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Abstract

Weakly-supervised semantic segmentation under image

tags supervision is a challenging task as it directly as-

sociates high-level semantic to low-level appearance. To

bridge this gap, in this paper, we propose an iterative

bottom-up and top-down framework which alternatively ex-

pands object regions and optimizes segmentation network.

We start from initial localization produced by classification

networks. While classification networks are only responsive

to small and coarse discriminative object regions, we argue

that, these regions contain significant common features

about objects. So in the bottom-up step, we mine common

object features from the initial localization and expand

object regions with the mined features. To supplement non-

discriminative regions, saliency maps are then considered

under Bayesian framework to refine the object regions.

Then in the top-down step, the refined object regions are

used as supervision to train the segmentation network

and to predict object masks. These object masks provide

more accurate localization and contain more regions of

object. Further, we take these object masks as initial

localization and mine common object features from them.

These processes are conducted iteratively to progressive-

ly produce fine object masks and optimize segmentation

networks. Experimental results on Pascal VOC 2012

dataset demonstrate that the proposed method outperforms

previous state-of-the-art methods by a large margin.

1. Introduction

Weakly-supervised semantic segmentation under image

tags supervision is to perform a pixel-wise segmentation of

an image, providing only the labels of existing semantic ob-

jects in the image. Because it relies on very slight human

labeling, it benefits a number of computer vision tasks, such

as object detection [8] and autonomous driving [3].
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Figure 1. (a) Illustration of the proposed MCOF framework. Our

framework iteratively mines common object features and expands

object regions. (b) Examples of initial object seeds and our mined

object regions. Our method can tolerate inaccurate initial localiza-

tion and produce quite satisfactory results.

Weakly-supervised semantic segmentation is, however,

very challenging as it directly associates high-level seman-

tic to low-level appearance. Since only image tags are avail-

able, most previous works rely on classification networks to

localize objects. However, while no pixel-wise annotation

is available, classification networks can only produce inac-

curate and coarse discriminative object regions, which can

not meet the requirement of pixel-wise semantic segmenta-

tion, and thus harms the performance.

To address this issue, in this paper, we propose an iter-

ative bottom-up and top-down framework, which tolerates

inaccurate initial localization by Mining Common Object

Features (MCOF) from initial localization to progressively

expand object regions. Our motivation is, though the initial

localization produced by classification network is coarse, it
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gives certain discriminative regions of objects, these region-

s contain important knowledge about objects, i.e. common

object features. For example, as shown in Figure 1 (a), some

images may locate hands of person, while other images may

locate heads. Given a set of training images, we can learn

common object features from them to predict regions of w-

hole object. So in the bottom-up step, we take the initial

object localization as object seeds and mine common ob-

ject features from them to expand object regions. Then in

the top-down step, we train segmentation network using the

mined object regions as supervision to predict fine object

masks. The predicted object masks contain more regions of

objects, which are more accurate and provide more training

samples of objects, so we can further mine common object

features from them. And the processes above are conducted

iteratively to progressively produce fine object regions and

optimize segmentation networks. With iterations, inaccu-

rate regions in the initial localization are progressively cor-

rected, so our method is robust and can tolerate inaccurate

initial localization. Figure 1 (b) shows some examples in

which the initial localization is very coarse and inaccurate,

while our method can still produce satisfactory results.

Concretely, we first train an image classification network

and localize discriminative regions of object using Classifi-

cation Activation Maps (CAM) [34]. Images are then seg-

mented into superpixel regions and are assigned with class

labels using CAM, these regions are called initial objec-

t seeds. The initial object seeds contain certain key parts of

objects, so in bottom-up step, we mine common object fea-

tures from them and then expand object regions. We achieve

this by training a region classification network and use the

trained network to predict object regions. While these re-

gions may still only focus on key part regions of objects, to

supplement non-discriminative regions, saliency-guided re-

finement method is proposed which considers both the ex-

panded object regions and saliency maps under Bayesian

framework. Then in top-down step, we train segmentation

network using the refined object regions as supervision to

predict segmentation masks. With the aforementioned pro-

cedure, we can get segmentation masks which contain more

complete object regions and are much more accurate than

the initial object seeds. We further take the segmentation

masks as object seeds, and conduct the processes iterative-

ly. With iterations, the proposed MCOF framework pro-

gressively produces more accurate object regions and en-

hances the performance of the segmentation network. The

final trained segmentation network is applied for inference.

