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Abstract

Although the performance of person Re-Identification

(ReID) has been significantly boosted, many challenging is-

sues in real scenarios have not been fully investigated, e.g.,

the complex scenes and lighting variations, viewpoint and

pose changes, and the large number of identities in a cam-

era network. To facilitate the research towards conquer-

ing those issues, this paper contributes a new dataset called

MSMT171 with many important features, e.g., 1) the raw

videos are taken by an 15-camera network deployed in both

indoor and outdoor scenes, 2) the videos cover a long pe-

riod of time and present complex lighting variations, and 3)

it contains currently the largest number of annotated iden-

tities, i.e., 4,101 identities and 126,441 bounding boxes.

We also observe that, domain gap commonly exists between

datasets, which essentially causes severe performance drop

when training and testing on different datasets. This re-

sults in that available training data cannot be effectively

leveraged for new testing domains. To relieve the expensive

costs of annotating new training samples, we propose a Per-

son Transfer Generative Adversarial Network (PTGAN) to

bridge the domain gap. Comprehensive experiments show

that the domain gap could be substantially narrowed-down

by the PTGAN.

1. Introduction

Person Re-Identification (ReID) targets to match and re-

turn images of a probe person from a large-scale gallery

set collected by camera networks. Because of its important

applications in security and surveillance, person ReID has

been drawing lots of attention from both academia and in-

dustry. Thanks to the development of deep learning and the

availability of many datasets, person ReID performance has

been significantly boosted.

Although the performance on current person ReID

datasets is pleasing, there still remain several open issues

1The dataset is available at http://www.pkuvmc.com.

Figure 1: Illustration of the domain gap between CUHK03

and PRID. It is obvious that, CUHK03 and PRID present

different styles, e.g., distinct lightings, resolutions, human

race, seasons, backgrounds, etc., resulting in low accuracy

when training on CUHK03 and testing on PRID.

hindering the applications of person ReID. First, existing

public datasets differ from the data collected in real sce-

narios. For example, current datasets either contain limited

number of identities or are taken under constrained environ-

ments. The currently largest DukeMTMC-reID [41] con-

tains less than 2,000 identities and presents simple lighting

conditions. Those limitations simplify the person ReID task

and help to achieve high accuracy. In real scenarios, per-

son ReID is commonly executed within a camera network

deployed in both indoor and outdoor scenes and processes

videos taken by a long period of time. Accordingly, real

applications have to cope with challenges like a large num-

ber of identities and complex lighting and scene variations,

which current algorithms might fail to address.

Another challenge we observe is that, there exists do-

main gap between different person ReID datasets, i.e., train-

ing and testing on different person ReID datasets results in

severe performance drop. For example, the model trained

on CUHK03 [20] only achieves the Rank-1 accuracy of

2.0% when tested on PRID [10]. As shown in Fig. 1, the

domain gap could be caused by many reasons like different

lighting conditions, resolutions, human race, seasons, back-

grounds, etc. This challenge also hinders the applications
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of person ReID, because available training samples cannot

be effectively leveraged for new testing domains. Since an-

notating person ID labels is expensive, research efforts are

desired to narrow-down or eliminate the domain gap.

Aiming to facilitate the research towards applications in

realistic scenarios, we collect a new Multi-Scene Multi-

Time person ReID dataset (MSMT17). Different from exist-

ing datasets, MSMT17 is collected and annotated to present

several new features. 1) The raw videos are taken by an 15-

camera network deployed in both the indoor and outdoor

scenes. Therefore, it presents complex scene transforma-

tions and backgrounds. 2) The videos cover a long period

of time, e.g., four days in a month and three hours in the

morning, noon, and afternoon, respectively in each day, thus

present complex lighting variations. 3) It contains currently

the largest number of annotated identities and bounding

boxes, i.e., 4,101 identities and 126,441 bounding boxes.

