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Abstract

Adversarial attacks are known to succeed on classifiers,

but it has been an open question whether more complex vi-

sion systems are vulnerable. In this paper, we study ad-

versarial examples for vision and language models, which

incorporate natural language understanding and complex

structures such as attention, localization, and modular ar-

chitectures. In particular, we investigate attacks on a dense

captioning model and on two visual question answering

(VQA) models. Our evaluation shows that we can generate

adversarial examples with a high success rate (i.e., > 90%)

for these models. Our work sheds new light on understand-

ing adversarial attacks on vision systems which have a lan-

guage component and shows that attention, bounding box

localization, and compositional internal structures are vul-

nerable to adversarial attacks. These observations will in-

form future work towards building effective defenses.

1. Introduction

Machine learning, especially deep learning, has achieved

great success in various application scenarios, such as im-

age classification, speech recognition, and machine trans-

lation. However, recent studies prove the existence of ad-

versarial examples for many vision-based learning models,

which may hinder the adoption of deep learning techniques

to security-sensitive applications [19, 43, 56, 65]. Most ex-

isting works consider image classification and demonstrate

that it is almost always possible to fool these models to clas-

sify an adversarially generated image as a class specified by

the adversary [66]. Albeit numerous defenses have been

proposed [19, 60, 52, 67, 51, 48], almost all of them are

later shown to be broken [8, 23, 9].

Recently, there has been an increasing interest in whether

adversarial examples are practical enough to attack more

complex vision systems [44, 45, 6]. In the latest results of

this debate, Lu et al. show that previous adversarial exam-

ples constructed to fool CNN-based classifiers cannot fool

state-of-the-art detectors [45]. We are interested in whether

other forms of localization and/or language context offer ef-

fective defense.

In this work, we extend the investigation towards more

complex models that not only include a vision component

but also a language component to deepen our understand-

ing of the practicality of adversarial examples. In particular,

we investigate two classes of systems. First, we are inter-

ested in dense captioning systems, such as DenseCap [30],

which identify regions of interest first and then generate

captions for each region. Second, we are interested in vi-

sual question answering (VQA) systems, which answer a

natural language question based on a given image input.

The state-of-the-art VQA systems typically compute atten-

tion maps based on the input and then answer the question

based on the attended image regions. Therefore, both types

of models have a localization component, and thus they are

good targets for studying whether localization can help pre-

vent adversarial attacks. Further, we explore state-of-the-art

VQA models based on Neural Modular Networks [25], and

evaluate whether such compositional architectures are also

vulnerable to adversarial attacks; in these models, a new

network architecture is instantiated for each question type,

potentially providing a buffer against attacks.

We evaluate adversarial examples against these vision

and language models. We find that in most cases, the attacks

can successfully fool the victim models despite their inter-

nal localization component via attention heatmaps or region

proposals, and/or modular structures. Our study shows that,

in an online (non-physical) setting when the attackers have

full access to the victim model including its localization

component (white-box attack), the generated adversarial ex-

amples can fool the entire model regardless of the localiza-

tion component. Therefore, our evaluation results provide

further evidence that employing a localization in combina-

tion with a classifier may not be sufficient to defend against

adversarial examples, at least in non-physical settings.

We also make the following additional contributions.

First, we develop a novel attack approach for VQA models,

which significantly outperforms the previous state-of-the-

art attacks. Second, we observe and analyze the effect of a

14951



language prior in attacking VQA models, and define a prin-

ciple which explains which adversarial examples are likely

to fail. In particular, when the target answer is not com-

patible with the question, it is difficult to find a successful

adversarial attack using existing approaches. To sum up,

our work sheds new light on understanding adversarial at-

tacks on vision and language systems and shows that atten-

tion, bounding box localization and compositional internal

structures are vulnerable to adversarial attacks. These ob-

servations will inform future work towards building effec-

tive defenses.

2. Related Work

In the following, we first review recent work on image

captioning and visual question answering. We focus on the

models that incorporate some form of localization, e.g. soft

attention or bounding box detection. We then review the

state-of-the-art methods to generate adversarial examples as

well as defense strategies against these methods.