The main contributions of our work are three-fold:

• We propose an iterative bottom-up and top-down

framework which tolerates inaccurate initial localiza-

tion by iteratively mining common object features to

progressively produce accurate object masks and opti-

mize segmentation network.

• Saliency-guided refinement method is proposed to

supplement non-discriminative regions which are ig-

nored in initial localization.

• Experiments on PASCAL VOC 2012 segmentation

dataset demonstrate that our method outperforms pre-

vious methods and achieves state-of-the-art perfor-

mance.

2. Related Work

In this section, we introduce both fully-supervised and

weakly-supervised semantic segmentation networks which

are related to our work.

2.1. Fully­Supervised Semantic Segmentation

Fully-supervised methods acquire a large number of

pixel-wise annotations, according to the process mode, they

can be categorized as region-based and pixel-based net-

works.

Region-based networks take images as a set of regions

and extract features of them to predict their labels. Mosta-

jabi et al. [17] proposed zoom-out features which combines

features of local, proximal, distant neighboring superpixels

and the entire scene to classify each superpixel.

Pixel-based networks take the entire image as input and

predict pixel-wise labels end-to-end with fully convolution-

al layers. Long et al. [16] proposed fully convolutional net-

work (FCN) and skip architecture to produce accurate and

detailed semantic segmentation. Chen et al. [2] proposed

DeepLab which introduces “hole algorithm” to enlarge the

receptive field with lower stride to produce denser segmen-

tation. A large number of works [1, 18, 32] have been pro-

posed based on FCN and DeepLab.

Pixel-based networks have been proved to be more pow-

erful than Region-based networks for semantic segmenta-

tion. However, in this paper, we take advantages of both

kinds of networks. We show that region-based networks

are powerful in learning common features of objects and

thus can produce fine object regions as supervision to train

pixel-based networks.

2.2. Weakly­Supervised Semantic Segmentation

While fully-supervised methods require a large number

of pixel-wise annotation which is very expensive, recent ad-

vances have exploited semantic segmentation with weak su-

pervision, including bounding box [4, 19, 12], scribble [15]

and image-level labels [21, 22, 25, 19, 31, 13, 23, 30]. In

this paper, we only focus on the weakest supervision, i.e.,

image-level supervision.

In image-level weakly-supervised semantic segmenta-

tion, since only image tags are available, most methods are

based on classification methods, and these methods can be

coarsely classified into two categories: MIL-based method-

s, which directly predict segmentation masks with classi-
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Figure 2. Pipeline of the proposed MCOF framework. At first (t=0), we mine common object features from initial object seeds. We

segment (a) image into (b) superpixel regions and train the (c) region classification network RegionNet with the (d) initial object seeds. We

then re-predict the training images regions with the trained RegionNet to get object regions. While the object regions may still only focus

on discriminative regions of object, we address this by (e) saliency-guided refinement to get (f) refined object regions. The refined object

regions are then used to train the (g) PixelNet. With the trained PixelNet, we re-predict the (d) segmentation masks of training images, are

then used them as supervision to train the RegionNet, and the processes above are conducted iteratively. With the iterations, we can mine

finer object regions and the PixelNet trained in the last iteration is used for inference.

fication networks; and localization-based methods, which

utilize classification networks to produce initial localization

and use them to supervise segmentation networks.

Multi-instance learning (MIL) based methods [21, 22,

13, 25, 5] formulate weakly-supervised learning as a MIL

framework in which each image is known to have at least

one pixel belonging to a certain class, and the task is to

find these pixels. Pinheiro et al. [22] proposed Log-Sum-

Exp (LSE) to pool the output feature maps into image-

level labels, so that the network can be trained end-to-end

as a classification task. Kolesnikov et al. [13] proposed

global weighted rank pooling (GWRP) method which gives

more weights to promising location in the last pooling layer.

