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Abstract

In many machine learning tasks it is desirable that a

model’s prediction transforms in an equivariant way under

transformations of its input. Convolutional neural networks

(CNNs) implement translational equivariance by construc-

tion; for other transformations, however, they are com-

pelled to learn the proper mapping. In this work, we de-

velop Steerable Filter CNNs (SFCNNs) which achieve joint

equivariance under translations and rotations by design.

The proposed architecture employs steerable filters to ef-

ficiently compute orientation dependent responses for many

orientations without suffering interpolation artifacts from

filter rotation. We utilize group convolutions which guar-

antee an equivariant mapping. In addition, we generalize

He’s weight initialization scheme to filters which are de-

fined as a linear combination of a system of atomic filters.

Numerical experiments show a substantial enhancement of

the sample complexity with a growing number of sampled

filter orientations and confirm that the network generalizes

learned patterns over orientations. The proposed approach

achieves state-of-the-art on the rotated MNIST benchmark

and on the ISBI 2012 2D EM segmentation challenge.

1. Introduction

Convolutional neural networks are extremely successful

predictive models when the input data has spatial structure.

One principal reason is that the convolution operation ex-

hibits translational equivariance so that feature extraction is

independent of the spatial position. For many types of im-

ages it is desirable to make feature extraction orientation

independent as well. Typical examples are biomedical mi-

croscopy images or astronomical data which do not show

a prevailing global orientation. Consequently, the output

of a network processing such data should be equivariant

w.r.t. the orientation of its input – if the input is rotated,

the output should transform accordingly. Even when there

is a predominant direction in an image as a whole, the low

level features in the first layers such as edges usually appear

in all orientations; see e.g. the filterbanks visualized in [1].

In both cases, conventional CNNs are compelled to learn

rotated versions of the same filter, introducing redundant

degrees of freedom and increasing the risk of overfitting.

1.1. Contribution

We propose a rotation-equivariant CNN architecture

which shares weights over filter orientations to improve

generalization and to reduce sample complexity. A key

property of our network is that its filters are learned such

that they are steerable. This approach avoids interpolation

artifacts which can be severe at the small length scale of

typical filter kernels. We accomplish the steerability of the

learned filters by representing them as linear combinations

of a fixed system of atomic steerable filters.

In all intermediate layers of the network, we utilize group

convolutions to ensure an equivariant mapping of feature

maps. Group-convolutional networks were proposed by Co-

hen and Welling [2] who considered four filter orientations.

An advantage of our construction is that we can achieve an

arbitrary angular resolution w.r.t. the sampled filter orien-

tations. Indeed, our experiments show that results improve

significantly when using more than four orientations.

An important practical aspect of CNNs is a proper

weight initialization. Since the weights to be learned serve

as expansion coefficients for the steerable function space,

common weight initialization schemes need to be adapted.

Here, we generalize the results found by Glorot and Ben-

gio [3] and He et al. [4] to networks which learn filters as a

composition of (not necessarily steerable) atomic filters.

Our network achieves state-of-the-art results on two

important rotation-equivariant/invariant recognition tasks:

(i) The proposed approach is the first to obtain an accuracy

higher than 99% on the rotated MNIST dataset, which is

the standard benchmark for rotation-invariant classification.

(ii) A processing pipeline based on the proposed SFCNN

layers ranks among the top three entries in the ISBI 2012

electron microscopy segmentation challenge [5].

Figure 1 gives an overview over the key concepts utilized

in Steerable Filter CNNs.
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Figure 1: Key concepts of the proposed Steerable Filter CNN: The filters are parameterized in a steerable function space with shared weights over filter

orientations. Exact filter rotations are achieved by a phase manipulation of the expansion coefficients wq . All layers are designed to be jointly translation

and rotation equivariant. The weights wq serve as expansion coefficients of a fixed filter basis {ψq}q rather than pixel values. Therefore, we adapt He’s

weight initialization scheme to this more general case which implies to normalize the basis filter energies.

2. Equivariance properties of CNNs

Equivariance is the property of a function to commute

with the actions of a symmetry group acting on its domain

and codomain. Formally, given a transformation group G,
a function f : X → Y is said to be equivariant if

f
(
ϕX
g (x)

)
= ϕY

g (f (x)) ∀g ∈ G, x ∈ X,

where ϕ
(·)
g denotes a group action in the corresponding

space. A special case of equivariance is invariance for

which ϕY
g = id.

