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Abstract

We present PointFusion, a generic 3D object detection

method that leverages both image and 3D point cloud in-

formation. Unlike existing methods that either use multi-

stage pipelines or hold sensor and dataset-specific assump-

tions, PointFusion is conceptually simple and application-

agnostic. The image data and the raw point cloud data are

independently processed by a CNN and a PointNet archi-

tecture, respectively. The resulting outputs are then com-

bined by a novel fusion network, which predicts multiple

3D box hypotheses and their confidences, using the input

3D points as spatial anchors. We evaluate PointFusion on

two distinctive datasets: the KITTI dataset that features

driving scenes captured with a lidar-camera setup, and the

SUN-RGBD dataset that captures indoor environments with

RGB-D cameras. Our model is the first one that is able to

perform better or on-par with the state-of-the-art on these

diverse datasets without any dataset-specific model tuning.

1. Introduction

We focus on 3D object detection, which is a fundamen-

tal computer vision problem impacting most autonomous

robotics systems including self-driving cars and drones.

The goal of 3D object detection is to recover the 6 DoF

pose and the 3D bounding box dimensions for all objects

of interest in the scene. While recent advances in convolu-

tional neural networks have enabled accurate 2D detection

in complex environments [25, 22, 19], the 3D object detec-

tion problem still remains an open challenge. Methods for

3D box regression from a single image, even including re-

cent deep learning methods such as [21, 36], still have rel-

atively low accuracy especially in depth estimates at longer

ranges. Hence, many current real-world systems either use

stereo or augment their sensor stack with lidar and radar.

The lidar-radar mixed-sensor setup is particularly popular

in self-driving cars and is typically handled by a multi-
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Figure 1. Sample 3D object detection results of our PointFusion

model on the KITTI dataset [10] (left) and the SUN-RGBD [30]

dataset (right). In this paper, we show that our simple and generic

sensor fusion method is able to handle datasets with distinctive

environments and sensor types and perform better or on-par with

state-of-the-art methods on the respective datasets.

stage pipeline, which preprocesses each sensor modality

separately and then performs a late fusion or decision-level

fusion step using an expert-designed tracking system such

as a Kalman filter [4, 7]. Such systems make simplifying

assumptions and make decisions in the absence of context

from other sensors. Inspired by the successes of deep learn-

ing for handling diverse raw sensory input, we propose an

early fusion model for 3D box estimation, which directly

learns to combine image and depth information optimally.

Various combinations of cameras and 3D sensors are widely

used in the field, and it is desirable to have a single algo-

rithm that generalizes to as many different problem settings

as possible. Many real-world robotic systems are equipped

with multiple 3D sensors: for example, autonomous cars

often have multiple lidars and potentially also radars. Yet,

current algorithms often assume a single RGB-D cam-

era [32, 16], which provides RGB-D images, or a single

lidar sensor [3, 18], which allows the creation of a local

front view image of the lidar depth and intensity readings.

Many existing algorithms also make strong domain-specific

assumptions. For example, MV3D [3] assumes that all ob-

jects can be segmented in a top-down 2D view of the point

cloud, which works for the common self-driving case but

does not generalize to indoor scenes where objects can be

placed on top of each other. Furthermore, the top-down

view approach tends to only work well for objects such as
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cars, but does not for other key object classes such as pedes-

trians or bicyclists. Unlike the above approaches, the fusion

architecture we propose is designed to be domain-agnostic

and agnostic to the placement, type, and number of 3D sen-

sors. As such, it is generic and can be used for a variety of

robotics applications.

In designing such a generic model, we need to solve the

challenge of combining the heterogeneous image and 3D

point cloud data. Previous work addresses this challenge

by directly transforming the point cloud to a convolution-

friendly form. This includes either projecting the point

cloud onto the image [11] or voxelizing the point cloud [32,

17]. Both of these operations involve lossy data quantiza-

tion and require special models to handle sparsity in the

lidar image [34] or in voxel space [27]. Instead, our so-

lution retains the inputs in their native representation and

processes them using heterogeneous network architectures.

