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Abstract

Many real-world sequences cannot be conveniently cat-

egorized as general or degenerate; in such cases, impos-

ing a false dichotomy in using the fundamental matrix or

homography model for motion segmentation would lead

to difficulty. Even when we are confronted with a gen-

eral scene-motion, the fundamental matrix approach as a

model for motion segmentation still suffers from several de-

fects, which we discuss in this paper. The full potential of

the fundamental matrix approach could only be realized if

we judiciously harness information from the simpler ho-

mography model. From these considerations, we propose

a multi-view spectral clustering framework that synergis-

tically combines multiple models together. We show that

the performance can be substantially improved in this way.

We perform extensive testing on existing motion segmenta-

tion datasets, achieving state-of-the-art performance on all

of them; we also put forth a more realistic and challeng-

ing dataset adapted from the KITTI benchmark, containing

real-world effects such as strong perspectives and strong

forward translations not seen in the traditional datasets.

1. Introduction

Various geometric models have been used in the motion

segmentation problem to model the different types of cam-

eras, scenes, and motions. In this problem as commonly set

forth, the underlying models are generally regarded as ap-

plicable under different scenarios and these scenarios do not

overlap. For instance, when the underlying motion is a gen-

eral motion, fundamental matrix is used to model the epipo-

lar geometry [16, 23], and when scene-motion is degenerate

like a planar scene or a pure rotation, homography is pre-

ferred [6, 18]. However, the real world scene-motions are

in fact not so conveniently divided: they are more typified

by near-degenerate scenarios such as a scene that is almost

but not quite planar, or a motion that is rotation-dominant

but with a non-vanishing translation. In such cases, im-

posing a false dichotomy in deciding an appropriate model

would pose difficulty for subsequent subspace separation.

For instance, it is well-known [11, 27, 30] in the case of

a scene with dominant-plane, it is easy to find inliers be-

longing to the degenerate configuration (the plane), but the

precision of the resulting fundamental matrix is likely to be

very low. Most of the inliers outside the degenerate con-

figuration will be lost, and often the erroneous fundamental

matrix will pick up outliers (e.g. from other motion groups).

Since this is not a purely planar scene, using homography

in a naive manner might fail to group all the inliers together

too, resulting in over-segmentation of the subspaces.

It is also not hard to establish—from a glance of the mo-

tion segmentation literature—that of the various models, the

fundamental matrix model is generally eschewed, due to the

lack of perspective effects in the Hopkins155 benchmark

[31]. However, it is never clearly articulated if the numer-

ical difficulties arising from degeneracies in such approach

present insuperable obstacles. And no one has put his/her

finger on the exact manner how the resulting affinity matrix

is ill-suited for subspace clustering: is it solely due to the

degeneracies or are there other factors? Considering that

in many real-world applications say, autonomous driving,

perspective effects are not uncommon, it surely follows that

we should come to a better understanding of the suitabil-

ity of fundamental matrix (or for that matter, the homog-

raphy model) as a geometric model for motion segmenta-

tion. This, we contend, is far from being the case. For in-

stance, does it follow that if we use the fundamental matrix

for wide field-of-view scenes, like those found in the KITTI

benchmark [9], we will get better performance than those

using homography? We have in fact as yet no reason to

believe that this will be the case, judging by the way how

the various algorithms based on affine model still outper-

form those based on fundamental matrix in individual Hop-

kins sequences that have larger perspectives (though admit-

tedly still moderate). Indeed, from the results we obtained

on the KITTI sequences that we adapted for testing motion

segmentation in real-world scenarios, the superiority of the

homography-based methods is again observed. Thus, one

might naturally ask what factors other than degeneracies are

hurting the fundamental matrix approach? And why is the

homography matrix approach holding its own in wide per-
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spective scenes, when it possesses none of the geometrical

exactness of the fundamental matrix?

In the remainder of this section, we will briefly investi-

gate the suitability of homography and fundamental matri-

ces (H and F respectively) as a geometric model for motion

segmentation. We shall henceforth denote the affinity ma-

trices generated by H and F as KH and KF respectively.