Image Captioning Most recent image captioning ap-

proaches have an encoder-decoder architecture [11, 12, 32,

33, 50, 69]. A spatial attention mechanism for image cap-

tioning was first introduced by [73]. They explored soft at-

tention [7] as well as hard attention. Others have adopted

this idea [15, 42, 46, 76] or extended it to perform attention

over semantic concepts, or attributes [77, 79]. Recently [61]

proposed an end-to-end model which regresses a set of im-

age regions and learns to associate caption words to these

regions. Notably, [2, 12, 32] exploited object detection re-

sponses as input to the captioning system. As opposed to

image captioning of the entire image, [30] have proposed

dense captioning, which requires localization and descrip-

tion of image regions (typically bounding boxes). Some

other dense captioning approaches include [40, 74].

Visual Question Answering. Early neural models for vi-

sual question answering (VQA) were largely inspired by

image captioning approaches, e.g. relying on a CNN for im-

age encoding and a RNN for question encoding [17, 49, 62].

Inspired by [73], a large number of works have adopted an

attention mechanism for VQA [16, 47, 64, 72, 75, 80]. Se-

mantic attention has been explored by [78]. Other direc-

tions explored by recent work include Dynamic Memory

Networks (DMN) [36, 71], and dynamic parameter layers

(DPP) [55]. Recently a new line of work focused on de-

veloping more compositional approaches to VQA, namely

neural module networks [3, 4, 25, 29]. These approaches

have shown an advantage over prior work for visual ques-

tion answering which involve complex reasoning.

Adversarial Examples. Existing works on adversarial

example generation mainly focus on image classification

models. Several different approaches have been pro-

posed for generating adversarial examples, including fast

gradient-based methods [19, 43], optimization-based meth-

ods [66, 10], and others [58, 54]. In particular, Carlini

et al. [10] proposed the state-of-the-art attacks under con-

straints on L0, L2, and L∞ norms. Our work improves [10]

on both attack success rate and adversarial probability.

Another line of research studies adversarial examples

against deep neural networks for other tasks, such as recur-

rent neural networks for text processing [59, 28], deep re-

inforcement learning models for game playing [41, 26, 34],

semantic segmentation [14, 70], and object detection [24,

70]. To our best knowledge, our work is the first to study

adversarial examples against vision-language models.

While our work assumes that models are known to the

attacker, prior works demonstrate that adversarial examples

can transfer between different deep neural networks for im-

age classification [66, 19, 43, 56, 58, 53], which can be used

for black-box attacks. We briefly analyze the transferability

of VQA models in the supplemental material.

Defense against Adversarial Examples. On the defense

side, numerous strategies have been proposed against ad-

versarial examples [19, 60, 52]. Early attempts to build a

defense using distillation [60] were soon identified as vul-

nerable [8]. Some recent proposals attempt to build a de-

tector to distinguish adversarial examples from natural im-

ages [52, 21, 18, 13]. Others study ensembles of different

models and defense strategies to see whether that helps to

increase the robustness of deep neural networks [67, 68, 51].

However, He et al. show that with the knowledge of the

detector network and the defense strategies being used, an

attacker can generate adversarial examples that can mislead

the model, while still bypassing the detector [23].

The most promising line of defense strategies is called

adversarial training [19, 37, 67, 48]. The idea is to generate

adaptive adversarial examples and train the model on them

iteratively. The latest results along the line [48] show that

such an approach can build a robust MNIST model. But the

same approach currently fails on extending to CIFAR-10.

3. Generating Targeted Adversarial Examples

In this section, we first present a generic adversarial ex-

ample generation algorithm, and then our implementations

for dense captioning models and VQA models.

3.1. Background: targeted adversarial examples
for a classification model

Consider a classification model f✓(x), where ✓ is the pa-

rameters and x is the input. Given a source image x, a tar-

geted adversarial example is defined as x? such that

f✓(x
?) = yt ^ d(x?, x)  B (1)
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where yt is the target label, and d(x?, x)  B says that the

distance between x and x? is bounded by a constant B.

Without loss of generality, f✓(x) predicts the dimension

of the largest softmax output. We denote J✓(x) as the soft-

max output, then a standard training algorithm typically op-

timizes the empirical loss
P

i L(J✓(xi), yi) with respect to

✓ using a gradient decent-based approach. Existing adver-

sarial example generation algorithms leverage the fact that

J✓(x) is differentiable, and thus solve (1) by optimizing the

following objective:

argminx?L(J✓(x?), yt) + λd(x?, x) (2)

where λ > 0 is a hyper-parameter. In fact, the state-of-the-

art attack [10] approximates the solution to (2) using Adam.

