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Abstract

In this paper, we present a detailed design of dynamic

video segmentation network (DVSNet) for fast and efficient

semantic video segmentation. DVSNet consists of two con-

volutional neural networks: a segmentation network and

a flow network. The former generates highly accurate se-

mantic segmentations, but is deeper and slower. The latter

is much faster than the former, but its output requires fur-

ther processing to generate less accurate semantic segmen-

tations. We explore the use of a decision network to adap-

tively assign different frame regions to different networks

based on a metric called expected confidence score. Frame

regions with a higher expected confidence score traverse the

flow network. Frame regions with a lower expected con-

fidence score have to pass through the segmentation net-

work. We have extensively performed experiments on var-

ious configurations of DVSNet, and investigated a number

of variants for the proposed decision network. The experi-

mental results show that our DVSNet is able to achieve up

to 70.4% mIoU at 19.8 fps on the Cityscape dataset. A high

speed version of DVSNet is able to deliver an fps of 30.4

with 63.2% mIoU on the same dataset. DVSNet is also able

to reduce up to 95% of the computational workloads.

1. Introduction

Fast and accurate semantic segmentation has been a fun-

damental challenge in computer vision. The goal is to

classify each pixel in an image into one of a given set

of categories. In recent years, semantic image segmenta-

tion has achieved an unprecedented high accuracy on var-

ious datasets [1, 2, 3, 4] via the use of deep convolutional

neural networks (DCNNs) [5, 6, 7, 8, 9, 10, 11, 12]. Ac-

curate semantic segmentation enables a number of appli-

cations which demand pixel-level precision for their vi-

sual perception modules, such as autonomous vehicles [13],

surveillance cameras, unmanned aerial vehicles (UAVs),

and so on. However, due to their real-time requirements,

these applications typically require high frame rates per

second (fps), necessitating short inference latency in the

perception modules. Unfortunately, contemporary state-of-
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Figure 1: Comparison of frames at timestamps t and t+10 in two

video sequences

the-art CNN models usually employ deep network archi-

tectures to extract high-level features from raw data [14,

15, 16, 17, 18], leading to exceptionally long inference

time. The well-known models proposed for semantic im-

age segmentation, including fully convolutional networks

(FCN) [19], DeepLab [5, 6, 7], PSPNet [8], ResNet-38 [9],

RefineNet [10], dense upsampling convolution (DUC) [11],

etc., are not suitable for real-time semantic video segmenta-

tion due to their usage of deep network architectures. These

models usually incorporate extra layers for boosting their

accuracies, such as spatial pyramid pooling (SPP) [6, 7,

8, 20], multi-scale dilated convolution [5, 6, 7, 11, 21],

multi-scale input paths [6, 22, 23, 24], multi-scale feature

paths [5, 10, 12, 25, 26], global pooling [7], and condi-

tional random field (CRF) [5, 6, 22, 27, 28]. These addi-

tional layers consume tremendous amount of computational

resources to process every pixel in an image, leading to im-

practical execution time. In the past decade, semantic video

segmentation focusing on reducing the inference time has

received little attention [29, 30]. With increasing demand

for high accuracy and short inference time, a method for

efficiently reusing the extracted features in DCNNs for se-

mantic video segmentation is becoming urgently necessary.

It is unnecessary to reprocess every single pixel of a

frame by those deep semantic segmentation models in a

video sequence. When comparing the difference between

two consecutive frames, it is common that a large portion

of them is similar. Fig. 1 illustrates an example of the above

observation. The left parts show the video frames at times-

tamps t and t + 10, respectively. The right part shows the

difference between these two frames. It can be observed

that only a small portion of the frames are apparently differ-

ent (highlighted by red rectangles), implying that the a large

portion of the feature maps between these frames is invari-
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Figure 2: Using different CNNs for different video scenes

ant, or just varies slightly. Therefore, performing complex

semantic segmentation on the entire video frame can poten-

tially be a waste of time. By keeping or slightly modifying

the feature maps of the portions with minor frame differ-

ences while performing semantic segmentation for the rest,

we may achieve a better efficiency and shorter latency in

semantic video segmentation than per-frame approaches.