1.1. Success roadmap of H

The preceding paragraphs have already alluded to the

fact that the affinity matrix KH may not exhibit high intra-

cluster cohesion (due to lack of strong affinity between dif-

ferent planes of the same rigid motion), and thus might lead

one to be skeptical of its adequacy for the purpose of mo-

tion segmentation. In the Hopkins155 dataset, this is not

an overriding concern since most of the sequences have

small field-of-view and perhaps the scene is sufficiently far

away to be well approximated by a plane; these approxima-

tions are seemingly borne out by the good empirical results

obtained by a wide variety of approaches based on affine

subspace or homography matrix. The recent homography-

based method [18] boasts state-of-the-art performance with

a mean error of 0.83%. The low error attained is noteworthy

given that there are actually some Hopkins sequences with

non-negligible perspective effects; we feel that this phe-

nomenon warrants a better explanation than the reasoning

offered so far.

The success can be attributed to the many planar slices

induced by the homography hypothesizing process; these

are not necessarily actual physical planes in the scenes (see

the slices in Fig. 1 (a-b)) but as long as these virtual planes

belong to the same rigid motion, it is evident that they can

be fitted with a homography. Such slicings of the scene cre-

ate strong connections between points across multiple real

planar surfaces and result in a much less over-segmented

affinity matrix KH. If the scene contains only compact

objects or piecewise smooth structures, then such connec-

tivity created is sufficient to bind the various surfaces of

a rigid motion together. However, in the real world se-

quences, when the above conditions are not satisfied, we

suspect that this may not be adequate. Fig. 1(c) illustrates a

background comprising an elongated object (a traffic light)

and the marking on the road. It is clear that in this case,

while one can form virtual planar slices as before, the re-

sulting connectivity is much lower (most if not all of the

slices cannot connect large segments of both these elements

simultaneously, unlike those in Fig. 1 (a-b)).

1.2. Problems with F

Besides the degeneracy issues that are well-known from

the classical structure from motion literature, we suggest

that another root problem with the fundamental matrix ap-

proach for the motion segmentation problem lies precisely

Virtual 
Plane 1

Virtual 
Plane 2

Virtual 
Plane 3

(a) Slicing example 1 (b) Slicing example 2

(c) Slicing example in real world

Figure 1: Illustration of slicing effect of homography. (a-b)

Red dots indicate inlier points of a hyopthesis. All points lie

on a virtual plane (a slice of the cube) highlighted in yellow.

(c) Virtual planes are highlighted as triangles with points in

the same color as inliers.

in the fact that it is an all-encompassing model that cap-

tures all types of scene-motion configurations. The risk of

such a complicated model for the subsequent clustering and

model-selection task is not difficult to surmise. The richness

of characterization renders it likely to capture any correla-

tion between different rigid motions. Therefore it is more

likely to cause overlapping the subspaces of different rigid

motions than simpler models, e.g. homography. However,

we find ourselves asking, is it not possible that F also of-

fers the greatest scope for forming the best correct view,

given that it starts with a geometrically correct model that

the homography model can hardly be, and the former must

have thus captured much of what is correct? It perhaps just

requires some nudge in the correct direction for us to re-

claim the performance that ought be had for KF. From

this standpoint, even when we are confronted with a general

scene-motion with no degeneracies, there is still an impor-

tant reason for keeping the homography model—to midwife

the unborn view of KF.

1.3. Proposed solution

We have been at pains to point out that many real-world

sequences cannot be classified into neat categories such as

general or degenerate scene-motions and thus cannot be ad-

equately addressed by any single model such as H or F.

We have also discussed the defects of the fundamental ma-

trix approach and conjectured that even though the resulting

KF may not have committed itself to any definite view on

the potential clusters, its full potential could perhaps be re-

alized if we judiciously harness information from a simpler

model such as H. From these considerations, we propose

a multi-view1 spectral clustering framework that synergisti-

1Note that this “view” here refers to the view from the standpoint of a

model and should not be confused with the camera viewpoint.
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cally combines these multiple models together. As there is

no definite consensus on how best to combine several views

together for spectral clustering, we evaluate a few extant fu-

sion schemes. By doing so, we make sure that our findings

are not an artifact of a particular fusion scheme. As we will

show later, the performance of the fundamental matrix ap-

proach can be substantially raised using the improved KF.

We hasten to add that one should not over-claim the poten-

tial gains of this fundamental matrix approach. When the

scene contains substantial amount of degeneracies, as real

scenes are apt to be, it is always better to rely on the com-

bined view for the best performance. That is, one should

seek a common spectral embedding that takes into account

both the improved KF and the improved KH.