However, while MIL-based methods can locate discrimina-

tive object regions, they suffer from coarse object bound-

aries and thus the performance is not satisfactory.

Localization-based methods [19, 31, 13, 23, 30] aim to

generate initial object localization from weak labels and

then use it as supervision to train segmentation network-

s. Kolesnikov et al. [13] used localization cues generated

from classification networks as a kind of supervision, they

also proposed classification loss and boundary-aware loss

to consider class and boundary constrain. Wei et al. [30]

proposed adversarial erasing method to progressively mine

object region with classification network. While Wei et

al. [30] also aims to expand object regions from the initial

localization. They rely on the classification network to se-

quentially produce the most discriminative regions in erased

images. It will cause error accumulation and the mined ob-

ject regions will have coarse object boundary. The proposed

MCOF method mines common object features from coarse

object seeds to predict finer segmentation masks, and then

iteratively mines features from the predicted masks. Our

method progressively expands object regions and corrects

inaccurate regions, which is robust to noise and thus can tol-

erate inaccurate initial localization. By taking advantages of

superpixel, the mined object regions will have clear bound-

ary.

3. Architecture of the Proposed MCOF

Classification networks can only produce coarse and i-

naccurate discriminative object localization, which are far

from the requirement of pixel-wise semantic segmentation.

To address this issue, in this paper, we argue that, though

the initial object localization is coarse, it contains impor-

tant features about objects. So we propose to mine com-

mon object features from initial object seeds to progressive-

ly correct inaccurate regions and produce fine object regions

to supervise segmentation network.

As shown in Figure 2, our framework consists of two

iterative steps: bottom-up step and top-down step. The

bottom-up step mines common object features from object

seeds to produce fine object regions, and the top-down step

uses the produced object regions to train weakly-supervised

segmentation network. The predicted segmentation masks

contain more complete object regions than initial. We then
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Algorithm 1 Framework of the proposed MCOF

Input: Training images I and Superpixel regionsR
Initialize: Generate initial object seeds S , t = 0.

1: while iteration is effective do

2: Train the RegionNet withR and S
3: Predict with the trained RegionNet to get object

regions O.

4: if t == 0 then

5: Refine object regions O with saliency maps to

get refined object regions OR

6: else

7: OR ← O
8: end if

9: Train the PixelNet with I and OR

10: Predict with the trained PixelNet to get object

masksM
11: Update S ←M, t← t+ 1.

12: end while

Output: Mined object masksM and the trained PixelNet

take them as object seeds to mine common object features

and the processes are conducted iteratively to progressively

correct inaccurate regions and produce fine object regions.

Note that, in the first iteration, the initial object seeds

only contain discriminative regions, after mining common

object features, some non-discriminative regions are still

missing. To address this, we propose to incorporate saliency

maps with the mined object regions. After the first iteration,

the segmented masks contain much more object regions and

are more accurate, while the accuracy of saliency maps are

also limited, so in the later iterations, the saliency maps are

not used to prevent introducing additional noise. The over-

all procedure is summarized as Algorithm 1.

It is worth noting that the iterative processes are only ap-

plied in the training stage, for inference, only the segmenta-

tion network of the last iteration is utilized, so the inference

is efficient.

4. Mining Common Object Features

4.1. Initial Object Seeds

To get initial object localization, we train a classification

network and use CAM method [34] to produce heatmap of

each object. As shown in Figure 3, the heatmap is very

coarse, to localize discriminative regions of objects, first,

we segment images into superpixel regions using graph-

based segmentation method [7] and average the heatmap

within each region. We observe that the CAM map usu-

ally has several center regions with low-confidence region-

s surrounding them, and the center regions are mostly the

key part of objects. So for each heatmap, we select its lo-

cal maximum region as initial seeds. However, this may
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Figure 3. Examples of generating initial object seeds from object

heatmaps. (a) Images, (b) object heatmaps of CAM [34], (c) object

heatmaps averaged in each superpixel, (d) initial object seeds.

miss lots of regions, so regions with heatmap larger than a

threshold are also selected as initial seeds. Some examples

are shown in Figure 3.

