
Learning Descriptor Networks for 3D Shape Synthesis and Analysis

Jianwen Xie1∗, Zilong Zheng2∗, Ruiqi Gao2, Wenguan Wang2,3, Song-Chun Zhu2, Ying Nian Wu2

1Hikvision Research Institute 2University of California, Los Angeles 3Beijing Institute of Technology

Abstract

This paper proposes a 3D shape descriptor network,

which is a deep convolutional energy-based model, for

modeling volumetric shape patterns. The maximum like-

lihood training of the model follows an “analysis by synthe-

sis” scheme and can be interpreted as a mode seeking and

mode shifting process. The model can synthesize 3D shape

patterns by sampling from the probability distribution via

MCMC such as Langevin dynamics. The model can be used

to train a 3D generator network via MCMC teaching. The

conditional version of the 3D shape descriptor net can be

used for 3D object recovery and 3D object super-resolution.

Experiments demonstrate that the proposed model can gen-

erate realistic 3D shape patterns and can be useful for 3D

shape analysis.

1. Introduction

1.1. Statistical models of 3D shapes

Recently, with the introduction of large 3D CAD datasets,

e.g., ShapeNet [29, 4], some interesting attempts [5, 24, 17]

have been made on object recognition and synthesis based

on voxelized 3D shape data. From the perspective of sta-

tistical modeling, the existing 3D models can be grouped

into two main categories: (1) 3D discriminators, such as

Voxnet [16], which aim to learn a mapping from 3D voxel

input to semantic labels for the purpose of 3D object clas-

sification and recognition, and (2) 3D generators, such as

3D-GAN[28], which are in the form of latent variable mod-

els that assume that the 3D voxel signals are generated by

some latent variables. The training of discriminators usually

relies on big data with annotations and is accomplished by a

direct minimization of the prediction errors, while the train-

ing of the generators learns a mapping from the latent space

to 3D voxel data space.

The generator model, while useful for synthesizing 3D

shape patterns, involves a challenging inference step (i.e.,

sampling from the posterior distribution) in maximum like-

lihood learning, therefore variational inference [12] and ad-
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versarial learning [6, 18, 28] methods are commonly used,

where an extra network is incorporated into the learning algo-

rithm to get around the difficulty of the posterior inference.

The past few years have witnessed impressive progress on

developing discriminator models and generator models for

3D shape data, however, there has not been much work in the

literature on modeling 3D shape data based on energy-based

models. We call this type of models the descriptive models

or descriptor networks following [34], because the models

describe the data based on bottom-up descriptive features

learned from the data. The focus of the present paper is to

develop a volumetric 3D descriptor network for voxelized

shape data. It can be considered an alternative to 3D-GAN

[28] for 3D shape generation.

1.2. 3D shape descriptor network

Specifically, we present a novel framework for probabilis-

tic modeling of volumetric shape patterns by combining the

merits of energy-based model [14] and volumetric convo-

lutional neural network [16]. The model is a probability

density function directly defined on voxelized shape sig-

nal, and the model is in the form of a deep convolutional

energy-based model, where the feature statistics or the en-

ergy function is defined by a bottom-up volumetric ConvNet

that maps the 3D shape signal to the features. We call the

proposed model the 3D DescriptorNet, because it uses a

volumetric ConvNet to extract 3D shape features from the

voxelized data.

The training of the proposed model follows an “analysis

by synthesis” scheme [7]. Different from the variational in-

ference or adversarial learning, the proposed model does not

need to incorporate an extra inference network or an adver-

sarial discriminator in the learning process. The learning and

sampling process is guided by the same set of parameters

of a single model, which makes it a particularly natural and

statistically rigorous framework for probabilistic 3D shape

modeling.

Modeling 3D shape data by a probability density function

provides distinctive advantages: First, it is able to synthesize

realistic 3D shape patterns by sampling examples from the

distribution via MCMC, such as Langevin dynamics. Sec-

ond, the model can be modified into a conditional version,
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which is useful for 3D object recovery and 3D object super-

resolution. Specifically, a conditional probability density

function that maps the corrupted (or low resolution) 3D ob-

ject to the recovered (or high resolution) 3D object is trained,

and then the 3D recovery (or 3D super-resolution) can be

achieved by sampling from the learned conditional distri-

bution given the corrupted or low resolution 3D object as

the conditional input. Third, the model can be used in a

cooperative training scheme [31], as opposed to adversarial

training, to train a 3D generator model via MCMC teaching.