In many machine learning tasks a set of transformations

is known a-priori under which the prediction should trans-

form in an equivariant way. Including such knowledge di-

rectly into the model can greatly facilitate learning by free-

ing up model capacity for other factors of variation. As an

example consider a segmentation problem where the goal is

to learn a mapping from an image space I to label images

in L, which we formalize by a ground truth segmentation

map S : I → L. The learning process involves fitting a

model M : I → L to approximate the ground truth. For

segmentation tasks, however, translations of the input im-

age I ∈ I should typically lead to a translated segmentation

map. Specifically, one has

S (TdI) = TdS(I) ∀d ∈ R
2, I ∈ I, (1)

where Td is an action of the translation group T = (R2,+)
which shifts the image or segmentation by d ∈ R

2. The

group action partitions the image space in equivalence

classes T.I = {TdI | d ∈ R
2} which are known as group

orbits and comprise all images that are related by the action.

Note that the translation equivariance (1) of the ground truth

segmentation function implies a mapping of whole orbits in

I to orbits in L. It is therefore possible to reformulate the

ground truth as S̃ : I/T → L/T , where (·)/T denotes the

quotient space resulting from collapsing equivalent images

in an orbit to a single element. Instead of fitting an un-

restricted model M to S it is advantageous to incorporate

the transformation behavior into the model by construction.

The crucial consequence is that this reduces the hypothesis

space to models M̃ : I/T → L/T.

CNN layers, which transform feature maps ζ by convolv-

ing them with filters Ψ, are by construction equivariant un-

der translations, that is, (Tdζ)∗Ψ = Td (ζ ∗Ψ) . Therefore,

their hypothesis space is restricted to M̃. 1 As consequence,

patterns learned at one specific location evoke the same re-

sponse at each other location which leads to reduced sample

complexity and enhanced generalization.

Besides translations, there are often further transforma-

tions like rotations, mirroring or dilations under which the

model should be equivariant. Enforcing equivariance under

an extended transformation group G leads to an enhanced

generalization over larger orbits G.I and reduces the hy-

pothesis space further to M̃ : I/G→ L/G.

3. Steerable Filter CNNs

Here, we develop Steerable Filter CNNs (SFCNNs)

which achieve equivariance under joint translations and dis-

crete rotations. The key concept leading to translation

equivariance of CNNs is translational weight sharing. We

1In practice one often uses strided pooling layers which make the pre-

diction more robust to local deformations but reduce the equivariance to a

subgroup determined by the stride.
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extend the transformation group under which our networks’

layers are equivariant by additionally sharing weights over

filter orientations. This implies to perform convolutions

with several rotated versions of each filter. The rotational

weight sharing leads to an improved sample complexity and

to an enhanced generalization over orbits consisting of im-

ages connected by translations and discrete rotations.

In the following sections we introduce our parametriza-

tion of steerable filters, propose the network design in terms

of these filters and derive a weight initialization scheme

adapted to the filter parametrization. For the formal deriva-

tions we assume the images, feature maps and filters to be

defined on the continuous domain R
2. The effects resulting

from a discretized implementation are investigated in the

experimental section.

3.1. Parametrization of the steerable filters

At the heart of convolutional neural networks lies the

concept of learning filter kernels. Our construction de-

mands for filters whose responses can be computed accu-

rately and economically for several filter orientations. Si-

multaneously the filters should not be restricted in their ex-

pressive power, i.e. in the patterns to be learned. All of

these requirements are met by learning linear combinations

of a system of steerable filters. Here we describe a suitable

construction of steerable filters for learning in CNNs.

A filter Ψ is rotationally steerable in the sense of Hel-

Or and Teo [6], when its rotation by an arbitrary angle θ
can be expressed in a function space spanned by a fixed

set of atomic basis functions {ψq}
Q
q=1. This definition in-

cludes the classical formulation of steerability by Freeman

and Adelson [7] as a specific choice of basis. Formally, a

steerable filter Ψ : R2 → R satisfies

ρθΨ(x) =
∑Q

q=1
κq(θ)ψq(x), (2)

for all angles θ ∈ (−π, π] and for angular expansion co-

efficient functions κq . Here ρθ denotes both the rotation

operator defined by ρθΨ(x) = Ψ(ρ−θx) when acting on a

function as well as a counterclockwise rotation by the an-

gle θ when acting on a coordinate vector. As pointed out

by Freeman and Adelson [7], the rotation by steerability

is analytic and exact even for signals sampled on a grid.