3.2. Targeted adversarial examples for DenseCap

The DenseCap model [30] predicts M = 1000 regions,

ranks them based on confidence, and then generates a cap-

tion for each region. It uses a localization network, similar

to Fast R-CNN [63], for predicting regions. For each re-

gion, the model uses a CNN to compute the embedding and

then uses an RNN to generate a sequence of tokens from the

embedding to form the caption.

To train the DenseCap model, Johnson et al. include five

terms in the loss: four for training the region proposal net-

work, and the last one to train the RNN caption generator.

To fool the model to predict the wrong target caption, we

can leverage a similar process as discussed above. Note that

existing works [24, 70] have demonstrated that an object

detection/segmentation model can be fooled by adversarial

examples. In this work, we focus on generating adversarial

examples to fool the captioning module of the model, while

retaining the proposed regions unchanged.

To achieve this goal, assuming the target caption is

Ct and the ground truth regions for a source image are

{Ri}, we construct a new set of target region-caption pairs

{(Ri, C
t)}. Using these target region-caption pairs as the

new “ground truth”, we can use the DenseCap loss, with

addition of the λd(x?, x) term as in (2), as the new objec-

tive, and minimize it with respect to x?.

3.3. Targeted adversarial examples for VQA models

We now briefly present our novel targeted adversarial at-

tack against VQA models. More details can be found in

Appendix A in the supplemental materials. Our design is in-

spired by two goals: (1) maximizing the probability of the

target answer, which is equivalent to the confidence score

of the model’s prediction; and (2) removing the preference

of adversarial examples with smaller distance to the source

image, as long as this distance is small enough (i.e., below

an upper bound). Our evaluation shows that our algorithm

performs better than the previous state-of-the-art [10].

Algorithm 1 Targeted Adversarial Generation Algorithm

against a VQA model

Input: ✓, x,Q, yt, B, ✏, λ1, λ2, ⌘,maxitr

Output: x?

1 x1  x+ δ for δ sampled from a uniform

distribution between [−B,B];
2 for i = 1!maxitr do

3 yp  f✓(x
i, Q);

4 if yp = yt and i > 50 then

5 return xi as x?;

6 xi+1  update(xi, ⌘,rx⇠(y
p));

7 return xmaxitr+1 as x?;

A VQA model takes an additional natural language in-

put Q, and predicts an answer from a candidate set of K
answers. Similar to (1), a targeted adversarial example x?

given a question Q is defined to be a solution to:

f✓(x
?, Q) = yt ^ d(x?, x)  B (3)

We employ Algorithm 1 to generate the adversarial

example x?. The algorithm takes as input: model pa-

rameters ✓, source image x, question Q, target answer

yt, the distance bound B, and several hyper-parameters:

✏, λ1, λ2, ⌘,maxitr. This algorithm iteratively approxi-

mates the optimal solution to the following objective:

⇠(yp) = L(J✓(x?, Q), yt)

+λ1 · 1(yt 6= yp) · (⌧ − L(J✓(x?, Q), yp))

+λ2 · ReLU(d(x?, x)−B + ✏) (4)

and returns the final result as output. There are two termi-

nating conditions: (1) after at least 50 iterations, if the pre-

diction matches the target, then the algorithm stops and re-

turns the current xi as output; or (2) after a maximal number

of iterations (maxitr), if the prediction still does not match

the target, the algorithm returns xmaxitr+1 as output.

We now take a closer look at (4). yp denotes the pre-

diction in each iteration. The objective (4) contains three

components. The first is the same as in (2). The second

component maximizes the difference between J✓(x,Q) and

the prediction yp when yp is not the target yt. ⌧ is a con-

stant, e.g., log(K), set to ensure that the second compo-

nent is always non-negative. The third component mod-

els the constraint d(x?, x)  B in (3). ✏ is a small con-

stant set to (L(f✓(x,Q), yt)+λ1⌧)/λ2 ensures that the ad-

versarial example x? which optimizes (4) always satisfies

d(x?, x)  B. By using a ReLU function, our attack no

longer minimizes the distance d(x?, x) if it is smaller than

B − ✏. In practice we choose d(x, x?) = ||x − x?||2/
p
N

and set B = 20. Other hyper-parameters ⌘,maxitr are

the learning rate and the maximal number of iterations. We

defer a formal analysis to the supplemental material.
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(a) Caption 1 (b) Caption 2 (c) Caption 3 (d) Caption 4 (e) Caption 5

Figure 1: Top-K accuracy on the Caption A dataset averaged across 1000 images generated with each target caption

4. Experiments With Dense Captioning

In this section, we evaluate our attacks on Dense-

Cap [30], the state-of-the-art dense captioning model.