To summarize, the contributions of our paper are as

follows. First, we contribute to an understanding of the

strengths and drawbacks of homography and fundamental

matrices as a geometric model for motion segmentation. We

then propose using affinity matrix fusion as a means of deal-

ing with real-world effects that are often difficult to model

with a pure homography or fundamental matrix. Finally,

we perform extensive testing on existing motion segmenta-

tion datasets, achieving state-of-the-art performance on all

of them; we also put forth a more realistic and challeng-

ing dataset adapted from the KITTI benchmark, contain-

ing real-world effects such as strong perspectives and strong

forward translations not seen in the traditional datasets.

2. Related Work

A long line of works have studied the motion segmenta-

tion problem from different perspectives. They can be di-

vided into two major groups: those based on a hypothesis-

and-test paradigm and those that are more analytic rather

than hypothesis-driven. Into the latter camp falls a wide va-

riety of approaches, including factorization [1, 5, 8, 12, 29],

algebraic method [26, 32, 33, 34], affinity matrix [20, 39],

including those constructed from sparse [7] and low-rank

[24] representations. They typically assume that the input

is made up of a union of motions of specific types, with

only a few works [10, 26] that can handle mixed types of

motions. These analytic approaches are rightly praised for

their elegance but become awkward in dealing with real

world signals that are often drawn from mixed multiple

manifolds. In contrast, works in the former category, be-

ing hypothesis-driven, are naturally more suited to handling

mixed models. This is exemplified in the earlier works such

as [27, 30] which explicitly decide on whether F or H is

better suited as a motion model in the face of possibly de-

generate scene-motion configuration, but these works are

applied to cases where the background is by far the most

dominant group in the scene. Subsequent hypothesis-and-

test methods [3, 4, 21] dealing with the realistic Hopkins155

[31] sequences almost as a rule ignore the more complex

fundamental matrix (or equivalently the perspective projec-

tion model) altogether, possible reasons being the compu-

tational complexity issues posed by the outliers under the

fundamental matrix model and/or the lack of perspective

effects in the Hopkins sequences. Thus, these later works

do not concern themselves with the problem of dealing with

mixed types of models. Our approach differs from the above

works in that not only do we allow for mixed types of mod-

els, we also do not impose a dichotomous decision on what

is an appropriate model.

Spectral clustering has been an attractive tool for clus-

tering data [35]. Under this framework there are roughly

two genres. The first kind discovers an optimal combination

to aggregate multiple affinity matrices (kernels) for spectral

clustering [14, 19, 36]. However such combination is often

non-trivial to discover. Alternatively, studies have been car-

ried out on discovering a consensus on multiple kernels. In

particular, the co-regularization scheme [17] was proposed

to force data from different views to be close to each other

in the embedding space for clustering. Few if any of the

existing approaches can guarantee superiority to the sim-

ple approach—kernel addition. In this work, we start our

evaluation with this simplest baseline and then reveal its re-

lation with the co-regularization schemes. We also evaluate

a custom-built version incorporating a subset constraint that

preserves the true hierarchical structure of the affinity ma-

trices induced by different geometric models.

3. Methodology

In this section, we first describe the geometric models

used for motion segmentation and their hypothesis forma-

tion process. We then explain how the affinities between

feature points are encapsulated in the ORK kernel[18]. Fi-

nally, we explain the extension from single-view to multi-

view clustering. In particular, we elaborate the relation

between kernel addition and co-regularization for generic

multi-kernel clustering, and we describe how the geometric

relation that exists between models can be used to formulate

a custom-made subset constrained multi-view clustering.

3.1. Geometric Model Hypothesis

Denote the observations of tracked points throughout F

frames as {xi}f=1···F . We then randomly sample a mini-

mal number of p such points visible in a pair of frames and

use them to fit a hypothesis of the model. The models tested

include the fundamental matrix F, homography H, as well

as the affine matrix A. The reason for including the affine

matrix model is because many existing datasets contain se-

quences with very weak perspective so this simpler model

might be numerically more stable. For the three models F,

H, and A, the respective values for p are 8, 4, and 3. The

parameters of the model are estimated via linear algorithms
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[13] and 500 × F hypotheses are sampled for each type of

geometric model.