4.2. Mining Common Object Features from Initial
Object Seeds

The initial object seeds are too coarse to meet the re-

quirement of semantic segmentation, however, they contain

discriminative regions of objects. For example, as shown in

Figure 4, one image may locate hands of a person, while an-

other may give the location of face. We argue that, regions

of same class have some shared attributions, namely, com-

mon object features. So given a set of training images with

seed regions, we can learn common object features from

them and predict the whole regions of object, thus to ex-

pand object regions and suppress noisy regions. We achieve

this by training a region classification network, named Re-

gionNet, using the object seeds as training data.

Formally, given N training images I = {Ii}
N
i=1

, we first

segment them into superpixel regions R = {Ri,j}
N,ni

i=1,j=1

using graph-based segmentation method [7], where ni is

the number of superpixel regions of the image Ii. In

Sec 4.1, we have got initial object seeds, with them, we

can give labels for superpixel regions R and denote them

as S = {Si,j}
N,ni

i=1,j=1
, where Si,j is one-hot encoding with

Si,j(c) = 1 and others as 0 if Ri,j belongs to class c. Based

on training data D = {(Ri,j , Si,j)}
N,ni

i=1,j=1
, our goal is to

train a region classification network fr(R; θr) parameter-

ized by θr to model the probability of region Ri,j being

class label c , namely, fr
c (Ri,j |θr) = p(y = c|Ri,j).

We achieve this with the efficient mask-based Fast R-

CNN framework [9, 28, 29]. In this framework, we take

external rectangle of each region as the RoI of the original

Fast R-CNN framework. In the RoI pooling layer, features

inside superpixel regions are pooled while features insid-

e the external rectangle but outside the superpixel regions

are pooled as zero. To train this network, we minimize the
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Initial Object Seeds (a) (b) (c) (d) (e)
Figure 4. Left: examples of object seeds. They give us features of objects of different locations. However, they mainly focus on key parts

which are helpful for recognition. Right: (a) initial object seeds, (b) object masks predicted by RegionNet, (c) saliency map, (d) refined

object regions via Bayesian framework, (e) segmentation results of PixelNet.

(a)

(b)

(c)

Figure 5. For images with single object class, salient object regions

may not be consistent with semantic segmentation. In addition,

they may be inaccurate and may locate other objects which are

not included in semantic segmentation datasets. (a) Images, (b)

saliency map of DRFI [11], (c) semantic segmentation.

cross-entropy loss function:

Lr = −
∑

i,j,c

Si,j(c)log(f
r
c (Ri,j |θr)). (1)

By training the RegionNet, common object features can

be mined from the initial object seeds. We then use the

trained network to predict the label of each region of the

training images. In the prediction, some incorrect regions

and regions initially labeled as background can be classified

correctly, thus to expand object regions. Some examples are

shown in Figure 4 (a) and (b), we can see that object regions

predicted by RegionNet contain more regions of objects and

some noisy regions in initial object seeds are corrected. In

this paper, we call these regions as object regions and denote

them as O = {Oi}
N
i=1

.

Note that since we have the class labels of training im-

ages, we can remove wrong predictions and label them as

background. This will guarantee that the produced object

regions do not contain any non-existent class, which is im-

portant for training the following segmentation network.

4.3. Saliency­Guided Object Region Supplement

Note that the RegionNet is learned from the initial seed

regions which mainly contain key regions of objects. With

the RegionNet, the object regions can be expanded while

there still exists some regions that are ignored. For example,

the initial seed regions mainly focus on heads and hands of

a person, while other regions, such as the body, are often

ignored. After expanding by RegionNet, some regions of

the body are still missing (Figure 4 (b)).

To address this issue, we propose to supplement object

regions by incorporating saliency maps for images with s-

ingle object class. Note that we do not directly use saliency

map as initial localization as previous works [31], since in

some cases, salient object may not be the object class we

need in semantic segmentation, and the saliency map itself

also contains noisy regions which will affect the localiza-

tion accuracy. Some examples are shown in Figure 5.