Specifically for the point cloud, we use a variant of the re-

cently proposed PointNet [23] architecture, which allows us

to process the raw points directly.

Our deep network for 3D object box regression from im-

ages and sparse point clouds has three main components:

an off-the-shelf CNN [13] that extracts appearance and ge-

ometry features from input RGB image crops, a variant of

PointNet [23] that processes the raw 3D point cloud, and a

fusion sub-network that combines the two outputs to predict

3D bounding boxes. This heterogeneous network architec-

ture, as shown in Fig. 2, takes full advantage of the two

data sources without introducing any data processing bi-

ases. Our fusion sub-network features a novel dense 3D box

prediction architecture, in which for each input 3D point,

the network predicts the corner locations of a 3D box rela-

tive to the point. The network then uses a learned scoring

function to select the best prediction. The method is in-

spired by the concept of spatial anchors [25] and dense pre-

diction [15]. The intuition is that predicting relative spatial

locations using input 3D points as anchors reduces the vari-

ance of the regression objective comparing to an architec-

ture that directly regresses the 3D location of each corner.

We demonstrate that the dense prediction architecture out-

performs the architecture that regresses 3D corner locations

directly by a large margin.

We evaluate our model on two distinctive 3D object de-

tection datasets. The KITTI dataset [10] focuses on the

outdoor urban driving scenario in which pedestrians, cy-

clists, and cars are annotated in data acquired with a camera-

lidar system. The SUN-RGBD dataset [30] is recorded

via RGB-D cameras in indoor environments, with more

than 700 object categories. We show that by combining

PointFusion with an off-the-shelf 2D object detector [25],

we get comparable or better 3D object detections than the

state-of-the-art methods designed for KITTI [3] and SUN-

RGBD [16, 32, 26]. To the best of our knowledge, our

model is the first to achieve competitive results on these

very different datasets, proving its general applicability.

2. Related Work

We give an overview of the previous work on 6-DoF object

pose estimation, which is related to our approach.

Geometry-based methods A number of methods focus on

estimating the 6-DoF object pose from a single image or

an image sequence. These include keypoint matching be-

tween 2D images and their corresponding 3D CAD mod-

els [1, 5, 37], or aligning 3D-reconstructed models with

ground-truth models to recover the object poses [28, 9].

Gupta et al. [12] propose to predict a semantic segmenta-

tion map as well as object pose hypotheses using a CNN and

then align the hypotheses with known object CAD models

using ICP. These types of methods rely on strong category

shape priors or ground-truth object CAD models, which

makes them difficult to scale to larger datasets. In contrary,

our generic method estimates both the 6-DoF pose and spa-

tial dimensions of an object without object category knowl-

edge or CAD models.

3D box regression from images The recent advances in

deep models have dramatically improved 2D object detec-

tion, and some methods propose to extend the objectives

with the full 3D object poses. [33] uses R-CNN to propose

2D RoI and another network to regress the object poses.

[21] combines a set of deep-learned 3D object parameters

and geometric constraints from 2D RoIs to recover the full

3D box. Xiang et al. [36, 35] jointly learns a viewpoint-

dependent detector and a pose estimator by clustering 3D

voxel patterns learned from object models. Although these

methods excel at estimating object orientations, localizing

the objects in 3D from an image is often handled by impos-

ing geometric constraints [21] and remains a challenge for

lack of direct depth measurements. One of the key contri-

butions of our model is that it learns to effectively combine

the complementary image and depth sensor information.

3D box regression from depth data Newer studies have

proposed to directly tackle the 3D object detection problem

in discretized 3D spaces. Song et al. [31] learn to classify

3D bounding box proposals generated by a 3D sliding win-

dow using synthetically-generated 3D features. A follow-

up study [32] uses a 3D variant of the Region Proposal Net-

work [25] to generate 3D proposals and uses a 3D ConvNet

to process the voxelized point cloud. A similar approach by

Li et al. [17] focuses on detecting vehicles and processes

the voxelized input with a 3D fully convolutional network.