3.2. Affinity Captured as Ordered Residual Kernel

Given multiple hypotheses {Yk}k=1···K generated from

a particular model (affine, homography or fundamental ma-

trix), we first compute for each data point the residual to

all these hypotheses {d(xi,Yk)}k=1···K in terms of their

Sampson errors [13]. The affinity between two features is

captured in the correlation of preference for these hypothe-

ses. Specifically, we can define the correlation in terms of

the co-occurrence of points among all hypotheses. That is,

if we define the indicator of point xi being the inlier of all

hypotheses {Yk} as oi ∈ {0, 1}
K , then the co-occurrence

between two points is written as kij = o⊤
i oj . However,

the threshold τ needed to determine when a data is an in-

lier (i.e. oi = ✶(d(xi,Hk) < τ)) is not easy to set,

due to the potentially disparate range of motions present

in different sequences. The ordered residual kernel (ORK)

[3, 18] was proposed to deal with this issue. Instead of fix-

ing a threshold, the ORK sorts the residual in ascending

order {d̂i1 d̂i2 · · · d̂iK} where ∀k : d̂ik <= d̂ik+1. An

adaptive threshold is then selected as the top h-th resid-

ual, i.e. τi = d̂ih. The ORK kernel is also known to be

resilient to serious sampling imbalance, an important ad-

vantage in real-world scenes where background is usually

very large. Therefore, we adopt the ORK kernel to encap-

sulate the affinities between feature points. After construct-

ing the affinity matrix, we normalize the affinities by di-

viding all kij entries by the number of frames where both

feature points i and j are visible. This step removes the

weighting balance caused by incomplete trajectories. Fi-

nally, as is customary in motion segmentation works, we

subject the affinity matrix to a sparsification step; we use

the ǫ-neighborhood scheme of [18] for this purpose.

3.3. Spectral Clustering for Motion Segmentation

We are now ready to use spectral clustering to recover the

clusters. We first review the single view spectral clustering

problem and then extend it to multi-view clustering.

3.3.1 Single-View Spectral Clustering

Given the single affinity matrix K, the normalized Lapla-

cian L = I−D−0.5KD−0.5 is first computed, where D is

the degree matrix. The following objective is then set up to

eigendecompose L:

min
U

tr
(

U⊤LU
)

, s.t.UU⊤ = I (1)

where tr (·) is the trace operator. The spectral embedding

U ∈ ❘N×M can be efficiently solved and then treated as a

new feature representation of the original points. A separate

K-means step is then fed with the first M dimensions of the

normalized U for grouping points into M motions.

3.3.2 Multi-View Spectral Clustering

With multiple views provided by the different types of mo-

tion models, we have now at our disposal multiple affinity

matrices. We explore two generic and one custom-made

multi-view spectral clustering schemes to fuse the multiple

sources of information together for clustering.

Kernel Addition A naive way to fuse information from

heterogeneous sources for clustering is by kernel addition

[17]. Given affinity matrices induced by heterogeneous

sources {Kv}v=1···V , kernel addition yields a fused ker-

nel by summing up each individual kernel K =
∑

v Kv .

With the corresponding Laplacian matrices written as Lv =
I − D−0.5

v KvD
−0.5
v , the objective for kernel addition can

be written as,

min
U

tr(U⊤
∑

v

LvU), s.t.U⊤U = I

⇒ min
{Uv}

∑

v

tr(U⊤
v LvUv), s.t.U⊤

v Uv = I,

∀v, w ∈ {1, · · ·V } : Uv = Uw

(2)

We notice the kernel addition strategy is equivalent to

discovering a common spectral embedding U among all

views. This requirement of having a single consensus em-

bedding can be too strong.