The training of 3D generator in such a scheme is stable and

does not encounter mode collapsing issue. Fourth, the model

is useful for semi-supervised learning. After learning the

model from unlabeled data, the learned features can be used

to train a classifier on the labeled data.

We show that the proposed 3D DescriptorNet can be used

to synthesize realistic 3D shape patterns, and its conditional

version is useful for 3D object recovery and 3D object super-

resolution. The 3D generator trained by 3D DescriptorNet in

a cooperative scheme carries semantic information about 3D

objects. The feature maps trained by 3D DescriptorNet in an

unsupervised manner are useful for 3D object classification.

1.3. Related work

3D object synthesis. Researchers in the fields of graphics

and vision have studied the 3D object synthesis problems [2,

3, 9]. However, most of these object synthesis methods are

nonparametric and they generate new patterns by retrieving

and merging parts from an existing database. Our model is a

parametric probabilistic model that requires learning from

the observed data. 3D object synthesis can be achieved by

running MCMC such as Langevin dynamics to draw samples

from the learned distribution.

3D deep learning. Recently, the vision community has

witnessed the success of deep learning, and researchers have

used the models in the field of deep learning, such as convo-

lutional deep belief network [29], deep convolutional neural

network [16], and deep convolutional generative adversarial

nets (GAN) [28], to model 3D objects for the sake of synthe-

sis and analysis. Our proposed 3D model is also powered

by the ConvNets. It incorporates a bottom-up 3D ConvNet

structure for defining the probability density, and learns the

parameters of the ConvNet by an “analysis by synthesis”

scheme.

Descriptive models for synthesis. Our model is related

to the following descriptive models. The FRAME (Filters,

Random field, And Maximum Entropy) [35] model, which

was developed for modeling stochastic textures. The sparse

FRAME model [30, 32], which was used for modeling ob-

ject patterns. Inspired by the successes of deep convolutional

neural networks (CNNs or ConvNets), [15] proposes a deep

FRAME model, where the linear filters used in the original

FRAME model are replaced by the non-linear filters at a

certain convolutional layer of a pre-trained deep ConvNet.

Instead of using filters from a pre-trained ConvNet, [33]

learns the ConvNet filters from the observed data by max-

imum likelihood estimation. The resulting model is called

generative ConvNet, which can be considered a recursive

multi-layer generalization of the original FRAME model.

Building on the early work of [25], recently [8, 13] have

developed an introspective learning method to learn the

energy-based model, where the energy function is discrimi-

natively learned.

1.4. Contributions

(1) We propose a 3D deep convolutional energy-based

model that we call 3D DescriptorNet for modeling 3D object

patterns by combining the volumetric ConvNets [16] and the

generative ConvNets [33]. (2) We present a mode seeking

and mode shifting interpretation of the learning process of

the model. (3) We present an adversarial interpretation of

the zero temperature limit of the learning process. (4) We

propose a conditional learning method for recovery tasks.

(5) we propose metrics that can be useful for evaluating 3D

generative models. (6) A 3D cooperative training scheme is

provided as an alternative to the adversarial learning method

to train 3D generator.

2. 3D DescriptorNet

2.1. Probability density

The 3D DescriptorNet is a 3D deep convolutional energy-

based model defined on the volumetric data Y , which is in

the form of exponential tilting of a reference distribution

[33]:

p(Y ;θ) =
1

Z(θ)
exp [ f (Y ;θ)] p0(Y ), (1)

where p0(Y ) is the reference distribution such as Gaussian

white noise model, i.e., p0(Y ) ∝ exp
(

−‖Y‖2/2s2
)

, f (Y ;θ)
is defined by a bottom-up 3D volumetric ConvNet whose pa-

rameters are denoted by θ . Z(θ) =
∫

exp [ f (Y ;θ)] p0(Y )dY

is the normalizing constant or partition function that is ana-

lytically intractable. The energy function is

E (Y ;θ) =
‖Y‖2

2s2
− f (Y ;θ). (2)

We may also take p0(Y ) as uniform distribution within a

bounded range. Then E (Y ;θ) =− f (Y ;θ).

2.2. Analysis by synthesis

The maximum likelihood estimation (MLE) of the 3D

DescriptorNet follows an “analysis by synthesis” scheme.

