAP

(a)

RFCN 07 07 0% 0% 73.9

RFCN+RAND 07 07 20% 0% 75.6±1.0

RFCN+RAND 07 07 60% 0% 76.5±1.1

RFCN+RAND 07 07 100% 0% 77.2±0.9

RFCN+RAND 07 07 200% 0% 79.1±0.4

RFCN+Ours 07 07 20% 300% 76.0±0.1

RFCN+Ours 07 07 60% 400% 77.4±0.2

RFCN+Ours 07 07 100% 500% 78.3±0.2

RFCN+Ours 07 07 200% 800% 79.7±0.2

RFCN+Ours 07 07 200% 1000% 80.6±0.2

(b)

RFCN 07+ 12 0% 0% 69.1

RFCN+RAND 07+ 12 10% 0% 71.5±1.1

RFCN+RAND 07+ 12 30% 0% 72.7±1.3

RFCN+RAND 07+ 12 50% 0% 74.4±1.0

RFCN+RAND 07+ 12 100% 0% 76.8±0.4

RFCN+Ours 07+ 12 10% 100% 72.6±0.1

RFCN+Ours 07+ 12 30% 150% 73.6±0.1

RFCN+Ours 07+ 12 50% 200% 75.5±0.2

RFCN+Ours 07+ 12 100% 200% 77.3±0.2

RFCN+Ours 07+ 12 100% 800% 78.1±0.2

(c)

RFCN 07 07 0% 0% 73.9

RFCN+SPL 07 07 0% 300% 74.1±0.5

RFCN+SPL 07 07 0% 400% 74.7±0.6

RFCN+SSM 07 07 0% 300% 75.6±0.2

RFCN+SSM 07 07 0% 400% 76.7±0.3

RFCN+AL 07 07 20% 0% 75.5±0.1

RFCN+AL 07 07 60% 0% 77.0±0.2

RFCN+AL 07 07 100% 0% 77.5±0.2

(d)

RFCN 07+ 12 0% 0% 69.1

RFCN+SPL 07+ 12 0% 100% 70.9±0.5

RFCN+SSM 07+ 12 0% 100% 72.1±0.3

RFCN+AL 07+ 12 10% 0% 71.8±0.1

RFCN+AL 07+ 12 30% 0% 73.0±0.2

RFCN+AL 07+ 12 50% 0% 74.7±0.2

from the VOC 2012 trainval set.

As one can see from Tab. 1 (a)(b), both RFCN+RAND

and RFCN+Ours gradually obtain increased detection ac-

curacy when the number of annotations increases. Our

framework consistently outperforms the compared baseline

RFCN+RAND under all appending conditions on both the

VOC 2007 and 2012 benchmarks by a clear margin. More-

over, our framework surpasses RFCN+RAND by nearly

1.5% (80.6% vs 79.1%) on the VOC 2007 benchmark

and 1.3% (78.1% vs 76.8%) on the VOC 2012 benchmark

with significantly small variations when sufficient pseudo-

labeled object proposals are provided. This validates the

effectiveness of our framework. Some examples of the se-

lected high-consistency and low-consistency region propos-

als via the cross image validation are depicted in Fig. 5.
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Figure 4. Quantitative comparison of average mAP on the VOC

2007 test set

4.2. Ablation Study

To validate the contribution of each component inside

our framework, we have also conducted sufficient exper-

iments for empirical analysis. The variant of our frame-

work that discarding the active learning process is de-

noted as “FRCN+SSM” / “RFCN+SSM”. Similarly, these

pipelines with Active Learning (AL), Self-paced Learning

(SPL) are denoted by “RFCN+AL”, “RFCN+SPL”, respec-

tively. RFCN+AL adaptively collects low-confidence pro-

posals to request the annotations and stops when no low-

confidence samples are found. RFCN+SPL is implemented

according to [37].