However, these methods are often prohibitively expensive

because of the discretized volumetric representation. As

an example, [32] takes around 20 seconds to process one

frame. Other methods, such as VeloFCN [18], focus on a

single lidar setup and form a dense depth and intensity im-

age, which is processed with a single 2D CNN. Unlike these
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Figure 2. An overview of the dense PointFusion architecture. PointFusion has two feature extractors: a PointNet variant that processes

raw point cloud data (A), and a CNN that extracts visual features from an input image (B). We present two fusion network formulations: a

vanilla global architecture that directly regresses the box corner locations (D), and a novel dense architecture that predicts the spatial offset

of each of the 8 corners relative to an input point, as illustrated in (C): for each input point, the network predicts the spatial offset (white

arrows) from a corner (red dot) to the input point (blue), and selects the prediction with the highest score as the final prediction (E).

methods, we adopt the recently proposed PointNet [23] to

process the raw point cloud. The setup can accommodate

multiple depth sensors, and the time complexity scales lin-

early with the number of range measurements irrespective

of the spatial extent of the 3D scene.

2D-3D fusion Our paper is most related to recent methods

that fuse image and lidar data. MV3D by Chen et al. [3]

generates object detection proposals in the top-down lidar

view and projects them to the front-lidar and image views,

fusing all the corresponding features to do oriented box re-

gression. This approach assumes a single-lidar setup and

bakes in the restrictive assumption that all objects are on

the same spatial plane and can be localized solely from a

top-down view of the point cloud, which works for cars but

not pedestrians and bicyclists. In contrast, our method has

no scene or object-specific limitations, as well as no limita-

tions on the kind and number of depth sensors used.

3. PointFusion

In this section, we describe our PointFusion model, which

performs 3D bounding box regression from a 2D image

crop and a corresponding 3D point cloud that is typically

produced by lidar sensors (see Fig. 1). When our model is

combined with a state of the art 2D object detector supply-

ing the 2D object crops, such as [25], we get a complete 3D

object detection system. We leave the theoretically straight-

forward end-to-end model to future work since we already

get state of the art results with this simpler two-stage setup.

In addition, the current setup allows us to plug in any state-

of-the-art detector without modifying the fusion network.

PointFusion has three main components: a variant of

the PointNet network that extracts point cloud features

(Fig. 2A), a CNN that extracts image appearance features

(Fig. 2B), and a fusion network that combines both and out-

puts a 3D bounding box for the object in the crop. We de-

scribe two variants of the fusion network: a vanilla global

architecture (Fig. 2C) and a novel dense fusion network

(Fig. 2D), in which we use a dense spatial anchor mech-

anism to improve the 3D box predictions and two scoring

functions to select the best predictions. Below, we go into

the details of our point cloud and fusion sub-components.

3.1. Point Cloud Network

We process the input point clouds using a variant of the

PointNet architecture by Qi et al. [23]. PointNet pioneered

the use of a symmetric function (max-pooling) to achieve

permutation invariance in the processing of unordered 3D

point cloud sets. The model ingests raw point clouds and

learns a spatial encoding of each point and also an aggre-

gated global point cloud feature. These features are then

used for classification and semantic segmentation.

PointNet has many desirable properties: it processes the raw

points directly without lossy operations like voxelization or

projection, and it scales linearly with the number of input

points. However, the original PointNet formulation cannot

be used for 3D regression out of the box. Here we describe

two important changes we made to PointNet.

No BatchNorm Batch normalization has become indis-

pensable in modern neural architecture design as it effec-

tively reduces the covariance shift in the input features. In

the original PointNet implementation, all fully connected

layers are followed by a batch normalization layer. How-

ever, we found that batch normalization hampers the 3D

bounding box estimation performance. Batch normaliza-

tion aims to eliminate the scale and bias in its input data, but
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Figure 3. During input preprocessing, we compute a rotation Rc

to canonicalize the point cloud inside each RoI.

for the task of 3D regression, the absolute numerical values

of the point locations are helpful. Therefore, our PointNet

variant has all batch normalization layers removed.