Another perspective for accelerating the processing

speed of semantic video segmentation is by leveraging the

temporal correlations between consecutive frames. Consec-

utive video frames that do not change rapidly have sim-

ilar high-level semantic features [31, 32]. On the other

hand, frames containing multiple moving objects demon-

strate disparate feature maps at different timestamps. Fig. 2

illustrates an example of such scenarios. Fig. 2 (a) shows

a semantic segmentation performed on a highway, which

contains fewer objects and thus results in less changes in

consecutive segmented images. Fig. 2 (b), on the contrary,

corresponds to a video sequence taken from a local street,

which contains dozens of moving objects. The former

suggests reusing the extracted features and updating them

with as few computations as possible (e.g., by a shallower

CNN), while the latter requires performing highly accurate

semantic segmentation on every single frame (e.g., by a

deeper CNN). Researchers have attempted several method-

ologies to reuse the extracted features, such that not all of

the frames in a video sequence have to traverse the entire

DCNN. The authors in [29] proposed to update high-level

features less frequently, taking advantage of temporal cor-

relations between frames to reduce the computation time.

Another effective approach is called Deep Feature Flow

(DFF) [30], which suggests to propagate the features of a

few key frames to other timestamps via the use of optical

flow [33]. DFF combines the concepts of segmentation net-

work and FlowNet [34], and is able to reduce the computa-

tion time of semantic video segmentation by 74%. Unfortu-

nately, DFF uses a fixed key frame scheduling policy (i.e., it

assumes a fixed update period between two consecutive key

frames), which sacrificies its flexibility and customizability.

Based on the above observations, we propose a new net-

work architecture, called dynamic video segmentation net-

work (DVSNet), to adaptively apply two different neural

networks to different regions of the frames, exploiting spa-

tial and temporal redundancies in feature maps as much as

possible to accelerate the processing speed. One of the net-

works is called the segmentation network, which generates

highly accurate semantic segmentations, but is deeper and

slower. The other is called the flow network. The flow net-

work is much shallower and faster than the the segmenta-

tion network, but its output requires further processing to

generate estimated semantic segmentations (which might

be less accurate than the ones generated by the segmenta-

tion network). The former can be implemented by any of

the contemporary state-of-the-art architectures [6, 8], while

the latter is developed on top of FlowNet 2.0 [35]. We di-

vide each frame into multiple regions. Regions with minor

differences between consecutive frames, where most of the

image contents are similar, should traverse the flow network

(Fig. 2 (a)). Regions with huge differences between consec-

utive frames, where the contents change significantly, have

to pass through the segmentation network (Fig. 2 (b)). In

other words, different regions in a frame may traverse dif-

ferent networks of different lengths when they are presented

to DVSNet. We designate the the regions processed by the

segmentation network and flow network as the key frame

regions and spatial warping regions, respectively. In or-

der to accelerate the processing speed, we assume that key

frame regions are relatively sparser than the spatial warp-

ing regions in a video. DVSNet offers two major advan-

tages. First, efficiency is enhanced because DVSNet adapts

its throughput to the differences between consecutive frame

regions at runtime. Second, significant computation can be

saved by the use of the flow network. This scheme is pri-

marily targeted at semantic video segmentation.

To define a systematic policy for efficiently assign frame

regions to the two networks while maintaining flexibility

and customizability, we further propose two techniques: (i)

adaptive key frame scheduling policy, and (ii) decision net-

work (DN). Adaptive key frame scheduling policy is a tech-

nique for determining whether to process an input frame re-

gion by the segmentation network or not. Differing from

the fixed key frame scheduling policy employed in [30],

the proposed adaptive key frame scheduling policy updates

the key frames according to a new metric called expected

confidence score. An expected confidence score is evalu-

ated for each frame region. The higher the expected con-

fidence score is, the more likely the segmentation gener-

ated by the flow network will be similar to that of the seg-

mentation network. The value of the expected confidence

score reflects the confidence of the flow network to gener-

ate similar results as the segmentation network. The larger
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the frame region difference is, the more likely the flow net-

work is unable to infer the correct frame region segmenta-

tion. Fig. 3 illustrates such a scenario, which is explained

in Section 3.1. A frame region is first analyzed for its ex-

pected confidence score. If its expected confidence score is

higher than a predefined threshold, it is processed by the

flow network. Otherwise, it is allocated to the segmen-

tation network. The decision threshold is adjustable for

different scenarios. A higher threshold leads to a higher

mean intersection-over-union (mIoU) accuracy of the seg-

mentation results, while a lower thresholds corresponds to a

shorter processing latency for most of the frame regions. An

adjustable threshold allows DVSNet to be applied to various

scenarios. The function of DN is to determine whether an

input frame region has to traverse the segmentation network

by estimating its expected confidence score. In DVSNet,

DN is implemented as a CNN, with its network size much

smaller than typical network architectures for image recog-

nition. DN can be trained by supervised learning, where the

details is covered in Section 3.4. With the use of DN, we are

able to obtain fine-grained control of fps, and enhance the

efficiency of computation for semantic video segmentation.