To our best knowledge, MSMT17 is currently the largest

and most challenging public dataset for person ReID. More

detailed descriptions will be given in Sec. 3.

To address the second challenge, we propose to bridge

the domain gap by transferring persons in dataset A to an-

other dataset B. The transferred persons from A are desired

to keep their identities, meanwhile present similar styles,

e.g., backgrounds, lightings, etc., with persons in B. We

model this transfer procedure with a Person Transfer Gener-

ative Adversarial Network (PTGAN), which is inspired by

the Cycle-GAN [42]. Different from Cycle-GAN [42], PT-

GAN considers extra constraints on the person foregrounds

to ensure the stability of their identities during transfer.

Compared with Cycle-GAN, PTGAN generates high qual-

ity person images, where person identities are kept and the

styles are effectively transformed. Extensive experimental

results on several datasets show PTGAN effectively reduces

the domain gap among datasets.

Our contributions can be summarized into three as-

pects. 1) A new challenging large-scale MSMT17 dataset

is collected and will be released. Compared with existing

datasets, MSMT17 defines more realistic and challenging

person ReID tasks. 2) We propose person transfer to take

advantages of existing labeled data from different datasets.

It has potential to relieve the expensive data annotations on

new datasets and make it easy to train person ReID systems

in real scenarios. An effective PTGAN model is presented

for person transfer. 3) This paper analyzes several issues

hindering the applications of person ReID. The proposed

MSMT17 and algorithms have potential to facilitate the fu-

ture research on person ReID.

2. Related Work

This work is closely related with descriptor learning in

person ReID and image-to-image translation by GAN. We

briefly summarize those two categories of works in this sec-

tion.

2.1. Descriptor Learning in Person ReID

Deep learning based descriptors have shown substantial

advantages over hand-crafted features on most of person

ReID datasets. Some works [33, 41, 28] learn deep de-

scriptors from the whole images with classification models,

where each person ID is treated as a category. Some other

works [40, 6] combine verification models with classifica-

tion models to learn descriptors. Hermans et al. [9] show

that triplet loss effectively improves the performance of per-

son ReID. Similarly, Chen et al. [1] propose the quadruplet

network to learn representations.

The above works learn global descriptors and ignore the

detailed cues which might be important for distinguishing

persons. To explicitly utilize local cues, Cheng et al. [2]

propose a multi-channel part-based network to learn a dis-

criminative descriptor. Wu et al. [32] discover hand-crafted

features could be complementary with deep features. They

divide the global image into five fixed-length regions. For

each region, a histogram descriptor is extracted and con-

catenated with the global deep descriptor. Though the above

works achieve good performance, they ignore the misalign-

ment issue caused by fixed body part division. Targeting

to solve this issue, Wei et al. [31] utilize Deepercut [11] to

detect three coarse body regions and then learn an global-

local-alignment descriptor. In [38], more fine-grained part

regions are localized and then fed into the proposed Spindle

Net for descriptor learning. Similarly, Li et al. [18] adopt

Spatial Transform Networks (STN) [13] to detect latent part

regions and then learn descriptors on those regions.

2.2. ImagetoImage Translation by GAN

Since GAN proposed by Goodfellow et al. [7], many

variants of GAN [24, 25, 30, 36, 17, 34, 16, 5, 21, 35, 14, 42,

23] have been proposed to tackle different tasks, e.g., natu-

ral style transfer, super-resolution, sketch-to-image genera-

tion, image-to-image translation, etc. Among them, image-

to-image translation has attracted lots of attention. In [12],

Isola et al. propose conditional adversarial networks to

learn the mapping function from input to output images.

However, this method requires paired training data, which

is hard to acquire in many tasks [42]. Targeting to solve the

unpaired image-to-image translation task, Zhu et al. [42]

propose cycle consistency loss to train unpaired data. Also,

the works [35, 14] propose a similar framework to solve the

task. Our proposed PTGAN is similar to Cycle-GAN [42]

in that, it also performs image-to-image translation. Dif-

ferently, extra constraints on person identity are applied to

ensure the transferred images can be used for model train-

ing. Zheng et al. [41] adopt GAN to generate new samples

for data augmentation in person ReID. Their work differs

from ours in both motivation and methodology. As far as
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we know, this is an early work on person transfer by GAN

for person ReID.