In contrast to rotations by interpolation the approach does

not suffer from interpolation artifacts. An important practi-

cal consequence of steerability is that the response of each

orientation can be synthesized from the atomic responses

f ∗ ψq; that is, (f ∗ ρθΨ) (x) =
∑Q

q=1 κq(θ) (f ∗ ψq) (x).
A basis of a steerable function space which is particu-

larly easy to handle is given by circular harmonics; see e.g.

[8, 9]. They are defined by a sinusoidal angular part multi-

plied with a radial function τ : R+ → R, i.e.

ψk(r, φ) = τ(r) eikφ, (3)

j \ k 0 1 2 3 4
Re Re Im Re Im Re Im Re Im

3 · · ·

2 · · ·

1

0

Figure 2: Illustration of the circular harmonics ψjk(r, φ) = τj(r) e
ikφ

sampled on a 9 × 9 grid. Each row shows a different radial part j, the

angular frequencies are arranged in the columns. For larger scales there

are higher frequency filters not shown here.

where (r, φ) denote polar coordinates of x = (x1, x2) and

k ∈ Z is the angular frequency. By construction, ψk can be

rotated by multiplication with a complex exponential,

ρθψk(x) = e−ikθψk(x). (4)

In our network, we utilize a system of circular harmonics

ψjk with j = 1, . . . , J, and k = 0, . . . ,Kj where the addi-

tional index j controls the radial part of ψjk = τj(r) e
ikφ.

Figure 2 shows the real and imaginary parts of the atoms

used in the experiments where we chose Gaussian radial

parts τj(r) = exp(−(r − µj)
2/2σ2) with µj = j. The

maximum angular frequencies Kj are limited to the point

where aliasing effects occur. We found this system to be

convenient for learning as the filters are approximately or-

thogonal and radially localized.

The learned filters are then defined as linear combina-

tions of the elementary filters, that is,

Ψ̃(x) =
∑J

j=1

∑Kj

k=0
wjkψjk(x), (5)

with weights wjk ∈ C. The complex phase of the weights

allows rotating the atomic filters with respect to each other.

Such a composed filter can subsequently be steered as a

whole by phase manipulation of the atoms via

ρθΨ̃(x) =
∑J

j=1

∑Kj

k=0
wjke

−ikθψjk(x). (6)

We select a single orientation by taking their real part

Ψ(x) = Re Ψ̃(x) (7)

and let ρθΨ = Re ρθΨ̃.

3.2. Equivariant network architecture

The basic building blocks of the proposed SFCNN are three

equivariant layer types which we introduce in this section.

Input layer: The first layer l = 1 of our network ingests

an image with C channels Ic : R
2 → R, c = 1, . . . C

and convolves these with Ĉ rotated filters ρθΨ
(1)
ĉc , where

Ψ
(1)
ĉc : R2 → R, ĉ = 1, . . . , Ĉ, are filter channels of the
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form (7). This results in pre-nonlinearity features

y
(1)
ĉ (x, θ) =

∑C

c=1

(
Ic ∗ ρθΨ

(1)
ĉc

)
(x) (8)

=
∑C

c=1

(
Ic ∗ Re

∑J

j=1

∑Kj

k=0
wĉcjke

−ikθψjk

)
(x)

= Re
∑C

c=1

∑J

j=1

∑Kj

k=0
wĉcjke

−ikθ (Ic ∗ ψjk) (x),

where the filters are rotated by in total Λ equidistant ori-

entations θ ∈ Θ = {0, . . . , 2πΛ−1
Λ }. In this setting the

rotational weight sharing is reflected by the phase manipu-

lation of the weights wĉcjk which themselves are indepen-

dent of the angle θ. A higher resolution in orientations can

be achieved by simply expanding the tensor containing the

phase-factors.

As usual, after the convolution step a bias β
(1)
ĉ is added

and a nonlinearity σ is applied, so that we end up with the

first layer’s feature map given by

ζ
(1)
ĉ (x, θ) = σ

(
y
(1)
ĉ (x, θ) + β

(1)
ĉ

)
.

Note that the resulting representation ζ
(1)
ĉ depends on a spa-

tial location x and an orientation angle θ, i.e. on the trans-

formation group applied to the filters.