To verify the proposed DVSNet, we have extensively

performed experiments on several well-know models for the

segmentation network, and investigated a number of vari-

ants of the proposed DN scheme. The results show that our

method is able to achieve up to 70.4% mIoU at 19.8 fps on

the Cityscape [2] dataset. A high speed version of DVSNet

achieves 30.4 fps with 63.2% mIoU on the same dataset.

Our model is able to reduce up to 95% of the computational

workloads. The contributions of this work are as follows:

1. A frame division technique to apply different segmen-

tation strategies to different frame regions for maxi-

mizing the usage of video redundancy and continuity.

2. A DN for determining whether to assign an input frame

region to the segmentation network, and adaptively ad-

justing the update period of the key frames.

3. An adaptive key frame scheduling policy based on a

metric called expected confidence score.

4. An adjustable threshold for DN.

5. A comprehensive analysis of the impact of DN’s deci-

sion threshold on DVSNet’s accuracy and fps.

The remainder of this paper is organized as follows. Sec-

tion 2 introduces background material. Section 3 walks

through the proposed DVSNet architecture, its implemen-

tation details, and the training methodologies. Section 4

presents the experimental results. Section 5 concludes.

2. Background

In this section, we introduce background material. We

first provide an overview of semantic segmentation and op-

tical flow. Then, we briefly review related work that focuses

on semantic video segmentation.

2.1. Semantic Image Segmentation

Various techniques have been proposed in the past few

years to transfer DCNNs from image classification [14, 15,

16, 17, 36] to semantic segmentation tasks [7, 8, 9, 10, 19].

Fully convolutional network (FCN) [19] was the pioneer

to replace fully-connected layers with convolutional lay-

ers. Inspired by FCN, a number of successive methods and

modifications were proposed to further improve the accu-

racy. The authors in [5, 6, 7, 21] investigated the use of di-

lated (atrous) layers to replace deconvolutional layers [37]

in dense prediction tasks, so that the resolution of feature

maps can be explicitly controlled. Integrating DCNNs with

a fully-connected conditional random field (CRF) have also

been explored in [5, 6, 27] to refine the image segmenta-

tion results. Spatial pyramid pooling [20] and atrous spatial

pyramid pooling (ASPP) [6, 7] are employed by PSPNet [8]

and DeepLab [6, 7] to capture multi-scale context informa-

tion. These methods are effective in increasing the accu-

racy, however, sometimes at the expense of longer latency

and more computational workloads.

2.2. Optical Flow

Optical flow estimation has been the subject of a number

of research works [34, 33, 38, 39, 40, 41, 42]. Unfortu-

nately, most of the previous methodologies are mainly de-

veloped for running on CPUs, failing to incorporate exe-

cution efficiency offered by GPUs. For deep learning ap-

proaches running on GPUs, FlowNet [34] is the first model

to apply DCNNs to optical flow estimation. It then later

evolves into two recent architectures. One is called spatial

pyramid network (SpyNet) [43], which uses the coarse-to-

fine spatial pyramid structure of [44] to learn residual flow

at each pyramid level. The other is FlowNet 2.0 [35], which

introduces a new learning schedule, a stacked architecture,

and a sub-network specialized on small motions to enhance

flow estimation. In this paper, we incorporate the building

blocks from FlowNet 2.0 into our DVSNet for accelerating

semantic video segmentation.