Suppose we observe 3D training examples {Yi, i = 1, ...,n}
from an unknown data distribution Pdata(Y ). The MLE
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seeks to maximize the log-likelihood function L(θ) =
1
n ∑

n
i=1 log p(Yi;θ). If the sample size n is large, the max-

imum likelihood estimator minimizes KL(Pdata ‖ pθ ), the

Kullback-Leibler divergence from the data distribution Pdata

to the model distribution pθ . The gradient of the L(θ) is

L′(θ) =
1

n

n

∑
i=1

∂

∂θ
f (Yi;θ)−Eθ

[

∂

∂θ
f (Y ;θ)

]

, (3)

where Eθ denotes the expectation with respect to p(Y ;θ).
The expectation term in equation (3) is due to ∂

∂θ
logZ(θ) =

Eθ [
∂

∂θ
f (Y ;θ)], which is analytically intractable and has to

be approximated by MCMC, such as Langevin dynamics,

which iterates the following step:

Yτ+∆τ = Yτ −
∆τ

2

∂

∂Y
E (Yτ ;θ)+

√
∆τετ

= Yτ −
∆τ

2

[

Yτ

s2
− ∂

∂Y
f (Yτ ;θ)

]

+
√

∆τετ , (4)

where τ indexes the time steps of the Langevin dynamics,

∆τ is the discretized step size, and ετ ∼ N(0, I) is the Gaus-

sian white noise term. The Langevin dynamics consists of

a deterministic part, which is a gradient descent on a land-

scape defined by E (Y ;θ), and a stochastic part, which is

a Brownian motion that helps the chain to escape spurious

local minima of the energy E (Y ;θ).
Suppose we draw ñ samples {Ỹi, i = 1, ..., ñ} from the

distribution p(Y ;θ) by running ñ parallel chains of Langevin

dynamics according to (4). The gradient of the log-likelihood

L(θ) can be approximated by

L′(θ)≈ 1

n

n

∑
i=1

∂

∂θ
f (Yi;θ)− 1

ñ

ñ

∑
i=1

∂

∂θ
f (Ỹi;θ). (5)

2.3. Mode seeking and mode shifting

The above “analysis by synthesis” learning scheme can

be interpreted as a mode seeking and mode shifting process.

We can rewrite equation (5) in the form of

L′(θ)≈ ∂

∂θ

[

1

ñ

ñ

∑
i=1

E (Ỹi;θ)− 1

n

n

∑
i=1

E (Yi;θ)

]

. (6)

We define a value function

V ({Ỹi};θ) =
1

ñ

ñ

∑
i=1

E (Ỹi;θ)− 1

n

n

∑
i=1

E (Yi;θ). (7)

The equation (6) reveals that the gradient of the log-

likelihood L(θ) coincides with the gradient of V .

The sampling step in (4) can be interpreted as mode seek-

ing, by finding low energy modes or high probability modes

in the landscape defined by E (Y ;θ) via stochastic gradient

descent (Langevin dynamics) and placing the synthesized

examples around the modes. It seeks to decrease V . The

learning step can be interpreted as mode shifting (as well

as mode creating and mode sharpening) by shifting the low

energy modes from the synthesized examples {Ỹi} toward

the observed examples {Yi}. It seeks to increase V .

The training algorithm of the 3D DescriptorNet is pre-

sented in Algorithm 1.

Algorithm 1 3D DescriptorNet

Input:

(1) training data {Yi, i = 1, ...,n}; (2) number of

Langevin steps l; (3) number of learning iterations T .

Output:

(1) estimated parameters θ ; (2) synthesized examples

{Ỹi, i = 1, ..., ñ}

1: Let t← 0, initialize θ (0), initialize Ỹi, for i = 1, ..., ñ.

2: repeat

3: Mode seeking: For each i, run l steps of Langevin

dynamics to revise Ỹi, i.e., starting from the current Ỹi,

each step follows equation (4).

4: Mode shifting: Update θ (t+1) = θ (t) + γtL
′(θ (t)),

with learning rate γt , where L′(θ (t)) is computed ac-

cording to (5).