Group-convolutional layers: To process the resulting fea-

ture maps further we utilize group convolutions which

naturally generalize spatial convolutions from translations

to more general transformation groups. Given a feature

map ζ : G → R and a filter Ψ : G → R liv-

ing on a group G, their group convolution is defined by

(ζ ⊛ Ψ)(g) =
∫
G
ζ(h)Ψ(h−1g) dλ(h), where we use the

symbol ⊛ to distinguish group convolutions from the spa-

tial convolution operator ∗, and λ denotes a Haar mea-

sure. The resulting feature map is again a function on

the group. In analogy to spatial convolutions, group con-

volutions are equivariant under the group operation, i.e.

(ϕh(ζ)⊛Ψ) (g) = ϕh (ζ ⊛Ψ) (g), ∀h, g ∈ G, where

ϕh is given by ϕhζ(g) = ζ(h−1g). For a deeper discussion

of group convolutions in neural networks we refer to [2].

The feature maps calculated by the input layer are func-

tions on the semidirect product group R
2
⋊ Θ ≤ SE(2).

Keeping the parameterization by (x, θ), the group convolu-

tions with summation over input channels can be explicitly

instantiated as

y
(l)
ĉ (x, θ) =

∑C

c=1

(
ζ(l−1)
c ⊛Ψ

(l)
ĉc

)
(x, θ) (9)

=
∑C

c=1

∑
φ∈Θ

∫

R2

ζ(l−1)
c (u, φ)Ψ

(l)
ĉc

(
(u, φ)−1(x, θ)

)
du

=
∑C

c=1

∑
φ∈Θ

(
ζ(l−1)
c (·, φ) ∗ ρφΨ

(l)
ĉc (·, θ − φ)

)
(x)

=
∑C

c=1

∑
φ∈Θ

(
ζ(l−1)
c (·, φ) ∗ RφΨ

(l)
ĉc (·, θ)

)
(x).

Here the multiplication with the inverse group element,

(u, φ)−1(x, θ) = (ρ−φ(x − u), θ − φ), was evaluated by

switching to a representation of the group. We further in-

troduced the action Rφ defined by

RφΨ(x, θ) := ρφΨ(x, θ − φ)

which transforms functions on the group by rotating them

spatially and shifting their orientation components cycli-

cally. The above equation reveals that the group convolution

can be decomposed into a spatial convolution, rotation and

linear combination. In analogy to the first layer we make

use of the steerable filters which on the group are defined

by Ψ
(l)
ĉc (x, θ) = Re

∑J

j=1

∑Kj

k=0 wĉcjkθψjk(x). Note that

the additional orientation dimension is reflected by an ad-

ditional index of the weight tensor. Inserting the steerable

filters in (9) we obtain the pre-nonlinearity feature maps of

the group-convolutional layers

y
(l)
ĉ (x, θ) (10)

=

C∑

c=1

∑

φ∈Θ


ζ(l−1)

c (·, φ) ∗ Re
∑

j,k

wĉcjk,θ−φe
−ikφψjk


(x)

=Re
C∑

c=1

∑

φ∈Θ

∑

j,k

wĉcjk,θ−φe
−ikφ

(
ζ(l−1)
c (·, φ) ∗ ψjk

)
(x).

As before, a bias β
(l)
ĉ is added and the activation function σ

is applied, ζ
(l)
ĉ (x, θ) = σ(y

(l)
ĉ (x, θ) + β

(l)
ĉ ).

By the linearity of the steerability and the convolution,

one can implement the layers either by a direct convolu-

tion with linearly combined filters, or by linearly combin-

ing the responses of the atomic filters. We implemented

both approaches and found that in typical operation regimes

the first option is faster since the kernels to be linearly

combined have a smaller spatial extent than the atomic re-

sponses of the second option.

Output layer: After the last group-convolutional layer we

extract the information of interest for the specific task. For

rotation-invariant classification we pool globally over both

the orientation dimension and the remaining spatial resolu-

tion. A pooling over orientations is also done for rotation-

equivariant segmentation where spatial dimensions remain

and the output rotates according to the rotation of the net-

work’s input. If the orientation itself is of interest it could

be kept as extra feature.