2.3. Semantic Video Segmentation

Semantic video segmentation has gained researchers’ at-

tention in recent years. Many research works are focused

on efficient network architecture for speeding up semantic

video segmentation [29, 30]. Clockwork employs different

update periods for different layers of the feature maps in

the network, and reuses feature maps of past frames in cer-

tain network layers to reduce computation [29]. Deep fea-

ture flow (DFF) exploits an optical flow network to generate

flow fields and propagates feature maps from key frames to

nearby frames [30]. It is reported that Clockwork runs 1.3×

faster than per-frame approach [29], however, its mIoU

drops from 65.9% to 64.4% on the Cityscapes dataset [2].
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Figure 3: DVSNet framework

In contrast, DFF runs three times faster than per-frame ap-

proach, and its mIoU only drops slightly from 71.1% to

70.0% on the same datasets [30]. DFF demonstrates much

better performance than Clockwork in both accuracy and

efficiency. However, a major drawback is that it employs

a fixed key frame scheduling policy. Inspired by DFF, the

proposed DVSNet embraces an adaptive key frame schedul-

ing policy, offering better performance than DFF in terms of

both accuracy and efficiency.

3. DVSNet

In this section, we present the architecture and imple-

mentation details of DVSNet. We first outline the frame-

work of DVSNet. Next, we introduce its methodologies in-

cluding adaptive key frame scheduling, frame region based

execution. Finally, we explain the model of DN and its

training methodology in detail.

3.1. Dynamic Video Segmentation Network

The framework of DVSNet is illustrated in Fig. 3. The

DVSNet framework consists of three major steps. The first

step in the DVSNet framework is dividing the input frames

into frame regions. In Fig. 3, we assume that Ik represents

the key frame, Ii represents the current frame, and the num-

ber of the frame regions equals four. We further assume

that the frame regions at timestamp t correspond to the key

frame regions, and those at timestamp t + 10 correspond

to the current frame regions. The differences between the

key frame regions and the corresponding current frame re-

gions are shown at the bottom left. In this example, re-

gion 1 shows significantly more differences in pixels be-

tween timestamps t and t+10, while the other regions only

change slightly. In step 2, DN analyzes the frame region

pairs between Ik and Ii, and evaluates the expected confi-

dence scores for the four regions separately. DN compares

the expected confidence score of each region against a pre-

determined threshold. If the expected confidence score of a

region is lower than the threshold, the corresponding region

is sent to a segmentation path (i.e., the segmentation net-

work). Otherwise, it is forwarded to a spatial warping path,

Figure 4: Different key frame scheduling policies

which includes the flow network. The function of DN is to

evaluate if the spatial warping path is likely to generate sim-

ilar segmentation results (Oc) as the segmentation path (Sc).

The higher the expected confidence score is, the more likely

the spatial warping path is able to achieve it. We explain

the training methodology of DN in Section 3.4. Based on

the decisions of DN, in step 3 frame regions are forwarded

to different paths to generate their regional semantic seg-

mentations. For the spatial warping path, a special warping

function W (∗) [30] is employed to process the the output

of the flow network F with the segmentation Sk from the

same region of the key frame to generate a new segmenta-

tion Oc for that region. Please note that the flow network

can not generate a regional image segmentation by itself. It

simply predicts the displacement of objects by optical flow,

and needs to rely on the warping function W (∗) and the

information contained in the key frames. We recommend

interested readers to refer to [30] for more details of W (∗).

3.2. Adaptive Key Frame Scheduling

Fig. 4 illustrates the key frame scheduling policies used

by DFF [30] and DVSNet. We assume that the sequences

of the frame regions in Fig. 4 correspond to the same frame

region r. Similar to DFF, DVSNet updates the key frames

after a certain period of time. DFF adopts a fixed update

period, as shown in Fig. 4 (a), which is predetermined and

does not take quality and efficiency into consideration. For

example, it is more efficient to process a frame sequence

of similar contents with a longer update period, as the spa-

tial warping path itself is sufficient to produce satisfactory

outcomes (i.e., regional segmentations). On the other hand,

when the scene changes dramatically, using the segmenta-
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Figure 5: Confidence score vs. t for the frame regions and the

entire frame

tion network is more reasonable. This is because the flow

network is unable to predict the displacement of unseen ob-

jects not existing in the corresponding key frame region.