Co-Regularization Instead of demanding a common em-

bedding, another solution is to include an additional regu-

larization term in the objective function to encourage pair-

wise consensus between any two spectral embeddings Uv

and Uw. This has been studied by [17] who introduced a

co-regularization term tr
(

UvU
⊤
v UwU

⊤
w

)

. This trace term

returns high value if the new kernel matrix in the spectral

embedding space UvU
⊤
v and UwU

⊤
w are similar to each

other and vice versa. Incorporating the co-regularization

term, we obtain the following objective:

min
{Uv}

∑

v

tr(U⊤
v LvUv)− λ

∑

v

∑

w,w 6=v

tr(UvU
⊤
v UwU

⊤
w),

s.t.U⊤
v Uv = I

(3)

We can interpret the co-regularization scheme as a

relaxed version of kernel addition. By increasing the

penalty coefficient λ, the co-regularization scheme will

approach kernel addition as all embeddings are forced

to approach each other. This model is termed as pair-

wise co-regularization by [17] as the co-regularization term

comprises of all pairs of spectral embeddings. The co-

regularization model can be efficiently solved by initializ-

ing each view Uv separately in the same way as single-view

spectral clustering. Then we recursively update each view
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with all other views fixed. When solving a single view, the

problem becomes a standard eigendecomposition problem.

After convergence, we can concatenate the new spectral em-

bedding of all views to produce an extended feature for the

K-means step.

3.3.3 Subset Constrained Multi-View Spectral Clus-

tering

The above two multi-view spectral clustering schemes are

generic fusion methods that do not exploit any relation that

might exist between the different views. In the specific case

of motion segmentation, we know that for any H between

two views, we can always define a family of F = [e]x ×H

parameterized by a vector e, where [e]x denotes the skew-

symmetric matrix of e [13]. This means a pair of points that

are the inliers of a homography should always be the in-

liers of a certain fundamental matrix. Conversely, if a pair

of points are not the inliers of any F, there is no homog-

raphy which could take both points as inliers2. Generally

speaking, we should expect that if KA, KH, and KF are

ideal binary affinity matrices, then KA ≤ KH ≤ KF. We

term this hierarchical relationship the subset constraint. Im-

posing this constraint will help to further denoise or repair

the affinity matrices. We cast this problem as a constrained

clustering problem (adapted from [37]):

min
{Uv}

∑

v

tr
(

U⊤
v LvUv

)

− γtr(U⊤
v QvUv),

s.t.U⊤
v Uv = I, Qv ∈ {−1, 0, 1}

N×N

(4)

where the matrix Qv provides the subset constraint for the

v-th view. For qij = 1, the constraint encourages a high in-

ner product u⊤
viuvj where uvi indexes the i-th column. This

means points i and j are encouraged to fall into the same

cluster. For qij = −1, the constraint encourages a different

cluster assignment between i and j, and lastly, for qij = 0,

there is no constraint. For any single view v, the constraints

Qv is imposed by other views. For example, solving view

H, the positive constraint qij is inherited from the result of

K; that is, if there is a link between points i and j from

KA, then the (i, j) entry of KH is encouraged to be 1. On

the other hand, the negative constraints come from F. One

could solve this problem using an alternating minimization

scheme, but the subset constraint matrix Qv may flip their

values from 1 to -1 and vice versa in each alternating step,

posing significant difficulties for convergence.

Therefore, we relax Qv to continuous values. Instead

of utilizing the discretized results from other views, we use

the affinity reconstructed from the spectral embedding K̂ =
UU⊤ to construct Qv as detailed in Eq (5). We assume

the three views are placed in the order of affine (v = 1),

2We assume in the above two propositions that there are always enough

points to fit an F if it exists.

homography (v = 2) and fundamental matrix (v = 3). The

final objective is then written as Eq (5).

min
{Uv}

∑

v

tr
(

U⊤
v LvUv

)

− γtr(U⊤
v QvUv), s.t.U⊤

v Uv = I,

Qv =



















✶

(

K̂v+1 < 0
)

◦ K̂v+1, v = 1

✶

(

K̂v−1 > 0
)

◦ K̂v−1 + ✶

(

K̂v+1 < 0
)

◦ K̂v+1, v = 2

✶

(

K̂v−1 > 0
)

◦ K̂v−1, v = 3

(5)

where ◦ represents element-wise multiplication and ✶ (·) is

the indicator function. The subset constraint means for view

A (v = 1), only the negative constraint from H is applied,

for view H, both positive and negative constraints from A

and F are applied respectively. The final problem can be

solved by optimizing each view Uv in an alternating fash-

ion. We summarize the whole procedure in Algorithm 1.