3. MSMT17 Dataset

3.1. Overview of Previous Datasets

Current person ReID datasets have significantly pushed

forward the research on person ReID. As shown in Ta-

ble 1, DukeMTMC-reID [41], CUHK03 [20], and Market-

1501 [39] involve larger numbers of cameras and identities

than VIPeR [8] and PRID [10]. The amount of training data

makes it possible to develop deep models and show their

discriminative power in person ReID. Although current al-

gorithms have achieved high accuracy on those datasets,

person ReID is far from being solved and widely applied

in real scenarios. Therefore, it is necessary to analyze the

limitations of existing datasets.

Compared with the data collected in real scenarios, cur-

rent datasets present limitations in four aspects: 1) The

number of identities and cameras are not large enough, es-

pecially when compared with the real surveillance video

data. In Table 1, the largest dataset contains only 8 cameras

and less than 2,000 identities. 2) Most of existing datasets

cover only single scene, i.e., either indoor or outdoor scene.

3) Most of existing datasets are constructed from short-time

surveillance videos without significant lighting changes. 4)

Their bounding boxes are generated either by expensive

hand drawing or out-dated detectors like Deformable Part

Model (DPM) [4]. Those limitations make it necessary to

collect a larger and more realistic dataset for person ReID.

3.2. Description to MSMT17

Targeting to address above mentioned limitations, we

collect a new Multi-Scene Multi-Time person ReID dataset

(MSMT17) by simulating the real scenarios as much as pos-

sible. We utilize an 15-camera network deployed in cam-

pus. This camera network contains 12 outdoor cameras and

3 indoor cameras. We select 4 days with different weather

conditions in a month for video collection. For each day,

3 hours of videos taken in the morning, noon, and after-

noon, respectively, are selected for pedestrian detection and

annotation. Our final raw video set contains 180 hours of

videos, 12 outdoor cameras, 3 indoor cameras, and 12 time

slots. Faster RCNN [26] is utilized for pedestrian bound-

ing box detection. Three labelers go through the detected

bounding boxes and annotate ID label for 2 months. Fi-

nally, 126,441 bounding boxes of 4,101 identities are an-

notated. Some statistics on MSMT17 are shown in Fig. 3.

Sample images from MSMT17 are shown and compared in

Fig. 2. Compared with existing datasets, we summarize the

new features in MSMT17 into the following aspects:

1) Larger number of identities, bounding boxes, and

cameras. To our best knowledge, MSMT17 is currently

Figure 2: Comparison of person images in CUHK03, Mar-

ket1501, DukeMTMC-reID, and MSMT17. Each column

shows two sample images of the same identity. It is obvi-

ous that, MSMT17 presents a more challenging and realistic

person ReID task.

the largest person ReID dataset. As shown by the compari-

son in Table 1, MSMT17 contains 126,441 bounding boxes,

4,101 identities, which are significantly larger than the ones

in previous datasets.

2) Complex scenes and backgrounds. MSMT17 contains

the largest number of cameras, i.e., 15 cameras placed in

different locations. It is also constructed with both indoor

and outdoor videos, which has not been considered in previ-

ous datasets. Those considerations result in complex back-

grounds and scene variations, also make MSMT17 more ap-

pealing and challenging.

3) Multiple time slots result in severe lighting changes.

MSMT17 is collected with 12 time slots, i.e., morning,

noon, and afternoon in four days. It better simulates the real

scenarios than previous datasets, but brings severe lighting

changes.

4) More reliable bounding box detector. Compared with

hand drawing and DPM detector, Faster RCNN [26] is a bet-

ter choice for bounding box detection in real applications,

e.g., easier to implement and more accurate.