We propose an adaptive key frame scheduling policy by

using DN and expected confidence score. The adaptive key

frame scheduling policy is illustrated in Fig. 4 (b), in which

the update period is not fixed and is determined according

to the expected confidence score of that region. DN deter-

mines when to update the key frame region r by evaluating

if the output of the flow network F r is able to generate a

satisfactory regional segmentation Or. If Or is expected

to be close to that of the segmentation network Sr, F r is

forwarded to the spatial warping function W (∗) to generate

Or. Otherwise, the current frame region Ir
c

is sent to the

longer segmentation network, and the key frame is updated

(Ir
k
<= Ir

c
). Note that DN neither compares Or and Sr,

nor requires them in its evaluation. It is a regression model

trained to ”predict” the outcome of Or based on F r, as illus-

trated in Fig 6, and is explained in Section 3.4. We define

a metric, called confidence score, to represent the ground

truth difference between Or and Sr. Please note that ex-

pected confidence score and confidence score are different.

The former is a value evaluated by DN, while the latter is

the ground truth difference in pixels between Or and Sr.

The latter is only used in the training phase for training DN,

and is not accessible by DN during the execution phase. The

mathematical form of confidence score is defined as:

confidence score =

∑

p∈P
C(Or(p), Sr(p))

P
(1)

where P is the total number of pixels in r, p the index of a

pixel, Or(p) the class label of pixel p predicted by the spa-

tial warping path, Sr(p) the class label of pixel p predicted

by the segmentation path, C(u, v) a function which outputs

1 only when u equals v, otherwise 0.

Given a target threshold t, DN compares its expected

confidence score against t. If it is higher than t, F r is

considered satisfactory. Otherwise, Ir is forwarded to the

segmentation path in Fig 3. An advantage of the proposed

adaptive policy is that the target threshold t is adjustable. A

lower t leads to lower accuracy and higher fps, as more in-

Figure 6: The network model of DN and its training methodology

put frame regions traverse the shorter spatial warping path.

On the other hand, a higher t results in higher accuracy,

trading off speed for quality. According to different re-

quirements in different scenes and scenarios, DVSNet can

be customized to determine the best t value.

3.3. Frame Region Based Execution

We provide an analytical example to justify the proposed

frame region based execution scheme. Fig. 5 plots curves

representing the values of confidence score versus time for

different frame regions as well as the entire frame for a

video sequence extracted from the Cityscape dataset [2].

We again assume that each frame is divided into four frame

regions. We plot the curves from timestamp 300 to 600 and

use fixed a key frame scheduling policy which updates the

key frame every 15 frames. The curves are smoothed by av-

eraging the data points over 15 timestamps. The smoothed

curves are highlighted in solid colors, while the raw data

points are plotted in light colors. It can be seen that the

confidence score of the entire frame does not fluctuate ob-

viously over time. However, for most of the time, the con-

fidence scores of different frame regions show significant

variations. Some frame regions exhibit high confidence

scores for a long period of time, indicating that some por-

tions of the frame change slowly during the period. For

those scenarios, it is not necessary to feed the entire frame

to the segmentation network. This example validates our

claim of using frame region based execution scheme. In our

experimental results, we present a comprehensive analysis

for the number of frame regions versus performance. We

also inspect the impact of overlapped pixels between frame

regions on DVSNet’s accuracy.

3.4. DN and Its Training Methodology

Fig. 6 illustrates the network model of DN as well as

its training methodology. DN is a lightweight CNN con-

sists of only a single convolutional layer and three fully-

connected layers. DN takes as input the feature maps from

one of the intermediate layers of the flow network, as illus-

trated in Fig. 7. DN is trained to perform regression. In

the training phase, the goal of DN is to learn to predict an

expected confidence score for a frame region as close to the

ground truth confidence score (derived from Eq. (1)) of that

region as possible. The predicted expected confidence score
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Figure 7: Different feature maps for training DN

is compared with the ground truth confidence score to cal-

culate a mean squared error (MSE) loss. The MSE loss is

then used to update the parameters in the model of DN by

Adam optimizer [45]. In the execution (testing) phase, the

ground truth confidence score is not accessible to both DN

and the flow network. The feature maps fed into DN is al-

lowed to come from any of the layers of the flow networks,

as plotted in Fig. 7. These feature maps represent the spa-

tial transfer information between a key frame region and its

corresponding current frame region [30, 46]. We provide an

analysis in Section 4.4 for different DN configurations.