Algorithm 1: Subset Constrained Clustering

input : Kernel matrices {Kv}, no. of motion M and

γ

output: Rigid motion index s

Initialize Spectral Embedding

for v ← 1 to V do
Compute Laplacian matrix

Lv = I−D−0.5
v KvD

−0.5
v ;

Uv ← first M eigenvectors of Lv;

Subset Constrained Spectral Clustering

while Not Converged do

for v ← 1 to V do

Compute Qv following Eq (5);

Compute constrained Laplacian matrix

L̃v = Lv − γQv;

Uv ← first M eigenvectors of L̃v;

K-means to return index

U← Concatenate(U1, · · ·UV ) ;

s← K-means(U,M)

3.3.4 Convergence Analysis

For both co-regularization and subset constrained cluster-

ing, we note the objective is not guaranteed to be con-

vex w.r.t. all views’ embeddings. Nevertheless, we

prove that the co-regularization model guarantees to con-

verge to at least a local minimal. As we solve the prob-

lem in an alternating fashion, each step involves solv-

ing Eq (3) for v-th view with all other views fixed,

i.e. minUv
tr

(

U⊤
v

(

Lv − λ
∑

w,w 6=v UwU
⊤
w

)

Uv

)

. Such

problem can be efficiently solved by eigen decomposition

regardless of the convexity of
(

Lv − λ
∑

w,w 6=v UwU
⊤
w

)

.

Therefore, solving all views iteratively results in monotonic
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decreasing cost until converging to a local minimal. The

convergence for subset constrained clustering is, however,

not guaranteed due to the constraint matrix Qv changes at

each iteration. Nevertheless, experiment results suggest a

proper selection of λ, less than 1e − 2 renders the problem

easy to converge.

4. Experiment

We carry out experiments on three extant motion seg-

mentation benchmarks including the Hopkins155 [31], the

Hopkins12 [26] for testing incomplete trajectories and

MTPV62 [23] for testing stronger perspective effects. For

all three datasets, we evaluate the performance in terms of

classification error [31]. We also put forth a new dataset that

is adapted from the KITTI benchmark [9], containing real-

world effects such as strong perspectives and strong forward

translations not seen in the traditional datasets.

4.1. Motion Segmentation on Existing Benchmarks

In this section, we extensively compare single-view and

multi-view approaches on Hopkins155 benchmark [31].

Specifically, for single-view, we evaluate using affine,

homography and fundamental matrix as the single geo-

metric model. For multi-view motion segmentation, we

evaluated Kernel Addition (KerAdd), Co-Regularization

(CoReg) [17] and Subset Constrained Clustering (Subset).

We fix the regularization parameter λ and γ at 10−2. We

also extensively compare with state-of-the-art approaches,

including: ALC [26], GPCA [34], LSA [38], SSC [7], TPV

[23], T-Linkage [25], S3C [22], RSIM [15] and MSSC[18].

The results are presented in Table 1. For those algorithms

which do not explicitly handle missing data, we recover the

data matrix using Chen’s matrix completion approach [2].

We make the following observations from the results.

Firstly, with regards to the use of homography matrix as a

single geometric model, our finding echoes the excellent re-

sults of earlier work such as MSSC [18]. In fact, the simpler

affine model has an even lower error figures. Clearly, the

stitching argument (via virtual slices) put forth in Section

1 for explaining the success of homography applies to the

affine case too, in particular under weak perspective views.

For the fundamental matrix as a model, the performance is

slightly worse-off. The reasons are manifold: strong cam-

era rotation, limited depth relief, and not least the subspace

overlap between different rigid motions, to which this richer

fundamental matrix model is particularly susceptible. Sec-

ondly, after fusing multiple kernels, we saw a boost in per-

formance compared to single-view approaches, e.g. 0.36%
error for kernel addition and 0.31% for subset constrained

clustering on Hopkins155. Consistent boost in performance

can be observed on Hopkins12 and MTPV62 as well. Usu-

ally, the fusion can produce the best of all performance re-

gardless of the fusion scheme used. Even the simple ker-

nel addition yields very competitive performance. This pro-

vides a strong option for real applications where parameter

tuning is not desirable.