DenseCap employs a region proposal network to first iden-

tify the bounding boxes of objects, and then generates cap-

tions for each bounding box. We obtain the pre-trained

model from their website1.

To evaluate the attack, we use Visual Genome

dataset [35], which was originally used to evaluate Dense-

Cap in [30]. For an extensive evaluation, we create the fol-

lowing three attack sets from Visual Genome:

1) Caption A. We randomly select 5 captions as the tar-

get captions and 1000 images as the source images;

2) Caption B. We randomly select 1000 captions as tar-

get captions and 5 images as source images;

3) Gold. We select 100 images where DenseCap model

generates correct captions and manually select target cap-

tions irrelevant to the images.

For each caption-image pair, we set the caption as the tar-

get, and the image as the source to generate an adversarial

example. To evaluate the attack effectiveness, we measure

the percentage of top-K predictions from generated adver-

sarial examples that match the target captions. We consider

two metrics to determine caption matching:

1) Exact-match. The two captions are identical.

2) METEOR> !. The METEOR score [38] between

the two captions is above a threshold !. We consider the

threshold ! to be 0.15, 0.2, or 0.25, similar to [30].

Formally, we measure Accµ,K(x?, Ct) =
PK

i=1
µ(Ct, Ci)/K where Ct is the target caption,

x? is the adversarial example, Ci for i = 1, ...,K are the

top-K predictions for x?, and µ is the matching metric (i.e.,

Exact-match or METEOR> !).

4.1. Results and Observations

The evaluation results on Caption A are presented in

Figure 1. Each subfigure shows the results for one target

caption. For each caption and each K 2 {1, 2, 3, 4, 5}, we

1https://github.com/jcjohnson/densecap

compute Accµ,K for each of the 1000 randomly selected

images, and report the average value of Accµ,K across 1000

images. Each plot contains such 5 top-K accuracy values

for each metric described above (see the legend).

We observe that using the metric derived from METEOR

score, the accuracy is higher than using the Exact-match

metric. This is intuitive, since Exact-match is an over-

conservative metric, which may treat a semantically correct

caption as a wrong answer. In contrast, using METEOR

score as the metric can mitigate this issue. Even with Exact-

match, we observe that all captions have an average top-K
accuracy above 30%. Further, for target captions Caption 1-

3, the top-1 accuracy is always above 50%. That means, at

least 500 generated adversarial examples can successfully

fool the DenseCap system to produce the exact target cap-

tions with the highest confidence score.

We further investigate the number of attack “failures”

among caption-image pairs in Caption A. The attack fails

if none of the top-5 predictions matches the target based

on METEOR> 0.15. We find only 17 such caption-image

pairs, i.e., 0.35% of the entire set, which lead to adversarial

attack failure. This means that for the rest 99.65% caption-

image pairs, the attacks are successful in the sense that there

exists at least one prediction for each adversarial example

that matches the target caption. The 17 cases can be found

in Appendix B in the supplemental material.

The results on Caption B set are similar, and we ob-

serve that 97.24% of the caption-image pairs can be suc-

cessfully fooled in the sense described above. For the Gold

set we find that our attack fails only on one image. Due to

space limitations, we defer detailed results on Caption B

and Gold sets to Appendix B in the supplemental materials.

Note that the attack does not achieve a 100% success

rate. We attribute it to two reasons: (1) it is challenging

to train an RNN-based caption generation model to gener-

ate the exactly matching captions; and (2) the DenseCap

network involves randomness, and thus may not produce

the same results for all runs. Still, we observe that the at-

tack success rate is over 97%, and thus we conclude that the

DenseCap model can be fooled by adversarial examples.
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(a) (b) (c) (d) (e)

Figure 2: Adversarial examples generated from different images with the target caption to be “a window on a building”.