5: Let t← t +1

6: until t = T

2.4. Alternating backpropagation

Both mode seeking (sampling) and mode shifting (learn-

ing) steps involve the derivatives of f (Y ;θ) with respect

to Y and θ respectively. Both derivatives can be computed

efficiently by back-propagation. The algorithm is thus in

the form of alternating back-propagation that iterates the

following two steps: (1) Sampling back-propagation: Revise

the synthesized examples by Langevin dynamics or gradient

descent. (2) Learning back-propagation: Update the model

parameters given the synthesized and the observed examples

by gradient ascent.

2.5. Zero temperature limit

We can add a temperature term to the model pT (Y ;θ) =
exp(−E (Y ;θ)/T )/ZT (θ), where the original model corre-

sponds to T = 1. At zero temperature limit as T → 0, the

Langevin sampling will become gradient descent where the

noise term diminishes in comparison to the gradient descent

term. The resulting algorithm approximately solves the min-

imax problem below

max
θ

min
{Ỹi}

V ({Ỹi};θ) (8)

with Ỹi initialized from an initial distribution and approach-

ing local modes of V . We can regularize either the diversity
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of {Ỹi} or the smoothness of E (Y ;θ). This is an adversarial

interpretation of the learning algorithm. It is also a gener-

alized version of herding [27] and is related to [1]. In our

experiments, we find that disabling the noise term of the

Langevin dynamics in the later stage of the learning process

often leads to better synthesis results. Ideally the learning

algorithm should create a large number of local modes with

similar low energies to capture the diverse observed exam-

ples as well as unseen examples.

2.6. Conditional learning for recovery

The conditional distribution p(Y |C(Y ) = c;θ) can be de-

rived from p(Y ;θ). This conditional form of the 3D Descrip-

torNet can be used for recovery tasks such as inpainting and

super-resolution. In inpinating, C(Y ) consists of the visible

part of Y . In super-resolution, C(Y ) is the low resolution

version of Y . For such tasks, we can learn the model from the

fully observed training data {Yi, i = 1, ...,n} by maximizing

the conditional log-likelihood

L(θ) =
1

n

n

∑
i=1

log p(Yi |C(Yi) = ci;θ), (9)

where ci is the observed value of C(Yi). The learning and

sampling algorithm is essentially the same as maximizing the

original log-likelihood, except that in the Langevin sampling

step, we need to sample from the conditional distribution,

which amounts to fixing C(Yτ) in the sampling process. The

zero temperature limit (with the noise term in the Langevin

dynamics disabled) approximately solves the following min-

imax problem

max
θ

min
{Ỹi:C(Ỹi)=ci}

V ({Ỹi};θ). (10)

3. Teaching 3D generator net

We can let a 3D generator network learn from the MCMC

sampling of the 3D DescriptorNet, so that the 3D generator

network can be used as an approximate direct sampler of the

3D DescriptorNet.

3.1. 3D generator model

The 3D generator model [6] is a 3D non-linear multi-layer

generalization of the traditional factor analysis model. The

generator model has the following form

Z ∼ N(0, Id);

Y = g(Z;α)+ ε;ε ∼ N(0,σ2ID). (11)

where Z is a d-dimensional vector of latent factors that follow

N(0,1) independently, and the 3D object Y is generated by

first sampling Z from its known prior distribution N(0, Id)
and then transforming Z to the D-dimensional Y by a top-

down deconvolutional network g(Z;α) plus the white noise

ε . α denotes the parameters of the generator.

3.2. MCMC teaching of 3D generator net

The 3D generator model can be trained simultaneously

with the 3D DescriptorNet in a cooperative training scheme

[31]. The basic idea is to use the 3D generator to generate

examples to initialize a finite step Langevin dynamics for

training the 3D DescriptorNet. In return, the 3D generator

learns from how the Langevin dynamics changes the initial

examples it generates.

Specifically, in each iteration, (1) We generate Zi from

its known prior distribution, and then generate the initial

synthesized examples by Ŷi = g(Zi;α)+ εi for i = 1, ..., ñ.

(2) Starting from the initial examples {Ŷi}, we sample from

the 3D DescriptorNet by running a finite number of steps

of MCMC such as Langevin dynamics to obtain the revised

synthesized examples {Ỹi}. (3) We then update the param-

eters θ of the 3D DescriptorNet based on {Ỹi} according

to (5), and update the parameters α of the 3D generator by

gradient descent

∆α ∝− ∂

∂α

[

1

ñ

ñ

∑
i=1

‖Ỹi−g(Zi;α)‖2

]

. (12)

We call it MCMC teaching because the revised examples

{Ỹi} generated by the finite step MCMC are used to teach

g(Z;α). For each Ỹi, the latent factors Zi are known to

the 3D generator, so that there is no need to infer Zi, and

the learning becomes a much simpler supervised learning

problem. Algorithm 2 presents a full description of the

learning of a 3D DescriptorNet with a 3D generator as a

sampler.