Equivariance: Each individual layer L(·) of the network

is equivariant under joint translations and rotations in the

group R
2
⋊ Θ : Rotating the input image leads to a trans-

formation Lin(ρφI) = RφLin(I) of the first layer’s fea-

ture maps. The subsequent group-convolutional layers then

transform like Lgconv(Rφζ) = RφLgconv(ζ). When using

orientation pooling in the output layer the resulting feature
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Figure 3: Top: Basic structure of a typical SFCNN for rotation-equivariant segmentation. For clarity, we display only a single group-convolutional layer and

a single feature channel and omit pooling and normalization layers. Rotated Greek letters represent the spatial orientations of the filters and the feature maps.

Orientation components are abbreviated as subscript, i.e. Ψλ = Ψ(·, θλ). Filters in the same color share their weights as they are connected by rotations.

The weight sharing of the filters on the group is prescribed by the group convolution (9). After the last group-convolutional layer we pool over orientations

to obtain predictions which are invariant under rotations of local patches in the field of view. Bottom: Visualization of the layerwise rotation-equivariance.

Applying a rotation ρφ to the input image results in a joint spatial rotation operation and cyclic shift over orientation indices Rφ of the feature maps ζ(l).

This transformation behavior can be understood intuitively when paying attention to the relative orientation of each layer’s input and filters.

maps are rotated: Lout(Rφζ) = ρφLout(ζ). Overall, this im-

plies the equivariance of a whole network,

(
Lout ◦ L

d
gconv ◦ Lin

)
(ρφI) = ρφ

(
Lout ◦ L

d
gconv ◦ Lin(I)

)
,

where d is the number of group-convolutional layers. The

layers’ equivariance is proven in the supplementary.

The top part of Figure 3 visualizes the building blocks

of a typical SFCNN for rotation-equivariant segmentation.

An overview over the transformation behavior of the feature

maps under rotation of the input is given in the bottom part.

The spatial rotation and cyclic shift over orientation chan-

nels Rφ of the feature maps on the group can be understood

intuitively when paying attention to the relative orientation

of each layer’s input and filters.

Compared to a conventional CNN which independently

learns filters in Λ orientations in a rotation-invariant recog-

nition task, a corresponding SFCNN consumes Λ times less

parameters to extract the same representation.

SFCNN incur a small computational overhead for build-

ing the filter kernels from the circular harmonics basis

which we found to be negligible. The computational cost

of SFCNNs is therefore equivalent to that of a conventional

CNN when the effective number of channels coincide, i.e.

when ICNN = ΛISFCNN.

3.3. Generalizing He’s weight initialization scheme

An important practical aspect of training deep networks

is an appropriate initialization of their weights. When the

weights’ variances are chosen too high or low, the sig-

nals propagating through the network are amplified or sup-

pressed exponentially with depth. Glorot and Bengio [3]

and He et al. [4] investigated this issue and came up with

initialization schemes which are accepted as a standard for

random weight initialization. In contrast to [3] and [4] our

filters are not parameterized in a pixel basis but as a linear

combination of a system of atomic filters with weights serv-

ing as expansion coefficients. To be specific, we consider

filters Ψĉcx =
∑Q

q=1 wĉcqψqx which are built from Q, not

necessarily steerable, real valued atomic filters which map

C input channels to Ĉ output channels. This assumption is

more general than that of the aforementioned works since

they only consider the pixel basis ψDirac
qx = δq,x, i.e. atomic

filters which are zero everywhere but at one pixel.

Most of the further assumptions are identical to those

in [4]: We assume the activations and gradients to be

i.i.d. and to be independent from the weights. Further, the

weights themselves are initialized to be mutually indepen-

dent and have zero mean. An important difference is that

we do not restrict the weights to be identically distributed

because of the inherent asymmetry of the different atomic

filters. All biases are initialized to be zero and the nonlin-

earities are chosen to be ReLUs. These assumptions lead to

the initialization conditions

Var [wq] =
2

CQ ‖ψq‖
2
2

or Var [wq] =
2

ĈQ ‖ψq‖
2
2
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for the forward or backward pass, respectively. A detailed

derivation is given in the supplementary material.

As discussed in [4], the difference between both initial-

izations cancels out for intermediate layers. Note that our

results include those of He et al. [4], that is, Var [wq] =
2
nin

or Var [wq] =
2

nout
, for ψDirac

qx = δq,x with
∥∥ψDirac

qx

∥∥2
2
= 1.

We further want to point out that the learned filters are

combined of products wqψq which implies that the factors

‖ψq‖
2
2 counterbalance different energies of the basis filters.

A convenient way to initialize the network is hence to nor-

malize all filters to unit norm and subsequently initialize the

weights uniformly by Var [wq] =
2

CQ
or Var [wq] =

2
ĈQ

.