Input normalization As described in the setup, the cor-

responding 3D point cloud of an image bounding box is ob-

tained by finding all points in the scene that can be pro-

jected onto the box. However, the spatial location of the

3D points is highly correlated with the 2D box location,

which introduces undesirable biases. PointNet applies a

Spatial Transformer Network (STN) to canonicalize the in-

put space. However, we found that the STN is not able to

fully correct these biases. We instead use the known camera

geometry to compute the canonical rotation matrix Rc. Rc

rotates the ray passing through the center of the 2D box to

the z-axis of the camera frame. This is illustrated in Fig. 3.

3.2. Fusion Network

The fusion network takes as input an image feature ex-

tracted using a standard CNN and the corresponding point

cloud feature produced by the PointNet sub-network. Its

job is to combine these features and to output a 3D bound-

ing box for the target object. Below we propose two fusion

network formulations, a vanilla global fusion network, and

a novel dense fusion network.

Global fusion network As shown in Fig. 2C, the global

fusion network processes the image and point cloud fea-

tures and directly regresses the 3D locations of the eight

corners of the target bounding box. We experimented with

a number of fusion functions and found that a concatenation

of the two vectors, followed by applying a number of fully

connected layers, results in optimal performance. The loss

function with the global fusion network is then:

L =
∑

i

smoothL1(x∗

i
,xi) + Lstn, (1)

where x
∗

i
are the ground-truth box corners, xi are the pre-

dicted corner locations and Lstn is the spatial transforma-

tion regularization loss introduced in [23] to enforce the

orthogonality of the learned spatial transform matrix.

A major drawback of the global fusion network is that the

variance of the regression target x∗

i
is directly dependent on

the particular scenario. For autonomous driving, the system

may be expected to detect objects from 1m to over 100m.

This variance places a burden on the network and results in

sub-optimal performance. To address this, we turn to the

well-studied problem of 2D object detection for inspiration.

Instead of directly regressing the 2D box, a common solu-

tion is to generate object proposals by using sliding win-

dows [6] or by predicting the box displacement relative to

spatial anchors [24, 8, 15, 25]. These ideas motivate our

dense fusion network, which is described below.

Dense fusion network The main idea behind this model

is to use the input 3D points as dense spatial anchors. In-

stead of directly regressing the absolute locations of the 3D

box corners, for each input 3D point we predict the spatial

offsets from that point to the corner locations of a nearby

box. As a result, the network becomes agnostic to the spa-

tial extent of a scene. The model architecture is illustrated

in Fig. 2C. We use a variant of PointNet that outputs point-

wise features. For each point, these are concatenated with

the global PointNet feature and the image feature resulting

in an n × 3136 input tensor. The dense fusion network

processes this input using several layers and outputs a 3D

bounding box prediction along with a score for each point.

At test time, the prediction that has the highest score is se-

lected to be the final prediction. Concretely, the loss func-

tion of the dense fusion network is:

L =
1

N

∑

i

smoothL1(xi∗

offset,x
i
offset) + Lscore + Lstn,

(2)

where N is the number of the input points, xi∗

offset is the

offset between the ground truth box corner locations and the

i-th input point, and x
i
offset contains the predicted offsets.

Lscore is the score function loss, which we explain in depth

in the next subsection.

3D box parameterization We parameterize a 3D box by

its 8 corners since: (1) The representation is employed in

the current state-of-the-art methods [18, 3], which facili-

tates fair comparison. (2) It generalizes any 3D shapes with

N reference points, and it works well with our spatial an-

chor scheme: we can predict the spatial offsets instead of

the absolute locations of the corners.

3.3. Dense Fusion Prediction Scoring

The goal of the Lscore function is to focus the network on

learning spatial offsets from points that are close to the tar-

get box. We propose two scoring functions: a supervised

scoring function that directly trains the network to predict

if a point is inside the target bounding box and an unsuper-

vised scoring function that lets network to choose the point

that would result in the optimal prediction.

Supervised scoring The supervised scoring loss trains

the network to predict if a point is inside the target box.

Let’s denote the offset regression loss for point i as Li

offset
,
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and the binary classification loss of the i-th point as Li

score.