Algorithm 2 MCMC teaching of 3D generator net

Input:

(1) training examples {Yi, i = 1, ...,n}, (2) numbers of

Langevin steps l, (3) number of learning iterations T .

Output:

(1) estimated parameters θ and α , (2) synthetic exam-

ples {Ŷi,Ỹi, i = 1, ..., ñ}

1: Let t← 0, initialize θ and α .

2: repeat

3: Initializing mode seeking: For i = 1, ..., ñ, generate

Zi ∼ N(0, Id), and generate Ŷi = g(Zi;α(t))+ εi.

4: Mode seeking: For i = 1, ..., ñ, starting from Ŷi, run

l steps of Langevin dynamics to obtain Ỹi, each step

following equation (4).

5: Mode shifting: Update θ (t+1) = θ (t) + γtL
′(θ (t)),

where L′(θ (t)) is computed according to (5).

6: Learning from mode seeking: Update α(t+1) ac-

cording to (12).

7: Let t← t +1

8: until t = T
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4. Experiments

Project page: The code and more results and details can

be found at http://www.stat.ucla.edu/˜jxie/

3DDescriptorNet/3DDescriptorNet.html

4.1. 3D object synthesis

We conduct experiments on synthesizing 3D objects of

categories from ModelNet dataset [29]. Specifically, we use

ModelNet10, a 10-category subset of ModelNet which is

commonly used as benchmark for 3D object analysis. The

categories are chair, sofa, bathtub, toilet, bed, desk, table,

nightstand, dresser, and monitor. The size of the training set

for each category ranges from 100 to 700.

For qualitative experiment, we learn one 3-layer 3D De-

scriptorNet for each object category in ModelNet10. The

first layer has 200 16×16×16 filters with sub-sampling of 3,

the second layer has 100 6×6×6 filters with sub-sampling

of 2, and the final layer is a fully connected layer with a

single filter that covers the whole voxel grid. We add ReLU

layers between convolutional layers. We fix the standard

deviation of the reference distribution of the model to be

s = 0.5. The number of Langevin dynamics steps in each

learning iteration is l=20 and the step size ∆τ = 0.1. We use

Adam [11] for optimization with β1 = 0.5 and β2 = 0.999.

The learning rate is 0.001. The number of learning iterations

is 3,000. We disable the noise term in the Langevin step af-

ter 100 iterations. The training data are of size 32×32×32

voxels, whose values are 0 or 1. We prepare the training data

by subtracting the mean value from the data. Each voxel

value of the synthesized data is discretized into 0 or 1 by

comparing with a threshold 0.5. The mini-batch size is 20.

The number of parallel sampling chains for each batch is 25.

Figure 1 displays the observed 3D objects randomly sam-

pled from the training set, and the synthesized 3D objects

generated by our models for categories chair, bed, sofa, table,

dresser, and toilet. We visualize volumetric data via isosur-

faces in our paper. To show that our model can synthesize

new 3D objects beyond the training set, we compare the syn-

thesized patterns with their nearest neighbors in the training

set. The retrieved nearest neighbors are based on ℓ2 distance

in the voxel space. As shown in Figure 1, our model can

synthesize realistic 3D shapes, and the generated 3D objects

are similar, but not identical, to the training set.

To quantitatively evaluate our model, we adopt the Incep-

tion score proposed by [26], which uses a reference convolu-

tional neural network to compute

I({Ỹi, i = 1, ..., ñ}) = exp
(

EỸ

[

KL(p(c|Ỹ ) ‖ p(c))
])

,

where c denotes category, {Ỹi, i= 1, ..., ñ} are synthesized ex-

amples sampled from the model, p(c|Ỹ ) is obtained from the

output of the reference network, and p(c)≈ 1
ñ ∑

ñ
i=1 p(c|Ỹi).

Both a low entropy conditional category distribution p(c|Ỹ )

Table 1: Inception scores of different methods of learning

from 10 3D object categories.