We address this by proposing saliency-guided object re-

gion supplement method which considers both the mined

object regions and saliency maps under Bayesian frame-

work. In Sec 4.2, we have mined object regions which con-

tains key parts of objects. Based on these key parts, we aim

to supplement object regions with saliency maps. Our idea

is, for a region with high saliency value, if it’s similar with

the mined object objects, then it is more likely to be part of

that object. We can formulate the above hypothesis under

Bayesian optimization [33, 27] as:

p(obj|v) =
p(obj)p(v|obj)

p(obj)p(v|obj) + p(bg)p(v|bg)
, (2)

where p(obj) is the saliency map, and p(bg) = 1− p(obj),
p(v|obj) and p(v|bg) are the feature distribution at object

regions and background regions, v is the feature vector,

p(obj|v) is the refined object map which represents the

probability of region with feature v being object. By bi-

narizing the refined object map p(obj|v) with a CRF [14],

we can get refined object regions which incorporate salien-

cy maps to supplement the original object regions. In our

work, we use saliency map of the DRFI method [11] as

in [31].

Some examples are shown in Figure 4, by incorporating

saliency maps, more object regions are included. In this

paper, we call these regions as refined object regions and

denote them as OR = {OR
i }

N
i=1

.
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Figure 6. Intermediate results of the proposed framework. (a) Image, (b) initial object seeds, (c) expanded object regions predicted by

RegionNet, (d) saliency-guided refined object regions. Note that, the saliency-guided refinement is only applied to images with single

class, for images with multiple classes (3rd and 4th rows), the object regions remain unchanged. Segmentation results of PixelNet in (e)

1st, (f) 2nd, (g) 3rd, (h) 4th and (i) 5th iteration, (j) ground truth.

5. Iterative Learning Framework

The refined object regions give us some reliable local-

ization of object, we can use them as supervision to train the

weakly-supervised semantic segmentation network. While

previous works [13, 30, 5] rely on both localization cues

and class labels to design and train segmentation network,

in our work, we have removed wrong class regions in the

previous RegionNet, thus the refined object regions do not

contain any wrong class. So we can only use the localiza-

tion cues as supervision, this is completely compatible with

fully-supervised framework, and thus we can benefit from

existing fully-supervised architecture. In this paper, we uti-

lize the popular DeepLab-LargeFOV model [2] as the basic

network of our segmentation network, named PixelNet.

Formally, given the training images I = {Ii}
N
i=1

and

corresponding refined object regions OR = {OR
i }

N
i=1

, our

goal is to train the segmentation network fs(I; θs) parame-

terized by θs to model the probability that location u being

the class label c, namely, fs
u,c(I|θs) = p(yu = c|I). The

loss function is the cross-entropy loss which encourages the

predictions to match our refined object regions:

Ls = −
1

∑C

c=1
|Sc|

C∑

c=1

∑

u∈Sc

log(fs
u,c(I|θs)), (3)

where C is the number of classes and Sc is a set of locations

that are labelled with class c in the supervision.

The supervision cues, namely, the object regions, is pro-

duced by the region classification network, it only considers

features inside each region. While in the PixelNet, the w-

hole image is considered and thus the context information

is utilized. Using the trained PixelNet to predict the seg-

mentation masks of the training images, the segmentation

masks will further include more object regions. Some ex-

amples are shown in Figure 4, we can see that the predicted

segmentation masks locate more regions of objects and sup-

press the noisy regions in the previous steps.

Further, we take the predicted segmentation masks as

object seeds and conduct the processes above iteratively.

With iterations, more robust common object features can be

mined thus to produce finer object regions, and the segmen-

tation network is progressively optimized with better super-

vision. Figure 6 shows the results with iterations. With it-

erations, the object regions are expanded and the inaccurate

regions are corrected, so the segmentation results become

more and more accurate. Finally, we use the trained Pixel-

Net of the last iteration for inference and evaluate it in the

experiment section.

6. Experiments

6.1. Setup

We evaluate the proposed MCOF framework on the

PASCAL VOC 2012 image segmentation benchmark [6] ∗.