Then we have:

L =
1

N

∑

i

(Li

offset ·mi + Li

score) + Lstn, (3)

where mi ∈ {0, 1} indicates whether the i-th point is in the

target bounding box and Lscore is a cross-entropy loss that

penalizes incorrect predictions of whether a given point is

inside the box. As defined, this supervised scoring function

focuses the network on learning to predict the spatial offsets

from points that are inside the target bounding box. How-

ever, this formulation might not give the optimal result, as

the point most confidently inside the box may not be the

point with the best prediction.

Unsupervised scoring The goal of unsupervised scoring

is to let the network learn directly which points are likely to

give the best hypothesis, whether they are most confidently

inside the object box or not. We need to train the network to

assign high confidence to the point that is likely to produce

a good prediction. The formulation includes two compet-

ing loss terms: we prefer high confidences ci for all points,

however, corner prediction errors are scored proportional to

this confidence. Let’s define Li

offset
to be the corner offset

regression loss for point i. Then the loss becomes:

L =
1

N

∑
(Li

offset · ci − w · log(ci)) + Lstn, (4)

where w is the weight factor between the two terms. Above,

the second term encodes a logarithmic bonus for increasing

ci confidences. We empirically find the best w and use w =
0.1 in all of our experiments.

4. Experiments

We focus on answering two questions: 1) does PointFusion

perform well on different sensor configurations and envi-

ronments compared to models that hold dataset or sensor-

specific assumptions, and 2) do the dense prediction ar-

chitectures perform better than architectures that directly

regress the spatial locations. To answer 1), we compare our

model against the state of the art on two distinctive datasets,

the KITTI dataset [10] and the SUN-RGBD dataset [30]. To

answer 2), we conduct ablation studies for the model varia-

tions described in Sec. 3.

4.1. Datasets

KITTI The KITTI dataset [10] contains both 2D and 3D

annotations of cars, pedestrians, and cyclists in urban driv-

ing scenarios. The sensor configuration includes a wide-

angle camera and a Velodyne HDL-64E LiDAR. The offi-

cial training set contains 7481 images. We follow [3] and

split the dataset into training and validation sets, each con-

taining around half of the entire set. We report model per-

formance on the validation set for all three object categories.

SUN-RGBD The SUN-RGBD dataset [30] focuses on in-

door environments, in which as many as 700 object cat-

egories are labeled. The dataset is collected via different

types of RGB-D cameras with varying resolutions. The

training and testing sets contain 5285 and 5050 images, re-

spectively. We report model performance on the testing set.

We follow the KITTI training and evaluation setup with

one exception. Because SUN-RGBD does not have a di-

rect mapping between the 2D and 3D object annotations, for

each 3D object annotation, we project the 8 corners of the

3D box to the image plane and use the minimum enclosing

2D bounding box as training data for the 2D object detec-

tor and our models. We report 3D detection performance of

our models on the same 10 object categories as in [26, 16].

Because these 10 object categories contain relatively large

objects, we also show detection results on the 19 categories

from [32] to show our model’s performance on objects of

all sizes. We use the same set of hyper-parameters in both

KITTI and SUN-RGBD.

4.2. Metrics

We use the 3D object detection average precision metric

(AP3D) in our evaluation. A predicted 3D box is a true

positive if its 3D intersection-over-union ratio (3D IoU)

with a ground truth box is over a threshold. We compute

a per-class precision-recall curve and use the area under

the curve as the AP measure. We use the official eval-

uation protocol for the KITTI dataset, i.e., the 3D IoU

thresholds are 0.7, 0.5, 0.5 for Car, Cyclist,

Pedestrian respectively. Following [30, 26, 16], we use

a 3D IoU threshold 0.25 for all classes in SUN-RGBD.