Method Inception score

3D ShapeNets [29] 4.126±0.193

3D-GAN [28] 8.658±0.450

3D VAE [12] 11.015±0.420

3D DescriptorNet (ours) 11.772±0.418

(i.e., the network classifies a given sample with high cer-

tainty) and a high entropy category distribution p(c) (i.e.,

the network identifies a wide variety of categories among

the generated samples) can lead to a high inception score. In

our experiment, we use a state-of-the-art 3D multi-view con-

volutional neural network [17] trained on ModelNet dataset

for 3D object classification as the reference network.

We learn a single model from mixed 3D objects from

the training sets of 10 3D object categories of ModelNet10

dataset. Table 1 reports the Inception scores of our model as

well as a comparison with some baseline models including

3D-GAN [28], 3D ShapeNets [29], and 3D-VAE [12].

We also evaluate the quality of the synthesized 3D shapes

by the model learned from single category by using average

softmax class probability that reference network assigns to

the synthesized examples for the underlying category. Table

2 displays the results for all 10 categories. It can be seen that

our model generates 3D shapes with higher softmax class

probabilities than other baseline models.

Table 2: Softmax class probability

category ours [28] [12] [29]

bathtub 0.8348 0.7017 0.7190 0.1644

bed 0.9202 0.7775 0.3963 0.3239

chair 0.9920 0.9700 0.9892 0.8482

desk 0.8203 0.7936 0.8145 0.1068

dresser 0.7678 0.6314 0.7010 0.2166

monitor 0.9473 0.2493 0.8559 0.2767

night stand 0.7195 0.6853 0.6592 0.4969

sofa 0.9480 0.9276 0.3017 0.4888

table 0.8910 0.8377 0.8751 0.7902

toilet 0.9701 0.8569 0.6943 0.8832

Avg. 0.8811 0.7431 0.7006 0.4596

4.2. 3D object recovery

We then test the conditional 3D DescriptorNet on the 3D

object recovery task. On each testing 3D object, we ran-

domly corrupt some voxels of the 3D object. We then seek

to recover the corrupted voxels by sampling from the con-

ditional distribution p(YM|YM̃;θ) according to the learned

model p(Y ;θ), where M and M̃ denote the corrupted and

uncorrupted voxels, and YM and YM̃ are the corrupted part

and the uncorrupted part of the 3D object Y respectively.

The sampling of p(YM|YM̃;θ) is again accomplished by the
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Figure 1: Generating 3D objects. Each row displays one experiment, where the first three 3D objects are some observed

examples, columns 4, 5, 6, 7, 8, and 9 are 6 of the synthesized 3D objects sampled from the learned model by Langevin

dynamics. For the last four synthesized objects (shown in columns 6, 7, 8, and 9), their nearest neighbors retrieved from the

training set are shown in columns 10, 11, 12, and 13.

Langevin dynamics, which is the same as the Langevin dy-

namics that samples from the full distribution p(Y ;θ), ex-

cept that we fix the uncorrupted part YM̃ and only update

the corrupted part YM throughout the Langevin dynamics.

In the learning stage, we learn the model from the fully ob-

served training 3D objects. To specialize the learned model

to this recovery task, we learn the conditional distribution

p(YM|YM̃;θ) directly. That is, in the learning stage, we also

randomly corrupt each fully observed training 3D object

Y , and run Langevin dynamics by fixing YM̃ to obtain the

synthesized 3D object. The parameters θ are then updated

by gradient ascent according to (5). The network architec-

ture for recovery is the same as the one used in Section 4.1

for synthesis. The number of Langevin dynamics steps for

recovery in each iteration is set to be l = 90 and the step size

is ∆τ = 0.07. The number of learning iterations is 1,000.

The size of the mini-batch is 50. The 3D training data are of

size 32×32×32 voxels.

After learning the model, we recover the corrupted vox-

els in each testing data Y by sampling from p(YM|YM̃,θ) by

running 90 Langevin dynamics steps. In the training stage,

we randomly corrupt 70% of each training 3D shape. In the

testing stage, we experiment with the same percentage of

corruption. We compare our method with 3D-GAN and 3D

ShapeNets. We measure the recovery error by the average of

per-voxel differences between the original testing data and

the corresponding recovered data on the corrupted voxels.