4. Experiments

In this section, we present experimental results and dis-

cuss their implications. We start by a brief introduction to

our experimental setup in Section 4.1. Then, we validate our

DVSNet for a variety of configurations in Section 4.2. We

demonstrate the effectiveness of the proposed adaptive key

frame scheduling policy in Section 4.3. We compare differ-

ent DN configurations in Section 4.4. We analyze different

frame division schemes in Section 4.5. Finally, we evaluate

the impact of overlapping frame regions in Section 4.6.

4.1. Experimental Setup

We perform experiments on the famous Cityscapes

dataset [2]. The training, validation, and testing sets con-

tain 2,975, 500, and 1,525 frames, respectively. The frames

of training and validation sets are annotated with pixel-

level ground-truth labels for semantic segmentation. The

annotated frame is provided on the 20th frame of a 30-

frame video snippet. We evaluate our approaches on each

Cityscapes validation snippet from the 1st frame to the 20th

frame. We set the 1st frame as our initial key frame and

measure mIoU on the annotated 20th frames.

In our experiments, we pre-trained three semantic seg-

mentation models, DeepLab-Fast, PSPNet, and DeepLab-

v2, as our baseline models for the segmentation network in

DVSNet. DeepLab-Fast is a modified version of DeepLab-

v2 [6], while PSPNet and DeepLab-v2 are reproduced from

PSPNet [8] and DeepLab-v2 [6], respectively. For the re-

produced baseline models, we removed several extra fea-

tures including CRF, multi-scale inferencing, and sliding

window segmentation from the original versions to enhance

their execution speed. The values of mIoU and fps of

the baseline segmentation models are measured in a per-

DVSNet Methods mIoU (%) fps

Baseline segmentation networks

DeepLab-Fast per-frame 73.5 5.6

PSPNet per-frame 77.0 1.7

DeepLab-v2 per-frame 74.8 1.8

Balanced mode

(DeepLab-Fast, FlowNet2-s) t = 92% 70.4 19.8

(PSPNet, FlowNet2-s) t = 83% 70.2 11.5

(DeepLab-v2, FlowNet2-s) t = 81% 70.3 8.3

High-speed mode

(DeepLab-Fast, FlowNet2-s) t = 86% 63.2 30.4

(PSPNet, FlowNet2-s) t = 75% 62.6 30.3

Table 1: Comparison of mIoU and fps for various models, where

t represents the target threshold of DN.

frame fashion, without any frame division or assistance of

the flow network. The results of the baseline segmenta-

tion models on the Cityscape dataset are summarized in

Table 1. Among the three baseline segmentation models,

DeepLab-Fast is three times faster than the other two mod-

els, while PSPNet has the highest 77.0% mIoU accuracy.

We further pre-trained FlowNet2-S and FlowNet2-s to serve

as our baseline models for the flow network in DVSNet.

These two models are reproduced from [35]. In this pa-

per, we represent the DVSNet configuration by a tuple:

(segmentation network, flow network, t), where t is

the target threshold for that DVSNet configuration. By de-

fault, we divide a frame to four regions for the former two

models, and two regions for the latter model. The depth of

the overlapped regions between adjacent frame regions is

by default set to 64 pixels. A detailed analysis for justify-

ing this value is provided in Section 4.6 The architectures of

our models and their training methodologies are described

in detail in our supplementary material. We perform all of

our experiments on a server with two Intel Xeon E5-2620

CPUs and an NVIDIA GTX 1080 Ti GPU.

4.2. Validation of DVSNet

Table 1 compares the speed (fps) and accuracy (mIoU) of

(DeepLab-Fast, FlowNet2-s), (PSPNet, FlowNet2-s), and

(DeepLab-v, FlowNet2-s) for two different modes: a bal-

anced mode and a high-speed mode. The balanced mode

requires that the accuracy of a network has to be above 70%

mIoU, while the high-speed mode requires that the frame

rate has to be higher than 30 fps. We show the correspond-

ing values of the target threshold t in the 2nd column, and

the values of mIoU and fps in the 3rd and 4nd columns,

respectively. It is observed that the DVSNet framework is

able to significantly improve the performance of the three

baseline models. For the balanced mode, (DeepLab-Fast,

FlowNet2-s, 92), (PSPNet, FlowNet2-s, 83), and (DeepLab-

v2, FlowNet2-s, 81) are 3.5×, 6.8×, and 4.6× faster than

their baseline counterparts, with a slight drop of 3%, 6%,

and 4% in mIoU, respectively. The high-speed mode en-
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Figure 8: Accuracy (mIoU) and frame rate (fps) of various DVS-