4.3. Implementation Details

Architecture We use a ResNet-50 pretrained on Ima-

geNet [29] for processing the input image crop. The output

feature vector is produced by the final residual block (block-

4) and averaged across the feature map locations. We use

the original implementation of PointNet with all batch nor-

malization layers removed. For the 2D object detector, we

use an off-the-shelf Faster-RCNN [25] implementation [14]

pretrained on MS-COCO [20] and fine-tuned on the datasets

used in the experiments. We use the same set of hyper-

parameters and architectures in all of our experiments.

Training and evaluation During training, we randomly re-

size and shift the ground truth 2D bounding boxes by 10%

along their x and y dimensions. These boxes are used as the

input crops for our models. At evaluation time, we use the

output of the trained 2D detector. For each input 2D box,

we crop and resize the image to 224 × 224 and randomly

sample a maximum of 400 input 3D points in both training

and evaluation. At evaluation time, we apply PointFusion to

the top 300 2D detector boxes for each image. The 3D de-

tection score is computed by multiplying the 2D detection
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Figure 4. Qualitative results on the KITTI dataset. Detection results are shown in transparent boxes in 3D and wireframe boxes in images.

3D box corners are colored to indicate direction: red is front and yellow is back. Input 2D detection boxes are shown in red. The top two

rows compare our final lidar + rgb model with a lidar only model dense-no-im. The bottom row shows more results from the final model.

Detections with score > 0.5 are visualized.

score and the predicted 3D bounding box scores.

4.4. Architectures

We compare 6 model variants to showcase the effectiveness

of our design choices.

• final uses our dense prediction architecture and the unsu-

pervised scoring function as described in Sec. 3.3.

• dense implements the dense prediction architecture with

a supervised scoring function as described in Sec. 3.3.

• dense-no-im is the same as dense but takes only the point

cloud as input.

• global is a baseline model that directly regresses the 8

corner locations of a 3D box, as shown in Fig. 2D.

• global-no-im is the same as the global but takes only the

point cloud as input.

• rgb-d replaces the PointNet component with a generic

CNN, which takes a depth image as input. We use it as

an example of a homogeneous architecture baseline. 1

1We have experimented with a number of such architectures and found

4.5. Evaluation on KITTI

Overview Table 1 shows a comprehensive comparison of

models that are trained and evaluated only with the car

category on the KITTI validation set, including all base-

lines and the state of the art methods 3DOP [2] (stereo),

VeloFCN [18] (LiDAR), and MV3D [3] (LiDAR + rgb).

Among our variants, final achieves the best performance,

while the homogeneous CNN architecture rgb-d has the

worst performance, which underscores the effectiveness of

our heterogeneous model design.

Compare with MV3D [3] The final model also outper-

forms the state of the art method MV3D [3] on the easy cat-

egory (3% more in AP3D), and has a similar performance

on the moderate category (1.5% less in AP3D). When we

train a single model using all 3 KITTI categories final (all-

class), we roughly get a 3% further increase, achieving a

6% gain over MV3D on the easy examples and a 0.5% gain

on the moderate ones. This shows that our model learns

that achieving a reasonable performance requires non-trivial effort. Here

we present the model that achieves the best performance. Implementation

details of the model are included in the supplementary material.
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Table 1. AP3D results for the car category on the KITTI dataset.

Models are trained on car examples only, with the exception of

Ours-final (all-class), which is trained on all 3 classes.

method input easy mod. hard

3DOP[2] Stereo 12.63 9.49 7.59

VeloFCN[18] 3D 15.20 13.66 15.98

MV3D [3] 3D + rgb 71.29 62.68 56.56

rgb-d 3D + rgb 7.43 6.13 4.39

Ours-global-no-im 3D 28.83 21.59 17.33

Ours-global 3D + rgb 43.29 37.66 32.23

Ours-dense-no-im 3D 62.13 42.31 34.41

Ours-dense 3D + rgb 71.53 59.46 49.41

Ours-final 3D + rgb 74.71 61.24 50.55

Ours-final (all-class) 3D + rgb 77.92 63.00 53.27

a generic 3D representation that can be shared across cat-

egories. Still, MV3D outperforms our models on the hard

examples, which are objects that are significantly occluded,

by a considerable margin (6% and 3% AP3D for the two

models mentioned). We believe that the gap with MV3D

for occluded objects is due to two factors: 1) MV3D uses

a bird’s eye view detector for cars, which is less suscep-

tible to occlusion than our front-view setup. It also uses

custom-designed features for car detection that should gen-

eralize better with few training examples 2) MV3D is an

end-to-end system, which allows one component to poten-

tially correct errors in another. Turning our approach into

a fully end-to-end system may help close this gap further.