3.3. Evaluation Protocol

We randomly divide our dataset into training set and test-

ing set, respectively. Different from dividing the two parts

equally in previous datasets, we set the training and test-

ing ratio as 1:3. We use this setting because of the expen-

sive data annotation in real scenarios, and thus want to en-
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Table 1: Comparison between MSMT17 and other person ReID datasets.

Dataset MSMT17 Duke [41] Market [39] CUHK03 [20] CUHK01 [19] VIPeR [8] PRID [10] CAVIAR [3]

BBoxes 126,441 36,411 32,668 28,192 3,884 1,264 1,134 610

Identities 4,101 1,812 1,501 1,467 971 632 934 72

Cameras 15 8 6 2 10 2 2 2

Detector Faster RCNN hand DPM DPM, hand hand hand hand hand

Scene outdoor, indoor outdoor outdoor indoor indoor outdoor outdoor indoor
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different, i.e., 1-15, cameras

Figure 3: Statistics of MSMT17.

courage more efficient training strategies. Finally, the train-

ing set contains 32,621 bounding boxes of 1,041 identities,

and the testing set contains 93,820 bounding boxes of 3,060

identities. From the testing set, 11,659 bounding boxes are

randomly selected as query images and the other 82,161

bounding boxes are used as gallery images.

Similar with most of previous datasets, we utilize the Cu-

mulated Matching Characteristics (CMC) curve to evaluate

the ReID performance. For each query bounding box, mul-

tiple true positives could be returned. Therefore, we also

regard person ReID as a retrieval task. mean Average Pre-

cision (mAP) is thus also used as the evaluation metric.

4. Person Transfer GAN

To better leverage the training set of dataset A in person

ReID tasks on dataset B, we propose to bridge the domain

gap by transferring persons in A to B. As illustrated in Fig. 1,

different datasets present distinct styles due to multiple rea-

sons such as backgrounds, lighting conditions, resolutions,

etc. Imagine that, if persons in A were captured by the cam-

eras of B, the style of those person images would be consis-

tent with the style of B. Our person transfer tries to simulate

this procedure, i.e., learning a transfer function to 1) ensure

the transferred person images show similar styles with the

target dataset, and 2) keep the appearance and identity cues

of the person during transfer.

This transfer task seems easy, e.g., can be finished by

cropping the person foregrounds from A and paste them on

the backgrounds on B. However, it is difficult to deal with

multiple reasons of domain gap in a rule-based algorithm.

Moreover, there could be complicated style variations on B,

e.g., different backgrounds and lighting conditions between

two cameras of PRID in Fig. 1. Our algorithm is inspired by

the popularity of GAN models, which have been proven ef-

fective in generating the desired image samples. We hence

design a Person Transfer GAN (PTGAN) to perform person

transfer from A to B.

Based on the above discussions, PTGAN is constructed

to satisfy two constraints, i.e., the style transfer and person

identity keeping. The goal of style transfer is to learn the

style mapping functions between different person datasets.

The goal of person identity keeping is to ensure the identity

of one person remains unchanged after transfer. Because

different transferred samples of one person are regarded as

having the same person ID, the constraint on person identity

is important for person ReID training. We thus formulate

the loss function of PTGAN as, i.e.,

LPTGAN =LStyle + λ1LID, (1)

where LStyle denotes the style loss and LID denotes the

identity loss, and λ1 is the parameter for the trade-off be-

tween two losses.

ReID datasets do not contain paired person images, i.e.,

images of the same person from different datasets. There-

fore, the style transfer can be regarded as an unpaired

image-to-image translation task. Because of the good per-

formance of Cycle-GAN in unpaired image-to-image trans-

lation task, we employ Cycle-GAN to learn the style map-

ping functions between dataset A and B. Suppose G repre-

sents the style mapping function from A to B and G repre-

sents the style mapping function from B to A. DA and DB

are the style discriminators for A and B, respectively. The
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objective function of style transfer learning can be formu-

lated as follows:

LStyle =LGAN (G,DB , A,B)

+ LGAN (G,DA, B,A)

+ λ2Lcyc(G,G),

(2)

Where LGAN represents the standard adversarial loss [7],

and Lcyc represents the cycle consistency loss [42]. For

more details, please refer to the Cycle-GAN [42].