In our group-convolutional layers the filters additionally

comprise orientation channels. From the perspective of

weight initialization these have the same effect as conven-

tional channels, therefore we propose to normalize their

weights variance with an additional factor of Λ. We em-

phasize that using normalization layers like batch normal-

ization does not obviate the need for a proper weight initial-

ization. This is because such layers scale activations as a

whole while our initialization conditions indicates that the

relative scale of the summands contributing to each activa-

tion needs to be adapted. Further details, in particular on

initializing weights of complex-valued filters, are given in

the supplementary material.

4. Prior and related work

A priori knowledge about transformation-invariance of

images can be exploited in manifold ways. A commonly

utilized technique is data augmentation, see e.g. [10]. The

basic idea is to enrich the training set by transformed sam-

ples. Augmenting datasets allows to train larger models and

is easily applicable without modifying the network architec-

tures. When the augmenting transformations form a group

G the additional images I ⊆ I lie on the orbit G.I . In

contrast to equivariant models the hypothesis space is not

restricted to the quotient space I/G under the utilized sym-

metry group but the equivariance needs to be learned ex-

plicitly by the network. This demands for a high learning

capacity which makes the network prone to overfitting.

Recent work focuses on incorporating equivariance to

various transformations directly into the network’s architec-

ture. Invariance to specific transformations can be achieved

by applying them to the input and subsequently pooling

their responses [11, 12, 13]. In [14] the regions in symme-

try space to pool over are learned to become invariant only

to nuisance deformations. Another approach is to resample

the input and apply standard convolutions. Henriques and

Vedaldi [15] achieve equivariance w.r.t. Abelian symmetry

groups by fixing a sampling grid according to the symme-

try while in [16, 17] the network itself estimates the grid.

In [18] transformations are dealt with by convolving with

filters which are steered by a subnetwork.

In particular, there has recently been a considerable in-

terest in rotation-equivariant CNNs. The work [19] intro-

duces four operations which are easily included into exist-

ing networks and enrich both the batch- and feature dimen-

sion with transformed versions of their content. In [2], the

feature maps resulting from transformed filters are treated

as functions of the corresponding symmetry-group which

allows to use group-convolutional layers. As their compu-

tational cost is coupled to the size of the group, Cohen and

Welling [20] propose to alternatively use steerable repre-

sentations as composition of elementary feature types. Be-

sides translations and rotations, the aforementioned works

also incorporate reflections, i.e. they operate on the dihe-

dral group. Their current limitation is the restriction to rota-

tions by the angle π
2 , thus to four orientations. In [21], sev-

eral rotated versions of the same image are sent through a

conventional CNN. The resulting features are subsequently

pooled over the orientation dimension. The approach can

be easily extended to other transformations. On the down-

side, the equivariance is only w.r.t. global transformations.

Marcos et al. [22] perform convolutions with rotated ver-

sions of a each filter in a shallow network followed by a

global pooling over orientations. These ideas were extended

to networks which additionally propagate the orientation of

the maximum response [23]. In both approaches the filter

rotation is based on bicubic interpolation, allowing for fine

resolutions with respect to the orientation but causing in-

terpolation artifacts. Worrall et al. [24] achieve continuous

resolution in orientations by working with complex valued

steerable filters and feature maps. However, this requires

the angular frequencies of the feature maps to be kept dis-

entangled. Rotation-equivariant feature extraction can also

be achieved by using group-convolutional scattering trans-

forms [25]. A fundamental difference to our work is that

the filter banks are fixed rather than learned.

5. Experimental results

We evaluate the proposed SFCNNs on two datasets ex-

hibiting rotational symmetries. On the rotated MNIST

dataset we first investigate specific network properties like

the accuracy’s dependence on the number of sampled ori-

entations and the generalization of learned patterns over

orientations. With the insights gained in these experi-

ments we benchmark the model and the proposed initial-

ization scheme. To evaluate the segmentation capabilities

of SFCNNs on real world data we run a further experiment

on the ISBI 2012 EM segmentation challenge.