The dataset contains 20 object classes and 1 background

class. For the segmentation task, it contains 1464 train-

ing, 1449 validation and 1456 test images. Following previ-

ous works [13, 23, 30], we use the augmentation data [10]

which contains 10,582 images as training set. We evaluate

our method and compare with other methods on validation

and test sets for segmentation task in terms of intersection-

over-union averaged on all 21 classes (mIoU).

6.2. Comparison with State­of­the­art Methods

We compare our method with previous state-of-the-

art image-level weakly-supervised semantic segmentation

methods: CCNN [20], EM-Adapt [19], MIL-sppxl [22],

STC [31], DCSM [26], BFBP [25], AF-SS [23], SEC [13],

CBTS [24] and AE-PSL [30]. As we mentioned above, our

PixelNet is completely compatible with fully-supervised

framework and thus we can benefit from existing fully-

supervised architecture. In this paper, we utilize DeepLab-

LargeFOV [2] built on top of both VGG16 and ResNet101

∗The models and results are available at https://wangxiang10.github.io/
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CCNN (ICCV’15) [20] 68.5 25.5 18.0 25.4 20.2 36.3 46.8 47.1 48.0 15.8 37.9 21.0 44.5 34.5 46.2 40.7 30.4 36.3 22.2 38.8 36.9 35.3

EM-Adapt (ICCV’15) [19] - - - - - - - - - - - - - - - - - - - - - 38.2

MIL-sppxl (CVPR’15) [22] 77.2 37.3 18.4 25.4 28.2 31.9 41.6 48.1 50.7 12.7 45.7 14.6 50.9 44.1 39.2 37.9 28.3 44.0 19.6 37.6 35.0 36.6

STC (PAMI’16) [31] 84.5 68.0 19.5 60.5 42.5 44.8 68.4 64.0 64.8 14.5 52.0 22.8 58.0 55.3 57.8 60.5 40.6 56.7 23.0 57.1 31.2 49.8

DCSM (ECCV’16) [26] 76.7 45.1 24.6 40.8 23.0 34.8 61.0 51.9 52.4 15.5 45.9 32.7 54.9 48.6 57.4 51.8 38.2 55.4 32.2 42.6 39.6 44.1

BFBP (ECCV’16) [25] 79.2 60.1 20.4 50.7 41.2 46.3 62.6 49.2 62.3 13.3 49.7 38.1 58.4 49.0 57.0 48.2 27.8 55.1 29.6 54.6 26.6 46.6

AF-SS (ECCV’16) [23] - - - - - - - - - - - - - - - - - - - - - 52.6

SEC (ECCV’16) [13] 82.2 61.7 26.0 60.4 25.6 45.6 70.9 63.2 72.2 20.9 52.9 30.6 62.8 56.8 63.5 57.1 32.2 60.6 32.3 44.8 42.3 50.7

CBTS (CVPR’17) [24] 85.8 65.2 29.4 63.8 31.2 37.2 69.6 64.3 76.2 21.4 56.3 29.8 68.2 60.6 66.2 55.8 30.8 66.1 34.9 48.8 47.1 52.8

AE-PSL (CVPR’17) [30] - - - - - - - - - - - - - - - - - - - - - 55.0

Ours:

MCOF-VGG16 85.8 74.1 23.6 66.4 36.6 62.0 75.5 68.5 78.2 18.8 64.6 29.6 72.5 61.6 63.1 55.5 37.7 65.8 32.4 68.4 39.9 56.2

MCOF-ResNet101 87.0 78.4 29.4 68.0 44.0 67.3 80.3 74.1 82.2 21.1 70.7 28.2 73.2 71.5 67.2 53.0 47.7 74.5 32.4 71.0 45.8 60.3

Table 1. Comparison of weakly supervised semantic segmentation methods on PASCAL VOC 2012 val set.
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CCNN (ICCV’15) [20] 70.1 24.2 19.9 26.3 18.6 38.1 51.7 42.9 48.2 15.6 37.2 18.3 43.0 38.2 52.2 40.0 33.8 36.0 21.6 33.4 38.3 35.6