Solely considering style transfer may result in ambigu-

ous person ID labels in transferred person images. We thus

compute the identity loss to ensure the accuracy of person

ID labels in the transferred data. The person identity loss is

computed by first acquiring the foreground mask of a per-

son, then evaluating the variations on the person foreground

before and after person transfer. Given the data distribu-

tion of A as a ∼ pdata(a) and the data distribution of B as

b ∼ pdata(b). The objective function of identity loss can be

formulated as follows:

LID =Ea∼pdata(a)[||(G(a)− a)⊙M(a)||2]

+Eb∼pdata(b)[||(G(b)− b)⊙M(b)||2],
(3)

where G(a) represents the transferred person image from

image a, and M(a) represents the foreground mask of per-

son image a.

Because of its good performance on segmentation task,

we use PSPNet [37] to extract the mask on person images.

On video surveillance data with moving foregrounds and

fixed backgrounds, more accurate and efficient foreground

extraction algorithms can be applied. It can be observed

that, PTGAN does not require person identity labels on the

target dataset B. The style discriminator DB can be trained

with unlabled person images on B. Therefore, PTGAN is

well-suited to real scenarios, where the new testing domains

have limited or no labeled training data.

We show some sample results generated by PTGAN in

Fig. 4. Compared with Cycle-GAN, PTGAN generates im-

ages with substantially higher quality. For example, the ap-

pearance of person is maintained and the style is effectively

transferred toward the one on PRID camera1. The shadows,

road marks, and backgrounds are automatically generated

and are similar with the ones on PRID camera1. It is also

interesting to observe that, PTGAN still works well with

the noisy segmentation results generated by PSPNet. This

implies that, PTGAN is also robust to the segmentation er-

rors. More detailed evaluation of PTGAN will be given in

Sec. 5.4.

5. Experiments

5.1. Datasets

In addition to the MSMT17, four widely used person

ReID datasets are employed in our experiments.

Figure 4: Comparison of the transferred images by PTGAN

and Cycle-GAN from CUHK03 to PRID-cam1. The second

row shows the segmentation results by PSPNet. The pink

regions are segmented as person body regions.

DukeMTMC-reID [41] is composed of 1,812 identities

and 36,411 bounding boxes. 16,522 bounding boxes of 702

identities are used for training. The rest identities are in-

cluded in the testing set. DukeMTMC-reID is also denoted

as Duke for short.

Market-1501 [39] contains 1,501 identities and 32,668

bounding boxes. The training set contains 12,936 bounding

boxes of 751 identities. The rest 750 identities are included

in the testing set. Market-1501 is also denoted as Market

for short.

CUHK03 [20] consists of 1,467 identities and 28,192

bounding boxes generated by both DPM and hand. Follow-

ing the work [33], 26,264 bounding boxes of 1,367 identi-

ties are used for training, and 1,928 bounding boxes of 100

identities are used for testing.

PRID [10] is composed of 934 identities from two cam-

eras. Our experiments use the bounding boxes of 200 per-

sons shared by both cameras as testing set.

5.2. Implementation Details

PTGAN uses similar network architecture with the one

in Cycle-GAN [42]. For the generator network, two

stride-2 convolutions, 9 residual blocks, and two stride- 12
fractionally-strided convolutions are designed. Two parts

are included in the discriminator network. PatchGAN [12]

is adopted as one part. The PatchGAN classifies whether a

70× 70 patch in an image is real or fake. For the other part,

L2 distance between the transferred image and input image

is computed on the foreground person.