(a) head of a person (b) the plate is white (c) the water is calm (d) a key on a keyboard (e) this is an outside scene

Figure 3: Adversarial examples generated from Image 4 with different target captions (shown as sub-figure captions).

4.2. Qualitative Study

We conduct qualitative study to investigate the generated

adversarial examples and their predictions. In Figure 2, we

present five adversarial examples generated for the same tar-

get caption. We see that most of the predicted captions ex-

actly match the target (e.g., all top-5 predictions for Fig-

ure 2a and Figure 2b), or be semantically equivalent to the

target (e.g., the top-2 prediction for Figure 2e). We further

examine the bounding boxes of the regions proposed by the

model. We find that the model localizes objects in the adver-

sarial examples, although the caption generation module of

the model is completely fooled. For example, in Figure 2c,

the model can successfully identify the plates, but label all

of them as “a window on a building”.

To further understand this effect, in Figure 3, we show

the adversarial examples generated from the same source

image but with different target captions. We observe that all

adversarial images look identical to each other, and the re-

gions proposed for different images are also similar. For ex-

ample, we observe that the top proposed regions for the first

four images all circumscribe the tree on the left. However,

the top captions generated for this region are all different,

and match the target captions very well.

5. Experiments with VQA

In this section, we evaluate the previous state-of-the-art

attack [10] and our novel algorithm on two VQA models.

We also investigate the effect of adversarial attacks on atten-

tion maps of the VQA models to gain more insights about

the way the attacks work. Finally, we analyze the successes

and failures of our attacks with respect to language prior.

More results on qualitative study, transferability, and fur-

ther investigations to the failure cases can be found in Ap-

pendix D and E in the supplemental materials.

5.1. Models

We experiment with two state-of-the-art models for

open-ended visual question answering, namely the MCB

model [16], which is the winner of the VQA challenge in

2016, and the compositional model N2NMN [25]. Both

models achieve similar performance on the VQA bench-

mark [5], while being very different in terms of internal

structures. MCB relies on a single monolithic network

architecture for all questions, while N2NMN dynamically

predicts a network layout for every given question. In our

experiments we investigate whether such compositional dy-

namic architecture is more resilient than the monolithic one.

We retrieve the pre-trained model of MCB from their

website2, and the pre-trained model of N2NMN by con-

tacting the authors through email directly. The code imple-

menting N2NMN is acquired from the website.3 Notice that

the MCB model is trained not only on the VQA dataset but

2https://github.com/akirafukui/vqa-mcb
3https://github.com/ronghanghu/n2nmn
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MCB, ours

N2NMN, ours

N2NMN, carlini

MCB, carlini

Figure 4: CDF of adversarial probability on the Gold set.

also on the Visual Genome dataset [35], while the N2NMN

model only considers the VQA dataset.

5.2. Datasets

To evaluate different adversarial example generation al-

gorithms we derive three datasets from the VQA dataset [5].

In particular, we choose source images and question-answer

targets from the VQA validation set as follows:

1) VQA-A: We randomly select 6,000 question-answer

pairs and 5 source images to constitute 30,000 triples;

2) VQA-B: We randomly select 5,000 source images and

10 question-answer pairs to construct 50,000 triples;

3) Gold: We manually select 100 triples, such that MCB

and N2NMN models can correctly answer the questions

based on the images, and the target answers are plausible

for the questions but incorrect for the images.

For each triple of question-answer-image, we generate

an adversarial example close to the source image using the

answer as the target. More details can be found in Ap-

pendix C in the supplemental materials.

5.3. Evaluation metrics

Given a set of question-answer pairs (Q, yt) and the gen-

erated adversarial examples {x?}, we evaluate two metrics:

the attack success rate and the adversarial probability.

Attack success rate. The attack is considered successful if

f✓(x
?, Q) = yt. The attack success rate is computed as the

percentage of successful attacks over all triples in a dataset.

Adversarial probability. The adversarial probability is

computed as J✓(x
?, Q)yt , where J(·, ·)i indicates the i-th

dimension of the softmax output. Adversarial probability

indicates the confidence score of the model to predict the

target answer yt, and thus provides a fine-grained metric.