5.1. Rotated MNIST

In our first experiments we investigate the equivari-

ance properties of the proposed network architecture on the

rotated MNIST dataset (mnist-rot) which is the standard
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Figure 4: Left: Test error versus number of sampled filter orientations for different training subsets from mnist-rot. Shaded regions highlight the standard

deviations over several runs. The accuracy improves significantly with increasing angular resolution until it saturates at around 12 to 16 orientations. Right:

Rotational generalization capabilities of a conventional CNN and a SFCNN with Λ = 16 using different data augmentation strategies. In this experiment

the training set consists of unrotated MNIST digits while the test set for each angle contains the remaining digits, rotated to the corresponding angle.

benchmark for rotation-equivariant models. The dataset

contains the handwritten digits of the classical MNIST

dataset, rotated to random orientations in [0, 2π). It is split

in 12000 training and 50000 test images; model selection

is done by training on 10000 images and validating on the

2000 remaining samples in the training set.

For our initial experiments we utilize the classification-

SFCNN given in Table 1 in the supplementary material as

baseline. It consists of one steerable input layer which

maps the input images to the group, five following group-

convolutional layers and three fully connected layers. After

every two steerable filter layers we perform a spatial 2 × 2
max-pooling. The orientation dimension and the remain-

ing spatial dimensions are pooled out globally after the last

convolutional layer. Details on the further training setup are

given in the supplementary material.

Sampled orientations: The number of sampled orienta-

tions Λ is a parameter specific to our network, so we first

explore its influence on the test accuracy. We are further in-

terested in the network’s sample complexity, i.e. the depen-

dence on the size of the training set. The accuracies result-

ing when varying these parameters are reported in Figure 4

(left). As expected, the test error and its standard devia-

tion decrease with the size of the training data set. We ob-

serve that the accuracy improves significantly when increas-

ing the number of orientations until it saturates at around

12 to 16 angles. Up to this point, the gain of adding more

sampled orientations is considerable. For example, in al-

most all cases, increasing the angular resolution from 2 to

4 sampled orientations provides a higher gain in accuracy

than sticking with 2 orientations and doubling the number

of training samples. We want to emphasize that the possibil-

ity of SFCNNs to go beyond the four sampled orientations

of [19, 2, 20] leads to a significant gain in accuracy. Note

that the case Λ = 1 correspondsto conventional CNNs.

Rotational generalization: In order to test how well the

networks generalize learned patterns over orientations we

conduct an experiment where we train them on unrotated

digits and record their accuracy over the orientation of ro-

tated digits. Specifically, we take the the first 12000 samples

of the conventional MNIST dataset to train a SFCNN with

Λ = 16 as well as a conventional CNN of comparable size

using either no augmentation, augmentation by rotations

which are multiples of either π
4 or π

2 or augmentation by

rotations which are densely sampled from [0, 2π). As test

set we take the remaining 58000 samples and record the test

errors’ dependence on the orientation of this dataset. To ob-

tain a fair comparison between the networks we experiment

with conventional CNNs with the same number of parame-

ters or the same number of channels like the SFCNN. Since

both show the same behavior we only report the accuracies

of the network with the same number of channels which

performs slightly better. The results are plotted in Figure 4

(right). One can see that, lacking rotational equivariance,

the conventional CNN does not generalize well over orien-

tations. When using rotational augmentation the error re-

duces considerably on average, it grows, however, for small

angles in a neighborhood of zero. This is the case because

the network needs to learn to detect the augmented samples

additionally which demands an increased learning capac-

ity. The SFCNN on the other hand generalizes quite well

over orientations even without augmentation. In continuous

space we would expect the test error curve to be 2π
Λ -periodic

because of the rotational equivariance. The deviations from

this behavior can be attributed to the sampling effects of us-

ing digitized images. As to be expected for Λ = 16 orienta-

tions, the accuracy is not influenced by augmentation with
π
2 -rotations since the additional samples lie on the group

orbit on which the network is invariant. In contrast to con-

ventional CNNs, SFCNNs do not show an increased error

for small angles in a neighborhood of zero when using aug-

mentation. This indicates that the cost of learning rotated

versions of each digit is negligible thanks to the approxi-

mate rotation equivariance. An augmentation by rotations

which are multiples of π
4 or by continuous rotations give
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Method V Rand V Info

IAL MC/LMC 0.98792 0.99183
CASIA MIRA 0.98788 0.99072
Ours 0.98680 0.99144
Quan et al. [26] 0.98365 0.99130
Beier et al. [27] 0.98224 0.98845
Drozdzal et al. [28] 0.98058 0.98816

Figure 5: Experimental results on the ISBI 2012 challenge. The shown patches are cropped from slice 30 of the training data set which we used for

validation. Left: Raw EM image. Mid-left: Binary membrane ground truth segmentation. Mid-right: Probability map predicted by the proposed network.