Net configurations under different threshold t. The thresholds t
varies from 95% to 83% for DeepLab-Fast based DVSNet, from

90% to 74% for PSPNet and DeepLab-v2 based DVSNet.

ables the two models to achieve real-time speed. The

frame rates of (DeepLab-Fast, FlowNet2-s, 86) and (PSP-

Net, FlowNet2-s, 75) are 5.4× and 17.8× faster than their

baseline counterparts, respectively. The mIoU of them de-

clines to 63.2% and 62.6%, respectively. From Table 1, we

conclude that decreasing t leads to a drop in mIoU of the

models, but increases fps significantly.

Fig. 8 shows accuracy (mIoU) versus frame rate (fps)

for various DVSNet configurations. We plot six curves on

Fig. 8, corresponding to six possible combinations of the

three baseline segmentation network models and the two

baseline flow network models. The three solid curves rep-

resent DVSNet configurations built on top of FlowNet2-s,

while the remaining three dashed curves stand for DVSNet

configurations using FlowNet2-S. The data points on each

curve correspond to different values of target threshold t
under the same DVSNet configuration. It can be observed

that as t increases, the data points of all curves move to-

ward the upper-left corner, leading to increased mIoU ac-

curacies but decreased fps for all DVSNet configurations.

On the contrary, when t decreases, the data points of all

curves move toward the opposite bottom-right corner, indi-

cating that more frame regions pass through the shorter spa-

tial warping path. It can be seen that the dashed lines drop

faster than the solid lines, because FlowNet2-S is deeper

and thus slower than FlowNet2-s. By adjusting the value of

t and selecting the baseline models, DVSNet can be config-

ured and customized to meet a wide range of accuracy and

frame rate requirements.

4.3. Validation of DVSNet’s Adaptive Key Frame
Scheduling Policy

In this section, we validate the effectiveness of DVSNet’s

adaptive key frame scheduling policy. Fig. 9 plots a compar-

ison of performance between the fixed key frame schedul-

ing policy and the adaptive key frame scheduling policy.

DVSNet which adopts adaptive scheduling with expected

confidence score and DFF [30] which adopts fixed schedul-

ing correspond to the red and blue curves, respectively.

Figure 9: Accuracy (mIoU) versus frame rate (fps) under different

key frame scheduling policies. t is the target confidence score

threshold. l is the key frame update period in DFF [30]. d is the

frame difference threshold. f is the flow magnitude threshold.

The evaluation method of the fixed key frame schedul-

ing policy employed by DFF tends to overestimate mIoU.

For each frame i with ground truth annotation, DFF aver-

ages mIoU from m image pairs (k, i), where key frames

k = i− (m+ 1), ..., i. The method seems counter-intuitive

and fails to reflect the impact of scheduling policies on

mIoU. In our fixed key frame scheduling policy experiment,

we start from the key frames k = i− (l+1), where l is key

frame update period, and measure mIoU at each frame i.

We include additional curves in Fig. 9 to compare the im-

pact of another two different decision metrics for the adap-

tive key frame scheduling policy: frame difference (green

curve) and flow magnitude (orange curve). The frame dif-

ference d and the flow magnitude f are given by:

d =

∑

p∈P
(G(Ik)p −G(Ii)p)

P
(2)

f =

∑

p∈P
(
√

u2
p + v2p)

P
(3)

where P is the total number of pixels in a frame or frame

region, p represents the index of a pixel, G(∗) is a grayscale

operator which converts an RGB image to a grayscale one,

and u and v represent the horizontal and vertical move-

ments, respectively. For a fair comparison, the networks

are all configured to (DeepLab-Fast, FlowNet2-s).