Adam solver [15] is adopted in PTGAN. For the genera-

tor network, the learning rate is set as 0.0002. The learning

rate is set as 0.0001 for the discriminator network. We set
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Table 2: The performance of the state-of-the-art methods on

MSMT17. R-1 represents the Rank-1 accuracy.

Methods mAP R-1 R-5 R-10 R-20

GoogLeNet [29] 23.0 47.6 65.0 71.8 78.2

PDC [27] 29.7 58.0 73.6 79.4 84.5

GLAD [31] 34.0 61.4 76.8 81.6 85.9

λ1 = 10, and λ2 = 10. The size of input image is 256×256.

Finally, we train PTGAN for 40 epochs.

5.3. Performance on MSMT17

As described in Sec. 3, MSMT17 is challenging but close

to the reality. This section verifies this claim by testing ex-

isting algorithms on MSMT17.

We go through the state-of-the-art works published in

2017 and 2016. Among those works, the GLAD proposed

by Wei et al. [31] achieves the best performance on Mar-

ket, and the PDC proposed by Su et al. [27] achieves the

best performance on CUHK03.2 We thus evaluate those

two methods on MSMT17. In most of person ReID works,

GoogLeNet [29] is commonly used as the baseline model.

We thus also use GoogLeNet [29] as our baseline.

We summarize the experimental results in Table 2. As

shown in the table, the baseline only achieves mAP of 23%

on MSMT17, which is significantly lower than its mAP of

51.7% on Market [6]. It is also obvious that, PDC [27]

and GLAD [31] substantially outperform the baseline per-

formance by considering extra part and regional features.

However, the best performance achieved by GLAD, e.g.,

mAP of 34%, is still substantially lower than its reported

performance on other datasets, e.g., 73.9% on Market. The

above experiments clearly show the challenges of MSMT17.

We also show some sample retrieval results in Fig. 5.

From the samples, we can conclude that although challeng-

ing, the ReID task defined by MSMT17 is realistic. Note

that, in real scenarios distinct persons may present simi-

lar clothing cues, and images of same person may present

different lightings, backgrounds, and poses. As shown in

Fig. 5, the false positive samples do show similar appear-

ances with the one of query person. Some true positives

present distinct lightings, poses, and backgrounds from the

query. Therefore, we believe MSMT17 is a valuable dataset

to facilitate the future research on person ReID.

5.4. Performance of Person Transfer

Person transfer is performed from dataset A to B. The

transferred data is hence used for training on B. To ensure

there is enough transferred data for training on B, we test

person transfer in two cases, i.e., 1) transferring from a large

2The work [22] reports better performance, but it is trained on an aug-

mented data including training sets from three datasets.

Figure 5: Sample person ReID results generated by the

method of GLAD [31] on MSMT17.

Figure 6: Sample transferred person images from CUHK03

to PRID-cam2. Each sample shows an image from

CUHK03 in the first column, and the transferred image in

the second column.

A to a small B, and 2) transferring from a large A to a large

B. In the following experiments, we use the training set

provided by A for person transfer.

5.4.1 Transfer from Large Dataset to Small Dataset

This part tests the performance of transferred person data

from CUHK03 and Martket to a small dataset PRID. As

shown in Fig. 1, person images captured by two cameras on

PRID show different styles. Therefore, we perform person

transfer to those two cameras, i.e., PRID-cam1 and PRID-

cam2, respectively.

We first perform person transfer from CUHK03 to PRID-

cam1 and PRID-cam2. Samples of the transferred person

images to PRID-cam1 are shown in Fig. 4. We additionally

show samples of transferred person images from CUHK03
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Table 3: Performance of GoogLeNet tested on PRID but

trained with different training sets. ∗ denotes the transferred

dataset. For instance, the subscript cam1 represents the

transferred target dataset PRID-cam1. “cam1/cam2” means

using images in PRID-cam1 as query set and images from

PRID-cam2 as gallery set.