5.4. Results

Here we report the overall success of adversarial attacks

on VQA models, and also compare our new algorithm de-

scribed above with the performance of the previous attack

algorithm (CW [10]) applied to this novel VQA setting. We

present the quantitative results below, and defer more qual-

itative results to the supplemental material.

Image # 1 2 3 4 5

MCB
ours 94.67 94.78 94.97 95.02 95.15

CW [10] 94.10 94.28 94.27 94.52 94.78

N2NMN
ours 94.25 94.53 95.57 95.80 96.15

CW [10] 93.82 93.78 95.02 95.08 95.37

Table 1: Attack success rate (%) on VQA-A.

MCB, ours

N2NMN, ours

N2NMN, carlini

MCB, carlini

Figure 5: CDF of adversarial probability on VQA-A.

Gold. For both MCB and N2NMN models, we achieve

100% attack success rate using either approach. Note that

both models can correctly answer all the questions on the

original source images. The 100% attack success rate for

both VQA models shows that both of them are vulnerable

to targeted adversarial examples.

We inspect the adversarial probabilities of the generated

adversarial examples, and plot the Cumulative Distribution

Function (CDF) in Figure 4. Note that a lower CDF curve

indicates a higher probability in general. From the figure we

observe that the CDF curve of N2NMN is above MCB’s, in-

dicating that N2NMN is slightly more resilient than MCB.

However, we also observe that for both models, almost in

all cases the adversarial probability is above 0.7. Thus, we

conclude that our attack is very successful at misleading the

VQA models to predict the target answers. We also observe

that the CDF curve of CW attack is much higher than ours,

showing that our approach is more effective at achieving a

high adversarial probability. Overall, we show that such at-

tacks can be performed very successfully for target answers

that are meaningful to questions.

VQA-A. We further investigate VQA adversarial examples

across a wide range of target question-answer pairs. We

separately compute the attack success rate using each im-

age as the source. The results are presented in Table 1, and

the corresponding CDF curves are plotted in Figure 5. We

can draw similar conclusions as for the Gold set: (1) the

attack success rate is high, i.e., > 90%; (2) the adversarial

probability of our attack is high; and (3) our attack is more

effective than CW attack.

We observe that the attack’s performance against

N2NMN model is worse than against MCB. In particular,

from Figure 5, we see that the adversarial probability of at-
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Original image
Benign attention maps Adversarial attention maps

MCB Attention N2NMN Attention MCB Attention N2NMN Attention

What is the man holding? Original answer: racket Target: phone

What does this sign say? Original answer: stop Target: one way

What type of vehicle is this? Original answer: train Target: bus

Table 2: Attention maps of benign and adversarial images on MCB and N2NMN models.

tacks generated on the N2NMN model is significantly lower

than the MCB model. This further shows that N2NMN

model is somewhat more robust against adversarial attacks.

We also observe that the attack success rate with respect to

different images does not vary too much. We hypothesize

that the attack success is not sensitive to a source image,

but more dependent on a target question-answer pair. Our

further investigations on VQA-B and language priors below

provide more evidence to confirm this hypothesis.

The attack success rate is not 100%, which shows that

there exist a few question-answer pairs where neither ours

nor the CW attack can succeed. In fact, for these question-

answer pairs, we have also tried other attack methods and

none of them can succeed in fooling the victim VQA model.

We find that these question-answer pairs tend to appear in-

frequently in the training set, and this observation leads to

our hypothesis regarding language prior. We present more

analysis of the language prior in the following section.

VQA-B. We test the hypothesis that the attack success rate

is not strongly dependent on the choice of source images us-

ing the VQA-B dataset. In our evaluation, we observe that

for 9 out of 10 question-answer pairs, the adversarial exam-

ples generated from any of the 5,000 source images fool the

victim model with 100% attack success rate. For the one

remaining question-answer pair, however, we cannot gener-

ate successful adversarial examples from any of the source

images. This result further confirms our hypothesis. Inter-

estingly, we observe that the “hard” question-answer pairs

for the two VQA models are different. For the MCB model,

the question is “Why is the girl standing in the middle of

the room with an object in each hand?” with the target

answer “playing wii”; for the N2NMN model, the ques-

tion and answer are “Who manufactured this plane?” and

“japan”, respectively. This suggests that the hard question-

answer pairs are model-specific, which further motivates us

to investigate language prior in VQA models.