Unlike MV3D, our general and simple method achieves ex-

cellent results on pedestrian and cyclist, which are

state of the art by a large margin (see Table 2).

Global vs. dense The dense architecture has a clear advan-

tage over the global architecture as shown in Table 1: dense

and dense-no-im outperforms global and global-no-im, re-

spectively, by large margins. This shows the effectiveness

of using input points as spatial anchors.

Supervised vs unsupervised scores In Sec. 3.3, we intro-

duce a supervised and an unsupervised scoring function for-

mulation. Table 1 and Table 2 show that the unsupervised

scoring function performs a bit better for our car-only and

all-category models. These results support our hypothesis

that a point confidently inside the object is not always the

point that will give the best prediction. It is better to rely on

a self-learned scoring function for the specific task than on

a hand-picked proxy objective.

Effect of fusion Both car-only and all-category evaluation

results show that fusing lidar and image information al-

ways yields significant gains over lidar-only architectures,

but the gains vary across classes. Table 2 shows that the

largest gains are for pedestrian (3% to 47% in AP3D

for easy examples) and for cyclist (5% to 32%). Objects

in these categories are smaller and have fewer lidar points,

so they benefit the most from high-resolution camera data.

Table 2. AP3D results for models trained on all KITTI classes.

category model easy moderate hard

car

Ours-no-im 55.68 39.85 33.71

Ours-dense 74.77 61.42 51.88

Ours-final 77.92 63.00 53.27

pedestrian

Ours-no-im 4.61 2.58 3.58

Ours-dense 31.91 26.82 22.59

Ours-final 33.36 28.04 23.38

cyclist

Ours-no-im 3.07 2.58 2.14

Ours-dense 47.21 28.87 26.99

Ours-final 49.34 29.42 26.98
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Figure 5. Ablation experiment: 3D detection performances

(AP3D) given maximum number of input points per RoI.

Although sparse lidar points often suffice in determining the

spatial location of an object, image appearance features are

still helpful in estimating the object dimensions and orien-

tation. This effect is analyzed qualitatively below.

Qualitative Results Fig. 4 showcases some sample predic-

tions from the lidar-only architecture dense-no-im and our

final model. We observe that the fusion model is better at

estimating the dimension and orientation of objects than the

lidar-only model. In column (a), one can see that the fu-

sion model is able to determine the correct orientation and

spatial extents of the cyclists and the pedestrians whereas

the lidar-only model often outputs inaccurate boxes. Simi-

lar trends can also be observed in (b). In (c) and (d), we note

that although the lidar-only model correctly determines the

dimensions of the cars, it fails to predict the correct orienta-

tions of the cars that are occluded or distant. The third row

of Fig. 4 shows more complex scenarios. (a) shows that our

model correctly detects a person on a ladder. (b) shows a

complex highway driving scene. (c) and (d) show that our

model may occasionally fail in extremely cluttered scenes.

Number of input points Finally, we conduct a study on the

effect of limiting the number of input points at test time.

Given a final model trained with at most 400 points per

crop, we vary the maximum number of input points per RoI

and evaluate how the 3D detection performance changes.

As shown in 5, the performance stays constant at 300-500

points and degrades rapidly below 200 points. This shows

that our model needs a certain amount of points to perform

well but is also robust against variations.
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Table 3. 3D detection results on the SUN-RGBD test set using the 3D Average Precision metrics with 0.25 IoU threshold. Our model

achieves results that are comparable to the state-of-the-art models while achieving much faster speed.