Fig. 9 reveals that using frame difference as the deci-

sion metric for the adaptive key frame scheduling policy

is inadequate. For all values of d considered in our ex-

periments (ranging from 60 to 100), the mIoU accuracies

and the frame rates of the datapoints on the green curve

are much lower than those of the other three curves. On

the other hand, it is observed that using the adaptive key

scheduling policy with either expected confidence score or

flow magnitude as the decision metrics deliver higher mIoU

accuracies than the fixed key frame scheduling policy em-

ployed by DFF, even at high fps. The curves indicate that

DVSNet employing the adaptive scheduling policy with ex-

pected confidence score as the decision metric results in the
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Inputs fed to DN Error rate(%)

key-frame + flow 2.20

Feature maps after conv4 1.94

Feature maps after conv5 1.85

Feature maps after conv6 1.74

Table 2: Impact of input feature maps on DN’s performance

Dividing Methods Spatial Warping / Segmenation

Original 4, 535/5, 465 = 0.83

Half 9, 798/10, 202 = 1.04

2× 2 34, 013/5, 987 = 5.68

3× 3 69, 157/20, 843 = 3.32

4× 4 122, 958/37, 042 = 3.32

Table 3: Impact of frame division schemes on performance

best performance. This experiment validates the effective-

ness of DVSNet’s adaptive key frame scheduling policy.

4.4. Comparison of DN Configurations

We perform experiments for a number of DN configura-

tions illustrate in Fig. 7, and summarize the results in Ta-

ble 2. We feed DN with feature maps from different layers

of the flow network, including the feature maps after the

4th, 5th, and 6th convolutional layers. We additional in-

clude an entry in Table 2 to represent the case where DN is

fed with the key frame and the output of the flow network.

We measure the performance of these variants by compar-

ing the error rate of the evaluated expected confidence score

against the ground truth confidence score. It is observed

that the feature maps after the 6th convolutional layers lead

to the lowest error rate.

4.5. Impact of Frame Division Schemes

Table 3 shows the impact of different frame division

schemes on performance. Table 3 compares five differ-

ent schemes corresponding to five different ways to di-

vide a video frame. The ratio of the number of frame

regions sent to the spatial warping path to the number

of those sent to the segmentation path is represented as

Spatial Warping/Segmentation. A higher ratio indi-

cates that more frame regions are forwarded to the spatial

warping path. We observe that the 2 × 2 division scheme

offers the best utilization of the spatial warping path. The

results also show that too few or too many frame regions do

not exploit the spatial warping path well. A frame with-

out any frame regions prohibits DVSNet from exploiting

non-homogeneity in frame differences between consecutive

frames. Too many frame regions lead to large variations

in expected confidence score, causing many of them to be

forwarded to the segmentation network frequently.

4.6. Impact of Overlapped Regions on Accuracy

Fig 10 shows the accuracy of DVSNet as a function of

the depth of overlapped frame regions. We assume that each

Figure 10: Impact of overlapping frame regions on accuracy

video frame is divided to four frame regions. The configu-

ration of DVSNet is set to be (DeepLab-Fast, FlowNet2-s,

92). The x-axis represents the overlapped depth in pixels

between adjacent frame regions. The y-axis represents the

mIoU accuracy. Without overlapped regions, DVSNet is

only able to achieve an accuracy up to 65.5% mIoU. How-

ever, when the depth of the overlapped region increases, the

mIoU accuracy also increases. The curve saturates at 70%

mIoU, corresponding to an overlapped depth of 64 pixels.

However, more overlap pixels lead to larger frame regions,

resulting in increased computation time. According to our

experiments, an empirical value of 64 pixels seem to be op-

timal for DVSNet. We plot a red dotted line corresponding

to the mIoU accuracy of the entire frame without any frame

division in Fig 10 for the purpose of comparison.

5. Conclusion

We presented a DVSNet framework to strike a balance

between quality and efficiency for semantic video segmen-

tation. The DVSNet framework consists of two major parts:

a segmentation path and a spatial warping path. The for-

mer is deeper and slower but highly accurate, while the lat-

ter is faster but less accurate. We proposed to divide video

frames into frame regions, and perform semantic segmenta-

tion for different frame regions by different DVSNet paths.

We explored the use of DN to determine which frame re-

gions should be forwarded to which DVSNet paths based

on a metric called expected confidence score. We further

proposed an adaptive key frame scheduling policy to adap-

tively adjust the update period of key frames at runtime.

Experimental results show that DVSNet is able to achieve

up to 70.1% mIoU at 20 fps on the Cityscape dataset. We

have performed extensive experiments for various configu-

rations of DVSNet, and showed that DVSNet outperforms

contemporary state-of-the-art semantic segmentation mod-

els in terms of efficiency and flexibility.
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