Table 3 displays the numerical comparison results for the 10

categories. Figure 2 displays some examples of 3D object

recovery. For each experiment, the first row displays the orig-

inal 3D objects, the second row displays the corrupted 3D

objects, and the third row displays the recovered 3D objects

that are sampled from the learned conditional distributions

given the corrupted 3D objects as inputs.

Table 3: Recovery errors in occlusion experiments

category ours [28] [29]

bathtub 0.0152 0.0266 0.0621

bed 0.0068 0.0240 0.0617

chair 0.0118 0.0238 0.0444

desk 0.0122 0.0298 0.0731

dresser 0.0038 0.0384 0.1558

monitor 0.0103 0.0220 0.0783

night stand 0.0080 0.0248 0.2925

sofa 0.0068 0.0186 0.0563

table 0.0051 0.0326 0.0340

toilet 0.0119 0.0180 0.0977

Avg. 0.0092 0.0259 0.0956

4.3. 3D object superresolution

We test the conditional 3D DescriptorNet on the 3D object

super-resolution task. Similar to Experiment 4.2, we can per-

form super-resolution on a low resolution 3D objects by sam-

pling from a conditional 3D DescriptorNet p(Yhigh|Ylow,θ),
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Figure 2: 3D object recovery by sampling from the condi-

tional 3D DescriptorNet models. In each category, the first

row displays the original 3D objects, the second row shows

the corrupted 3D objects, and the third row displays the re-

covered 3D objects by running Langevin dynamics starting

from the corrupted objects. (a) chair, (b) night stand.
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Figure 3: 3D object super-resolution by conditional 3D De-

scriptorNet. The first row displays some original 3D objects

(64×64×64 voxels). The second row shows the correspond-

ing low resolution 3D objects (16× 16× 16 voxels). The

last row displays the corresponding super-resolution results

which are obtained by sampling from the conditional 3D

DescriptorNet by running 10 steps of Langevin dynamics

initialized with the objects shown in the second row.

where Yhigh denotes a high resolution version of Ylow. The

sampling of the conditional model p(Yhigh|Ylow,θ) is accom-

plished by the Langevin dynamics initialized with the given

low resolution 3D object that needs to be super-resolutioned.

In the learning stage, we learn the conditional model from

the fully observed training 3D objects as well as their low

resolution versions. To specialize the learned model to this

super-resolution task, in the training process, we down-scale

each fully observed training 3D object Yhigh into a low reso-

lution version Ylow, which leads to information loss. In each

iteration, we first up-scale Ylow by expanding each voxel of

Ylow into a d× d× d block (where d is the ratio between

the sizes of Yhigh and Ylow) of constant values to obtain an

up-scaled version Y
′
high of Ylow (The up-scaled Y

′
high is not

identical to the original high resolution Yhigh since the high

resolution details are lost), and then run Langevin dynam-

ics starting from Y
′
high. The parameters θ are then updated

by gradient ascent according to (5). Figure 3 shows some

qualitative results of 3D super-resolution, where we use a

2-layer conditional 3D DescriptorNet. The first layer has

200 16×16×16 filters with sub-sampling of 3. The second

layer is a fully-connected layer with one single filter. The

Langevin step size is 0.01.

To be more specific, let Ylow = CYhigh, where C is the

down-scaling matrix, e.g., each voxel of Ylow is the average

of the corresponding d×d×d block of Yhigh. Let C− be the

pseudo-inverse of C, e.g., C−Ylow gives us a high resolution

shape by expanding each voxel of Ylow into a d×d×d block

of constant values. Then the sampling of p(Yhigh|Ylow;θ) is

similar to sampling the unconditioned model p(Yhigh;θ), ex-

cept that for each step of the Langevin dynamics, let ∆Y be

the change of Y , we update Y ← Y +(I−C−C)∆Y , i.e., we

project ∆Y to the null space of C, so that the low resolution

version of Y , i.e., CY , remains fixed. From this perspec-

tive, super-resolution is similar to inpainting, except that the

visible voxels are replaced by low resolution voxels.