5.5. Adversarial examples fool attention mechanism

We conduct a qualitative study to gain more insights as to

how the attack succeeds. In the following we use the Gold

dataset. In particular, both models in our experiments have

attention mechanism. That is, to answer a question, a model

first computes an attention map, which is a weight distri-

bution over local features extracted from a CNN based on

the image and the question. Intuitively, a well-performing

model should put more weight, i.e. attend to, the image

region that is most informative to answer the question.

We demonstrate the attention heatmaps for three source

images and their adversarial counterparts in Table 2. We ob-

serve that the adversarial examples mislead the VQA mod-

els to ignore the regions that support the correct answer to

the question. For example, in the second source image both
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MCB and N2NMN focus on the stop sign when answer-

ing the question. The adversarial examples fool MCB and

N2NMN to pay attention to the street sign instead, which

leads to predicting a one-way traffic sign, likely because

both signs are long rectangular metal plates. In the last ex-

ample, the attention is mislead to ignore the rail tracks but

focusing on the windows which look similar to those on a

bus. Therefore, we observe that adversarial examples can

fool both the attention and the classification component of

the VQA models to achieve the malicious goal.

5.6. Language Prior

We illustrate the language prior phenomenon in Fig-

ure 6. It provides an example which cannot be successfully

attacked by any algorithm in our evaluation. We show an

adversarial example generated by our attack algorithm, and

the top-5 predictions from the MCB model. Clearly, the

model is confused about the image and the question. The

answer with the highest probability only has a probability

of less than 5%. Although the model is confused, it cannot

be fooled to predict the target answer “partly” to the ques-

tion “what animal is next to the man?”. This observation

is different than those reported in the literature [66], i.e.,

that targeted adversarial examples can always be success-

fully generated against an image classifier regardless of the

image and the target label. We believe that the observed

phenomenon is due to the internal mechanism of a VQA

model which learns to process natural language questions

and predict semantically relevant answers.

In all previous experiments we choose question-answer

pairs from the VQA validation set, and thus the answers are

likely meaningful to the questions. To evaluate the effect of

language prior we construct the Non-Sense dataset. Specif-

ically, we choose question-answer pairs, such that answers

do not match the questions semantically, as they belong to

questions of a different type (e.g. “what color” vs. “how

many”). We find that the attack success rates using our ap-

proach against MCB and N2NMN are only 7.8% and 4.6%
respectively; the corresponding numbers for CW attack are

even lower, 6.8% and 3.8%. This experiment further con-

firms the significance of the language prior.

Prior work has noted the effect of language prior, i.e. that

the VQA models capture the training data biases and tend

to predict the most frequent answers [1, 20, 27, 31]. We

find that N2NMN is more influenced by language prior than

MCB. Specifically, N2NMN produces a smaller number of

distinct answers, predicting question-relevant answers inde-

pendent of image content. This may explain why it is more

difficult to achieve a high probability on some targets with

N2NMN than with MCB. We include more results and anal-

ysis in Appendix E in the supplemental materials.

Source image Adversarial example

Rank Answer Probability

1 yes 0.042

2 middle 0.041

3 on wall 0.040

4 left 0.031

5 background 0.025

Figure 6: The effect of language prior. The target question /

answer are “What animal is next to the man?”/“partly”. We

show the top-5 predictions from MCB after the attack.

6. Conclusion

In this work, we study adversarial attacks against vi-

sion and language models, specifically, dense captioning

and visual question answering models. The models in our

study are more complex than previously studied image clas-

sification models, in the sense that they contain language

generation component, localization, attention mechanism,

and/or compositional internal structures. Our investigation

shows that (1) we can generate targeted adversarial exam-

ples against all victim models in our study with a high

success rate (i.e., > 90%); and (2) the attacks can ei-

ther retain the localization output or also fool the attention

heatmaps to fool the victim model. While studying attacks

on VQA models, as additional contributions, we propose a

better attack method than the previous state-of-the-art ap-

proach. Also, we observe and evaluate the effect of lan-

guage prior that may explain which question-answer pairs

represent harder targets. Our work sheds new light on un-

derstanding adversarial attacks on complex vision and lan-

guage systems, and these observations will inform future

directions towards building effective defenses.
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