Right: Top 6 of more than 100 entries of the leaderboard, accessed on November 13, 2017. Higher values mean better accuracy.

Method Test Error (%)

Ours – CoeffInit, train time augmentation 0.714 ± 0.022
Ours – CoeffInit 0.880 ± 0.029
Ours – HeInit 0.957 ± 0.025
Marcos et al. [23] – test time augmentation 1.01
Marcos et al. [23] 1.09
Laptev et al. [21] 1.2
Worrall et al. [24] 1.69
Cohen and Welling [2] - G-CNN 2.28 ± 0.0004
Schmidt and Roth [29] 4.0
Sohn and Lee [11] 4.2
Cohen and Welling [2] - conventional CNN 5.03 ± 0.0020
Larochelle et al. [30] 10.4 ± 0.27

Table 1: Test errors on the rotated MNIST dataset. We distinguish He

initialization (HeInit) from the proposed initialization scheme (CoeffInit).

very similar results. Both seem to act as a regularization

preventing the filters to overfit on the pixel grid.

We conclude that SFCNNs outperform the rotational

generalization of CNNs for all levels of augmentation.

Benchmarking: Based on the insights from the above ex-

periments we fix the number of sampled orientations to

Λ = 16 and tune the network further to the slightly larger

architecture given in Table 2 in the supplementary mate-

rial. The results are reported in Table 1. Using the SFCNN

with He’s weight initialization and no data augmentation,

we obtain a test error of 0.957% which already exceeds

the previous state-of-the-art. The proposed initialization

scheme, adapted to filter coefficients, significantly improves

the test error to 0.880%. When additionally augmenting the

dataset with continuous rotations during training time the

error decreases further to 0.714%. To summarize, our ap-

proach reduces the best previously published error by a fac-

tor of 29%.

5.2. ISBI 2012 2D EM segmentation challenge

In a second experiment we evaluate the performance of

our model on the ISBI 2012 electron microscopy segmen-

tation challenge [5]. The goal of the challenge is to predict

the locations of the cell boundaries in the Drosophila ven-

tral nerve cord from EM images which is a key step for

investigating the connectome of the brain. The dataset con-

sists of 30 train and test slices of size 512 × 512 px with a

binary segmentation ground truth provided for the training

set. Figure 5 shows an exemplary raw EM image with the

corresponding ground truth segmentation mask and our net-

work’s prediction. An important property of the dataset is

that the images have no preferred orientation which makes

it suitable for evaluating rotation-equivariant networks.

We build on an established pipeline introduced in [27]

where a crucial step is the boundary prediction via a con-

ventional CNN. In the present experiment, we replaced their

network by a SFCNN with a U-net design [31]. The net-

work architecture is visualized in Figure 1 in the supple-

mentary material. As loss function we chose a pixel wise bi-

nary cross entropy loss. The dataset was augmented by ran-

dom elastic deformations, flips and rotations by multiples of
π
2 during train time. In the experiment on rotational gener-

alization we found that augmenting samples by transforma-

tions in a subgroup under which the network is equivariant

does not have any effect. We therefore sampled Λ = 17
orientations which is mutually prime with the 4 augmented

orientations. This way the augmented images do not fall

into a subgroup w.r.t. which the network is invariant.

Segmentation predictions are evaluated by the challenge

hosters and ranked w.r.t. the foreground-restricted Rand

score V Rand and the information score V Info; for an expla-

nation of these metrics see [5]. The current leaderboard in

Figure 5 (right) shows that our approach yields top-tier re-

sults. In particular, it improves upon the results of [27].

6. Conclusion

We have developed a rotation-equivariant CNN whose

filters are learned such that they are steerable. Layer-

wise equivariance is obtained by using group convolutions.

He’s weight initialization scheme is extended to general

filter bases which empirically leads to an increased accu-

racy. Our network allows sampling an arbitrary number

of filter orientations which improves the performance un-

til a saturation is reached. We confirmed experimentally

that SFCNNs generalize learned patterns over orientations

and therefore achieve a lower sampling complexity than

CNNs in rotation-equivariant recognition tasks. The pro-

posed SFCNNs achieve state-of-the-art results on rotated

MNIST and the ISBI 2012 2D EM segmentation challenge.
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