As illustrated in Tab. 1 (c)(d), given the same amount

of annotations during initialization, RFCN+SSM performs

significantly better than RFCN+SPL on both VOC 2007 and

the VOC 2012 test set. Specifically, RFCN+SSM achieves

a nearly 2% performance improvement (76.7% vs 74.7%)

with small variations over RFCN+SPL by pseudo-labeling

the same amount of high-consistency region proposals for

training on the VOC 2007 benchmark. A consistent perfor-

mance gain of approximately 1.2% (72.1% vs 70.9%) is ob-

tained on the VOC 2012 benchmark by RFCN+SSM. These

results validate the significant contribution of the proposed

SSM process on mining reliable region proposals for im-

proving object detection.

We have also compared our self-supervised sample min-

ing (SSM) process with three baseline methods under the

AL process disabled setting. RFCN+Flip implies horizon-

tally flipping images for validation, while RFCN+Rescale

represents randomly rescaling an image from 50% to 200%

of its original size. RFCN+Flip&Rescale means the fusion

of them. As shown in Fig. 4, RFCN+SSM consistently out-

performs all the competing methods by clear margins at all

pseudo-labeling proportions. Moreover, compared to these

baselines, RFCN+SSM obtains a slighter performance drop

(caused by the accumulated pseudo-labeling errors) after

reaching its peak performance. This also proves the effec-

tiveness of our SSM for suppressing the error accumulation.

Tab. 1 (c)(d) also demonstrates that RFCN+AL consis-

tently outperforms the baseline RFCN and RFCN+SSM.

Though the improvements are minor compared to the best
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(a) High-consistent Region Proposals (b) Low-consistent Region Proposals 
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Figure 5. Selected (a) high-consistent and (b) low-consistent region proposals with pseudo-labels in yellow via cross image validation. The

first column lists the region proposal with predicted label and high prediction confidence from the unlabeled images of the PASCAL VOC

2012 dataset. The region proposal is randomly put into the validation images for object detection. The predicted bounding box that has

more than 0.5 IoU with this proposal is illustrated in red. The corresponding prediction confidence (ranging from 0 to 1) for being the

pseudo-labeled category is also in red. It is obvious from (a) that those high-consistent proposals are of high quality for network fine-tuning.

As one can see from (b), the confidence of those bounding boxes on the validation images is low-consistent due to inaccurate bounding

box (first two rows) or incorrect pseudo-labels (last two rows)

performance of the RFCN+SSM, our proposed AL stage is

still beneficial for promoting object detection. This slight

improvement occurs because the informative samples with

great potential for improving performance follow a long-tail

distribution, as reported in [39]. Therefore, it is necessary

to employ abundant training samples by asking active users

to provide labels or finding other assistance. Fortunately,

our proposed high-consistency sample pseudo-labeling via

the SSM process is an effective way to address this issue.

The results of weaker initialization (5% and 10% anno-

tations from the VOC 2007 train/val set) are listed in Tab. 2.

As shown, our RFCN+SSM achieves a consistent perfor-

mance gain of about 2% over the original RFCN. Com-

pared to RFCN+RAND, RFCN+Ours obtains about 1.5%

higher average mAP with much lower variances. However,

compared to RFCN+Ours, FRCN+Ours in Fig. 3 obtains a

higher mAP gain. The reason is FRCN and RFCN use dif-

ferent algorithms (Selective Search [35] vs. Region Pro-

posal Network [11]) to generate object proposals. Since

our objective is to mine samples from these proposals, our

model obtains various performance boosts based on the

quality of proposals. This shows the generality and effec-

tiveness of our model over different proposals.
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5. Conclusion

In this paper, we have introduced a principled Self-

supervised Sample Mining (SSM) process, and justified

its effectiveness in mining valuable information from unla-

beled or partially labeled data to boost object detection. We

further involve this process in the AL pipeline with a con-

cise formulation, which is developed for retraining object

detectors via faithfully pseudo-labeled high-consistency ob-

ject proposals after our proposed cross image validation.

The proposed SSM process contributes to effectively im-

prove the detection accuracy and the robustness against

noisy samples. Meanwhile, the rest samples, being low con-

sistency (high uncertainty) by the current detectors, can be

handled by the AL, which benefits to generate reliable and

diverse samples gradually. In the future, we will apply our

SSM to improve other specific visual detection task with

unlabeled web images/videos.
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