EM-Adapt (ICCV’15) [19] 76.3 37.1 21.9 41.6 26.1 38.5 50.8 44.9 48.9 16.7 40.8 29.4 47.1 45.8 54.8 28.2 30.0 44.0 29.2 34.3 46.0 39.6

MIL-sppxl (CVPR’15) [22] 74.7 38.8 19.8 27.5 21.7 32.8 40.0 50.1 47.1 7.2 44.8 15.8 49.4 47.3 36.6 36.4 24.3 44.5 21.0 31.5 41.3 35.8

STC (PAMI’16) [31] 85.2 62.7 21.1 58.0 31.4 55.0 68.8 63.9 63.7 14.2 57.6 28.3 63.0 59.8 67.6 61.7 42.9 61.0 23.2 52.4 33.1 51.2

DCSM (ECCV’16) [26] 78.1 43.8 26.3 49.8 19.5 40.3 61.6 53.9 52.7 13.7 47.3 34.8 50.3 48.9 69.0 49.7 38.4 57.1 34.0 38.0 40.0 45.1

BFBP (ECCV’16) [25] 80.3 57.5 24.1 66.9 31.7 43.0 67.5 48.6 56.7 12.6 50.9 42.6 59.4 52.9 65.0 44.8 41.3 51.1 33.7 44.4 33.2 48.0

AF-SS (ECCV’16) [23] - - - - - - - - - - - - - - - - - - - - - 52.7

SEC (ECCV’16) [13] 83.5 56.4 28.5 64.1 23.6 46.5 70.6 58.5 71.3 23.2 54.0 28.0 68.1 62.1 70.0 55.0 38.4 58.0 39.9 38.4 48.3 51.7

CBTS (CVPR’17) [24] 85.7 58.8 30.5 67.6 24.7 44.7 74.8 61.8 73.7 22.9 57.4 27.5 71.3 64.8 72.4 57.3 37.0 60.4 42.8 42.2 50.6 53.7

AE-PSL (CVPR’17) [30] - - - - - - - - - - - - - - - - - - - - - 55.7

Ours:

MCOF-VGG16 86.8 73.4 26.6 60.6 31.8 56.3 76.0 68.9 79.4 18.8 62.0 36.9 74.5 66.9 74.9 58.1 44.6 68.3 36.2 64.2 44.0 57.6

MCOF-ResNet101 88.2 80.8 31.4 70.9 34.9 65.7 83.5 75.1 79.0 22.0 70.3 31.7 77.7 72.9 77.1 56.9 41.8 74.9 36.6 71.2 42.6 61.2

Table 2. Comparison of weakly supervised semantic segmentation methods on PASCAL VOC 2012 test set.

as PixelNet. Table 1 and Table 2 show the comparison

on mIoU on PASCAL VOC 2012 validation and test set-

s, respectively. We can see that our method outperform-

s previous methods by a large margin and achieves new

state-of-the-art. When using VGG16 as basic network

(MCOF-VGG16), our method outperforms the second best

method, AE-PSL [30] by 1.2% and 1.9% on val and

test sets, respectively. And when using the more power-

ful ResNet101 (MCOF-ResNet101), the improvement can

reach 5.3% and 5.5%, respectively. For the training sam-

ples, MIL-sppxl [22] used 700K images and STC [31] used

50K images, our method and other methods use 10K im-

ages. We also show some qualitative segmentation result-

s of the proposed framework in Figure 7, we can see that

our weakly-supervised method can produce quite satisfac-

tory segmentation, even in complex images.

6.3. Ablation Studies

6.3.1 Progressive Common Object Features Mining

and Network Training Framework

To evaluate the effectiveness of the proposed progres-

sive common object features mining and network training

framework, we evaluate the RegionNet and PixelNet of each

Image Result Ground Truth Image Result Ground Truth

Figure 7. Qualitative segmentation results of the proposed frame-

work on PASCAL VOC 2012 val set.

iteration on training and validation set. In the ablation s-

tudies, we use VGG16 as base network for PixelNet. The

results are shown in Table 3. We can see that the initial

object seeds are very coarse (14.27% mIoU on train set),

by applying the RegionNet to learn the common features
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train val