4.2. Motion Segmentation on KITTI Benchmark

The limitations of the Hopkins155 dataset are well-

known: limited depth reliefs, dominant camera rotations,

among others. Such a dataset cannot meet the requirements

of a benchmark for investigating motion segmentation capa-

bility in-the-wild, in particular self-driving scenario where

the camera platform is often performing large translation

and the scene is considerably more complex. For this rea-

son, we propose a new motion segmentation benchmark

based on the KITTI dataset [9], the KITTI 3D Motion Seg-

mentation Benchmark (KT3DMoSeg). We choose short

video clips from the raw sequences of KITTI governed by

three principles. Firstly, we wish to study sequences with

more significant camera translation so camera mounted on

moving cars are preferred. Secondly, we wish to investi-

gate the impact of complex background structure, therefore,

scene with strong perspective and rich clutter (in the struc-

ture sense) is selected. Lastly, we are interested in the inter-

play of multiple motions, so clips with more than 3 motions

are also chosen, as long as these moving objects contain

enough features for forming motion hypotheses. 22 short

clips, each with 10-20 frames, are chosen for evaluation.

We further extract dense trajectories from each sequence

using [28] and prune out trajectories shorter than 5 frames.

Illustration of sample frames with labelled ground-truth and

further details about the dataset (such as the preprocessing

of trajectories) are given in the supplementary material.

We fit hypotheses on all valid tracking points, i.e. dense

background and the evaluation is carried out on subsampled

background as introduced in the supplementary. The same

set of evaluation as in the preceding subsection is carried

out and the results are presented in Tab. 1. Both average

and median classification errors are reported. The perfor-

mances of the multi-view approaches are again consistently

better than those of the single geometric model. Further

evaluation on individual sequence is presented in Fig. 2 (a).

To give some context to the performance figures, we use

the “Prevalence” column to indicate the baseline solution

of just assigning every feature as belonging to the prevalent

group—the background. The overall performance of this

baseline approach is 27.95% which is pretty strong com-

pared to many existing approaches. For the more recent

and hypothesis-driven approach like MSSC, although we

do not have the codes for evaluation, we can get an idea

of its performance in KT3DMoSeg by looking at the result

of our single-view homography model, due to its essential

similarity to MSSC. Clearly, the homography model is able

to replicate its strong performance (11.45%) on this real-

world dataset despite facing much stronger perspective ef-
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Table 1: Motion segmentation results on Hopkins155, Hopkins12, MTPV62 and KT3DMoSeg datasets evaluated as clas-

sification error (%). ∗The best performing model (RPCA+ALC5 is reported for ALC [26]). ∗∗ State-of-the-Art models’

performances are reported for the sequences with correct number of motion. ‘−’ cells indicate not reported or no public code

is available.

Models Hopkins155 [31] Hopkins12 [26] MTPV62 [23]∗∗ KT3DMoSeg

State-of-the-Art 2 Motion 3 Motion All Average Median
Perspective

9 clips

Missing Data

12 clips

Hopkins

50 clips

All

62 clips
Average Median

LSA [38] 4.23 7.02 4.86 - - - - - - 38.30 38.58
GPCA [34] 4.59 28.66 10.02 - - 40.83 28.77 16.20 16.58 34.60 33.95
ALC [26] 2.40 6.69 3.56 0.89∗ 0.44∗ 0.35 0.43 18.28 14.88 24.31 19.04
SSC [7] 1.52 4.40 2.18 - - 9.68 17.22 2.01 5.17 33.88 33.54
TPV [23] 1.57 4.98 2.34 - - 0.46 0.91 2.78 2.37 - -
LRR [24] 1.33 4.98 1.59 - - - - - - 33.67 36.01
T-Linkage [25] 0.86 5.78 1.97 - - - - - - - -
S3C [22] 1.94 4.92 2.61 - - - - - - - -
RSIM [15] 0.78 1.77 1.01 0.68 0.70 - - - - - -
MSSC [18] 0.54 1.84 0.83 - - - 0.65 0.65 0.65 - -

Single-View

Affine 0.40 1.26 0.59 0.15 0.10 0.25 0.35 0.93 0.82 15.76 11.52
Homography 0.45 1.61 0.71 0.18 0.10 0.70 0.48 1.23 1.08 11.45 7.14
Fundamental 1.22 7.60 1.79 1.10 0.10 5.09 2.53 4.31 3.97 13.92 5.09

Multi-View

KerAdd 0.27 0.66 0.36 0.11 0.00 1.54 1.41 0.76 0.88 8.31 1.02
CoReg 0.37 0.75 0.46 0.06 0.00 0.22 0.30 0.83 0.73 7.92 0.75
Subset 0.23 0.58 0.31 0.06 0.00 0.20 0.30 0.77 0.65 8.08 0.71

fects. While all our single-view models turned in substan-

tially better results than the baseline approach, it is also evi-

dent from the percentage errors that each single-view model

has difficulties in dealing with real-world effects. The var-

ious multi-view schemes, especially the co-regularization

approach, can further improve the performance.