4.4. Analyzing the learned 3D generator

We evaluate a 3D generator trained by a 3D Descriptor-

Net via MCMC teaching. The generator network g(Z;α)
has 4 layers of volumetric deconvolution with 4×4×4 ker-

nels, with up-sampling factors {1,2,2,2} at different layers

respectively. The numbers of channels at different layers

are 256, 128, 64, and 1. There is a fully connected layer

under the 100 dimensional latent factors Z. The output size

is 32×32×32. Batch normalization and ReLU layers are

used between deconvolution layers and tanh non-linearity

is added at the bottom-layer. We train a 3D DescriptorNet

with the above 3D generator as a sampler in a cooperative

training scheme presented in Algorithm 2 for the categories

of toilet, sofa, and nightstand in ModelNet10 dataset inde-

pendently. The 3D DescriptorNet has a 4-layer network,

where the first layer has 64 9×9×9 filters, the second layer

has 128 7× 7× 7 filters, the third layer has 256 4× 4× 4

filters, and the fourth layer is a fully connected layer with a

single filter. The sub-sampling factors are {2,2,2,1}. ReLU

layers are used between convolutional layers.

We use Adam for optimization of 3D DescriptorNet with

β1 = 0.4 and β2 = 0.999, and for optimization of 3D gener-
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Figure 5: Interpolation between latent vectors of the 3D objects on the two ends

Figure 6: 3D shape arithmetic in the latent space

ator with β1 = 0.6 and β2 = 0.999. The learning rates for

3D DescriptorNet and 3D generator are 0.001 and 0.0003

respectively. The number of parallel chains is 50, and the

mini-batch size is 50. The training data are scaled into the

range of [−1,1]. The synthesized data are re-scaled back

into [0,1] for visualization. Figure 4 shows some examples

of 3D objects generated by the 3D generators trained by the

3D DescriptorNet via MCMC teaching.

We show results of interpolating between two latent vec-

tors of Z in Figure 5. For each row, the 3D objects at the two

ends are generated from Z vectors that are randomly sam-

pled from N(0, Id). Each object in the middle is obtained by

first interpolating the Z vectors of the two end objects, and

then generating the objects using the 3D generator. We ob-

serve smooth transitions in 3D shape structure and that most

intermediate objects are also physically plausible. This ex-

periment demonstrates that the learned 3D generator embeds

the 3D object distribution into a smooth low dimensional

manifold. Another way to investigate the learned 3D gen-

erator is to show shape arithmetic in the latent space. As

shown in Figure 6, the 3D generator is able to encode se-

mantic knowledge of 3D shapes in its latent space such that

arithmetic can be performed on Z vectors for visual concept

manipulation of 3D shapes.

4.5. 3D object classification

We evaluate the feature maps learned by our 3D Descrip-

torNet. We perform a classification experiment on Model-

Net10 dataset. We first train a single model on all categories

of the training set in an unsupervised manner. The network

architecture and learning configuration are the same as the

one used for synthesis in Section 4.1. Then we use the model

as a feature extractor. Specifically, for each input 3D object,

we use the model to extract its first and second layers of

feature maps, apply max pooling of kernel sizes 4× 4× 4

and 2× 2× 2 respectively, and concatenate the outputs as

a feature vector of length 8,100. We train a multinomial

logistic regression classifier from labeled data based on the

extracted feature vectors for classification. We evaluate the

classification accuracy of the classifier on the testing data

using the one-versus-all rule. For comparison, Table 4 lists 8

published results on this dataset obtained by other baseline

methods. Our method outperforms the other methods in

terms of classification accuracy on this dataset.

Table 4: 3D object classification on ModelNet10 dataset

Method Accuracy

Geometry Image [23] 88.4%

PANORAMA-NN [19] 91.1%

ECC [22] 90.0%

3D ShapeNets [29] 83.5%

DeepPano [21] 85.5%

SPH [10] 79.8%

VConv-DAE [20] 80.5%

3D-GAN [28] 91.0%

3D DescriptorNet (ours) 92.4%

5. Conclusion

We propose the 3D DescriptorNet for volumetric object

synthesis, and the conditional 3D DescriptorNet for 3D ob-

ject recovery and 3D object super resolution. The proposed

model is a deep convolutional energy-based model, which

can be trained by an “analysis by synthesis” scheme. The

training of the model can be interpreted as a mode seeking

and mode shifting process, and the zero temperature limit has

an adversarial interpretation. A 3D generator can be taught

by the 3D DescriptorNet via MCMC teaching. Experiments

demonstrate that our models are able to generate realistic 3D

shape patterns and are useful for 3D shape analysis.
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