Training Set
cam1/cam2 cam2/cam1

R-1 R-10 R-1 R-10

CUHK03 2.0 11.5 1.5 11.5

CUHK03∗
cam1

18.0 43.5 6.5 24.0

CUHK03∗
cam2

17.5 53.0 22.5 54.0

CUHK03∗
cam1

+ CUHK03∗
cam2

37.5 72.5 37.5 69.5

Market 5.0 26.0 11.0 40.0

Market∗
cam1

17.5 50.5 8.5 28.5

Market∗
cam2

10.0 31.5 10.5 37.5

Market∗
cam1

+ Market∗
cam2

33.5 71.5 31.0 70.5

to PRID-cam2 in Fig. 6. It is clear that, the transferred

person images to those two cameras show different styles,

which are consistent with the ones on PRID. We also trans-

fer Market to PRID-cam1 and PRID-cam2, respectively.

Samples of the transferred person images from Market are

shown in Fig. 7, where similar results can be observed as

the ones in Fig. 4 and Fig. 6, respectively.

To further evaluate whether the domain gap is re-

duced through PTGAN. We conduct comparisons between

GoogLeNet trained with the training sets on CUHK03 and

Market, and GoogLeNet trained on their transferred train-

ing sets, respectively. The experimental results are sum-

marized in Table 3. As shown in the table, GoogLeNet

trained on the CUHK03, only achieves the Rank-1 accu-

racy of 2.0% on PRID, which implies substantial domain

gap between CUHK03 and PRID. With training data trans-

ferred by PTGAN, GoogLeNet achieves a significant per-

formance boost, e.g., the Rank-1 accuracy is improved from

2.0% to 37.5%, the Rank-10 accuracy is improved from

11.5% to 72.5%. Similar improvements can be observed

from the results on Martket, e.g., the Rank-1 accuracy is

significantly improved from 5.0% to 33.5% after person

transfer. The substantial performance improvements clearly

indicate the shrunken domain gap. Moreover, this experi-

ment shows that even without using labeled data on PRID,

we can achieve reasonable performance on it using training

data from other datasets.

From Table 3, we also observe an interesting phe-

nomenon, i.e., combining the transferred datasets on two

cameras results in better performance. This might be due

to two reasons: 1) the combined dataset has more training

samples, thus helps to train a better deep network, and 2) it

enables the learning of style differences between two cam-

eras. In the combined dataset, each person image has two

transferred samples on camera1 and camera2, respectively

with different styles. Because those two samples have the

Figure 7: Sample transferred person images from Market

to PRID-cam1 and PRID-cam2. Images in the first column

are from Market. Transferred images to PRID-cam1 and

PRID-cam2 are shown in the second and third columns, re-

spectively.

same person ID label, this training data enforces the net-

work learning to gain robustness to the style variations be-

tween camera1 and camera2.

5.4.2 Transfer from Large Dataset to Large Dataset

This part simulates a more challenging scenario commonly

existing in real applications, i.e., the available training data

on a large testing set is not provided. We thus test the per-

formance of PTGAN by conducting person transfer among

three large datasets.

The large person ReID dataset commonly contains a

large number of cameras, making it expensive to perform

person transfer to each individual camera. Therefore, dif-

ferent from the experimental settings in Sec. 5.4.1, we do

not distinguish different cameras and directly transfer per-

son images to the target dataset with one PTGAN. Obvi-

ously, this is not an optimal solution for person transfer. Our

experimental results are summarized in Fig. 8. It is obvious

that GoogLeNet trained on transferred datasets works bet-

ter than the one trained on the original training sets. Sample

transferred images are presented in Fig. 9. It is obvious

that, although we use a simple transfer strategy, PTGAN

still generates high quality images. Possible better solutions

for person transfer to large datasets will be discussed as our

future work in Sec. 6.