4.2.1 Qualitative Study

We now present the motion segmentation results on some

sequences from KT3DMoSeg in Fig. 3 to better understand

how different geometric models complement each other, as

well as to illustrate the challenges posed by this dataset.

All these sequences involve strong perspective effects in the

background but the foreground moving objects often have

limited depth reliefs. Many background objects have non-

compact shapes, and thus the slicing effect induced by the

homography/affine model is less likely to relate all the back-

ground points together due to the lower connectivity. There-

fore the background tends to split in the homography view,

e.g. the traffic sign in Fig. 3 (a). While fundamental matrix

is more likely to discover a seamless background in theory,

it is plagued by a greater susceptibility to subspace overlap

in practice. For instance, the scene in Fig. 3 (b) seems to be

a classic scene to which the fundamental matrix is suited,

and it seems here that even though a correct fundamental

matrix for the background has been estimated (manifest by

the blue cluster capturing both distant points as well as the

tree nearby), the overlap between the foreground cyclist and

the static car means that they are wrongly grouped together.

In both (a) and (b), the fusion schemes manage to correct

these errors. There are also some challenges that remain

in this dataset. Clearly, when the motion of the foreground

object (e.g. the person in the middle of Fig. 3 (c), indi-

cated by blue points in GroundTruth) is small or intermit-

tent compared to that of the camera, it can be difficult to

detect. Coupled with the the large depth range in the back-

ground, the algorithm can be fooled to split the background

instead of segmenting the foreground. Lastly, scenes like

Fig. 3 (d) still poses serious challenge. It is well known that

the epipolar constraint allows a freedom to translate along

the epipolar line. This allows an independent motion that is

moving with respect to the background but consistent with

the epipolar constraint to go undetected. In the figure, the

car in front can be interpreted as a background object on

the horizon, and thus the algorithm ends up splitting the big

truck instead.

4.3. Further Analysis

Fusion Impact on Individual Views As a result of the

co-regularization, each of the geometric models has their

views modified; we call these the F-view, H-view, and A-

view. We now analyze the performance gain experienced

by these views. In particular, we investigate the perfor-

mance of motion segmentation with the spectral embedding

of these views after co-regularization. This is equivalent to

using just a single U = Uv for k-means clustering in the

last step of Algorithm 1. The classification error over all
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Figure 2: Classification error on individual sequence and sensitivity to parameters for KT3DMoSeg benchmark.

(a) Seq059 Clip01

(c) Seq038 Clip02

(b) Seq113 Clip01

(d) Seq095 Clip01

Figure 3: Examples of motion segmentation on KT3DMoSeg sequences.

KT3DMoSeg sequences v.s. λ and γ are presented in Fig. 2

(b-c). We observe from this evaluation that while the F-view

(purple line) does not necessarily produce the best result

compared with the H-view without co-regularization, under

certain range of λ (corresponding to different coerciveness

of the co-regularization), the F-view can be corrected so that

its full potential is realized, producing the best of all results.

5. Conclusion

In this paper, we have contributed to an understanding

of the strengths and drawbacks of homography and funda-

mental matrices as a geometric model for motion segmen-

tation, not only in the extant datasets such as Hopkins155,

but also for real-world sequences in KT3DMoSeg. Not only

do we account for the unexpected success of the homogra-

phy approach when the affinities are accumulated to over

all slicing planes, we also reveal its real limitation in real-

world scenes. The geometrical exactness of the fundamen-

tal matrix approach is theoretically appealing; we show how

its potential can be harnessed in a multi-view spectral clus-

tering fusion scheme. Given kernels induced from multi-

ple types of geometric models, we evaluate several tech-

niques to synergistically fuse them. Finally, we carry out

experiments on Hopkins155, Hopkins12 and MTPV62 and

achieved state-of-the-art performances on all of them. In

light of the demand for real-world motion segmentation, we

further propose a new dataset, the KT3DMoSeg dataset, to

reflect and investigate real challenges in motion segmenta-

tion in the wild.
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