Initial Object Seeds 14.27 -

iter1 RegionNet 29.1 -

Saliency-guided refinement 34.8 -

PixelNet 48.4 44.4

iter2 RegionNet 53.8 -

PixelNet 57.9 51.6

iter3 RegionNet 58.2 -

PixelNet 60.9 53.3

iter4 RegionNet 61.1 -

PixelNet 63.1 55.5

iter5 RegionNet 62.5 -

PixelNet 63.2 56.2

Table 3. Results of the iteration process. We evaluate the Region-

Net and PixelNet of each iteration on training and validation sets

of PASCAL 2012 dataset.

of objects, the performance achieves 29.1%, by introduc-

ing saliency-guided refinement, it achieves 34.8%, and af-

ter learning with the PixelNet, it achieves 48.4%. And in the

later iterations, the performance improves gradually, which

demonstrates that our method is effective.

6.3.2 Comparison with Direct Iterative Training

We extensively conduct experiments to verify effectiveness

of the proposed progressive common object features mining

and network training framework by comparing with direc-

t iterative training method. For the direct iterative training

method, we start from the segmentation results of our first

iteration, and then in later iterations, use the segmentation

masks of the previous iteration to train the segmentation

network.

Figure 8 shows the comparison. With the iterations, the

performance of the direct iterative method increases slowly

and only reaches a low accuracy, while in the proposed M-

COF, the performance increases rapidly and achieves much

higher accuracy. This result demonstrates that our MCOF

framework is effective. The MCOF progressively mines

common object features from previous object masks and

then to expand more reliable object regions to optimize the

semantic segmentation network, thus the accuracy can in-

crease rapidly to a quite satisfactory results.

6.3.3 Effectiveness of Saliency-Guided Refinement

The initial object seeds only locate discriminative regions

of objects, for example, heads and hands of a person, while

other regions, such as the body, are often ignored. To sup-

plement other object regions, saliency maps are incorpo-

rated with initial object seeds. This is very important for

mining the whole regions of objects. To evaluate the ef-

fectiveness, we conduct experiment on framework without

saliency-guided refinement, and compare the performance

of the PixelNet of each iteration. The result is shown in

1 2 3 4 5
iteration

45

50

55

60

65

m
Io

U

Train Set: MCOF
Train Set: Direct Iteration 
Val Set: MCOF
Val Set: Direct Iteration

Figure 8. Comparison with direct iterative training method. Our

performance improves rapidly while performance of the direct it-

erative training method increases slowly and only reaches a low

accuracy.

iterations 1 2 3 4 5

w/o saliency refinement 41.8 46.2 47.7 51.5 52.1

w/ saliency refinement 44.4 51.6 53.3 55.5 56.2

Table 4. Evaluate the effectiveness of saliency-guided refinemen-

t. We show the mIoU of the PixelNet of each iteration on Pascal

VOC 2012 val set. Without saliency-guided refinement, the per-

formance will be limited and can not reach satisfactory accuracy.

Table 4. Without incorporating saliency maps, some object

regions will be missing and thus the performance will be

limited and can not reach satisfactory accuracy.

7. Conclusion

In this paper, we propose MCOF, an iterative bottom-

up and top-down framework which tolerates inaccurate

initial localization by iteratively mining common object

features from object seeds. Our method progressively

expands object regions and optimizes segmentation net-

work. In bottom-up step, starting from coarse but dis-

criminative object seeds, we mine common object features

from them to expand object regions. To supplement non-

discriminative object regions, saliency-guided refinemen-

t method is proposed. Then in top-down step, these regions

are used as supervision to train the segmentation network

and predict segmentation masks. The predicted segmenta-

tion masks contain more complete object regions than ini-

tial, so we can further mine common object features from

them. And the processes are conducted iteratively to pro-

gressively correct inaccurate initial localization and pro-

duce more accurate object regions for semantic segmenta-

tion. Our bottom-up and top-down framework bridges the

gap between high-level semantic and low-level appearance

in weakly-supervised semantic segmentation, and achieves

new state-of-the-art performance.
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