5.5. Performance of Person Transfer on MSMT17

We further test PTGAN on MSMT17. We use the same

strategy in Sec. 5.4.2 to conduct person transfer. As shown

in Table 4, the domain gaps between MSMT17 and the

other three datasets are effectively narrowed-down by PT-

GAN. For instance, the Rank-1 accuracy is improved by

4.7%, 6.8%, and 3.7% after performing person transfer

85



Figure 8: Rank-1 and Rank-10 accuracies of GoogLeNet on CUHK03, Market, and Duke. The subscripts C, Ma, and D

denote the transferred target dataset is CUHK03, Market, and Duke, respectively.

Figure 9: Illustration of the transferred person images to

Duke. The images in first row are from Duke. The images in

second and third rows are transferred images from Market

to Duke. Obviously, those images have the similar styles,

e.g., similar backgrounds and lightings, etc.

from Duke, Market, and CUHK03, respectively.

In real scenarios, the testing set is commonly large and

has limited number of labeled training data. We hence test

the validity of person transfer in such case. We first show

the person ReID performance using different portions of

training data on MSMT17 in Table 5. From the compari-

son between Table 4 and Table 5, it can be observed that

10% of MSMT17 training set gets similar performance with

the transferred training set from Duke, e.g., both achieve

the Rank-1 accuracy of about 11.5%∼11.8%. Therefore,

16,522 transferred images from Duke achieves similar per-

formance with 2,602 annotated images on MSMT17. We

can roughly estimate that 6.3 transferred images are equiv-

alent to 1 annotated image. This thus effectively relieves

the cost of data annotation on new datasets. The transferred

data is then combined with the training set on MSMT17. As

shown in Table 5, the Rank-1 accuracy is constantly im-

proved by 1.9%, 5.1%, and 2.4%, respectively by combin-

ing the transferred data from Duke, Market, and CUHK03,

respectively.

6. Conclusions and Discussions

This paper contributes a large-scale MSMT17 dataset.

MSMT17 presents substantially variants on lightings,

scenes, backgrounds, human poses, etc., and is currently

the largest person ReID dataset. Compared with existing

Table 4: The performance of GoogLeNet tested on

MSMT17. The subscript MS denotes the transferred target

dataset MSMT17.

Duke Duke∗
MS

Market Market∗
MS

CUHK03 CUHK03∗
MS

R-1 7.1 11.8 3.4 10.2 2.8 6.5

R-10 17.4 27.4 10.0 24.4 8.6 17.2

mAP 1.9 3.3 1.0 2.9 0.7 1.7

Table 5: The performance of GoogLeNet for weakly super-

vised learning on MSMT17.

Training Set R-1 R-10 mAP

MSMT (1%) 0.9 3.6 0.2

MSMT (2.5%) 2.0 7.4 0.5

MSMT (5%) 6.3 18.1 1.9

MSMT (10%) 11.5 26.9 3.7

Duke + MSMT17 (10%) 16.1 33.1 5.5

Duke∗
MS

+ MSMT17 (10%) 18.0 36.4 6.2

Market + MSMT17 (10%) 12.6 28.5 4.4

Market∗
MS

+ MSMT17 (10%) 17.7 35.9 6.0

CUHK03 + MSMT17 (10%) 11.9 28.3 4.1

CUHK03∗
MS

+ MSMT17 (10%) 14.3 31.7 4.6

datasets, MSMT17 defines a more realistic and challenging

person ReID task.

PTGAN is proposed as an original work on person trans-

fer to bridge the domain gap among datasets. Extensive

experiments show PTGAN effectively reduces the domain

gap. Different cameras may present different styles, mak-

ing it difficult to perform multiple style transfer with one

mapping function. Therefore, the person transfer strategy

in Sec. 5.4.2 and Sec. 5.5 is not yet optimal. This also ex-

plains why PTGAN learned on each individual target cam-

era performs better in Sec. 5.4.1. A better strategy is to

consider the style differences among cameras to get more

stable mapping functions.
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