Method bathtub bed bkshelf chair desk dresser n. stand sofa table toilet mAP runtime

DSS [32] 44.2 78.8 11.9 61.2 20.5 6.4 15.4 53.5 50.3 78.9 42.1 19.6s

COG [26] 58.26 63.67 31.80 62.17 45.19 15.47 27.36 51.02 51.29 70.07 47.63 10-30m

Lahoud et al. [16] 43.45 64.48 31.40 48.27 27.93 25.92 41.92 50.39 37.02 80.4 45.12 4.2s

rgbd 36.78 60.44 20.48 46.11 12.71 14.35 30.19 46.11 24.80 81.79 38.17 0.9s

Ours-dense-no-im 28.68 66.55 22.43 50.70 13.86 14.20 25.69 49.74 23.63 83.35 39.24 0.4s

Ours-final 37.26 68.57 37.69 55.09 17.16 23.95 32.33 53.83 31.03 83.80 45.38 1.3s

4.6. Evaluation on SUNRGBD

Comparison with our baselines As shown in Table 3, final

is our best model variant and outperforms the rgb-d baseline

by 6% mAP. This is a much smaller gap than in the KITTI

dataset, which shows that the CNN performs well when it

is given dense depth information (rgb-d cameras provide a

depth measurement for every rgb image pixel). Further-

more, rgb-d performs roughly on-par with our lidar-only

model, which demonstrates the effectiveness of our Point-

Net subcomponent and the dense architecture.

Comparison with other methods We compare our model

with three approaches from the current state of the art. Deep

Sliding Shapes (DSS) [32] generates 3D regions using a

proposal network and then processes them using a 3D con-

volutional network, which is prohibitively slow. Our model

outperforms DSS by 3% mAP while being 15 times faster.

Clouds of Oriented Gradients (COG) by Ren et al. [26] ex-

ploits the scene layout information and performs exhaustive

3D bounding box search, which makes it run in the tens of

minutes. In contrast, PointFusion only uses the 3D points

that project to a 2D detection box and still outperforms

COG on 6 out of 10 categories, while approaching its over-

all mAP performance. PointFusion also compares favorably

to the method of Lahoud et al. [16], which uses a multi-

stage pipeline to perform detection, orientation regression

and object refinement using object relation information.

Our method is simpler and does not make environment-

specific assumptions, yet it obtains a marginally better mAP

while being 3 times faster. Note that for simplicity, our

evaluation protocol passes all 300 2D detector proposals for

each image to PointFusion. Since our 2D detector takes

only 0.2s per frame, we can easily get sub-second evalua-

tion times simply by discarding detection boxes with scores

below a threshold, with minimal performance losses.

Qualitative results Fig. 6 shows some sample detection re-

sults from the final model on 19 object categories. Our

model is able to detect objects of various scales, orienta-

tions, and positions. Note that because our model does not

use a top-down view representation, it is able to detect ob-

jects that are on top of other objects, e.g., pillows on top of a

bed. Failure modes include errors caused by objects which

are only partially visible in the image or from cascading er-

rors from the 2D detector.

Figure 6. Sample 3D detection results from our final model on the

SUN-RGBD test set. Our modle is able to detect objects of vari-

able scales, orientations, and even objects on top of other objects.

Detections with score > 0.7 are visualized.

5. Conclusions and Future Work

We present the PointFusion network, which accurately es-

timates 3D object bounding boxes from image and point

cloud information. Our model makes two main contribu-

tions. First, we process the inputs using heterogeneous net-

work architectures. The raw point cloud data is directly han-

dled using a PointNet model, which avoids lossy input pre-

processing such as quantization or projection. Second, we

introduce a novel dense fusion network, which combines

the image and point cloud representations. It predicts multi-

ple 3D box hypotheses relative to the input 3D points, which

serve as spatial anchors, and automatically learns to select

the best hypothesis. We show that with the same architec-

ture and hyper-parameters, our method is able to perform

on par or better than methods that hold dataset and sensor-

specific assumptions on two drastically different datasets.

Promising directions of future work include combining the

2D detector and the PointFusion network into a single end-

to-end 3D detector, as well as extending our model with a

temporal component to perform joint detection and tracking

in video and point cloud streams.
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