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Abstract

Despite recent emergence of adversarial based methods

for video prediction, existing algorithms often produce un-

satisfied results in image regions with rich structural infor-

mation (i.e., object boundary) and detailed motion (i.e., ar-

ticulated body movement). To this end, we present a struc-

ture preserving video prediction framework to explicitly ad-

dress above issues and enhance video prediction quality.

On one hand, our framework contains a two-stream gen-

eration architecture which deals with high frequency video

content (i.e., detailed object or articulated motion structure)

and low frequency video content (i.e., location or moving

directions) in two separate streams. On the other hand, we

propose a RNN structure for video prediction, which em-

ploys temporal-adaptive convolutional kernels to capture

time-varying motion patterns as well as tiny objects within

a scene. Extensive experiments on diverse scenes, ranging

from human motion to semantic layout prediction, demon-

strate the effectiveness of the proposed video prediction ap-

proach.

1. Introduction

Video prediction is a long-standing task in computer vi-

sion research [19, 30, 41, 18]. Boosted by recent emergence

of adversarial learning [21], many work [6, 8, 7] attempt to

predict future video frames, targeting at higher perceptual

quality (i.e., whether the predicted video looks realistic).

For example, the work of [5] considers the video predic-

tion task as a min-max game. MCNet [38] directly com-

bines GAN [11] module into a video prediction framework.

However, pixel level prediction still remains a challenging

task [27], which requires not only to learn the exact static

structure of inputs, e.g., object sketch, but also dynamic mo-

tion, e.g., articulated movement pattern. Moreover, many

of these static and dynamic structural information are fine-
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(A)Dynamic Structure Prediction

(B)Static Structure Prediction

Proposed Model Prior Model

Figure 1. Comparison prediction examples. (A) Dynamic struc-

ture: the weightlifting sports consist of complex compound mo-

tion, and prior model tends to produce blurry results. (B) Static

structure: the traffic sign is very hard to maintain during the pre-

diction because of its slim shape.

grained (i.e., with very detailed texture or subtle motion),

which renders video prediction task even more challenging

if object structure and motion information need to be pre-

served in great detail. As shown in Figure 1, at least the

following difficulties exist:

• Static Structure Loss. This problem mainly arises

from predicting these scenes which has a fixed structure,

e.g., traffic sign, trees etc. in a city landscape. And the

motion of these static structures often result from the motion
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of camera. Existing methods mostly fail to maintain the

original object structures, e.g., detailed boundaries.

• Dynamic Structure Loss. Although some recent

work [38, 5] are capable of predicting general coarse-

grained movements. They generally fails when predicting

fine-grained local movements such as articulated motion.

In this paper, we develop an end-to-end framework

called structure preserving video prediction net to enhance

video prediction. The proposed framework features two

components. The first is a multi-frequency analysis com-

ponent. The proposed component contains a high fre-

quency filter, which real-world images passed through and

are decomposed into high frequency image part and low fre-

quency image part. Then, multiple predictors are dedicated

designed to cope with different frequencies. In particular, a

refinement module inspired from the recent image-to-image

translation model [16] successfully handles high frequency

image part, i.e., sketch, to substantially improve the pre-

diction accuracy, i.e., it infers more subtle and realistic ob-

ject details according to the sketch [42]. The second is a

temporal-adaptive convolution component. We propose

temporal-adaptive convolutional kernels to be embedded in

the predictor, which dynamically change the weights based

on the accumulated temporal information of video frames

(i.e., up to the current processing time step) during predic-

tion. As a result, these kernels could capture time-varying

motion patterns, e.g., the subtle movements of human limbs

involving complex dynamics inside the real-world motion,

which are considered very difficult to predict by previous

methods [38]. Note that different from Jia et al. [17], which

only utilizes the current input to generate kernels (i.e., NO

temporal memory), our method fully utilizes the temporal

variation information to explicitly capture the motion dy-

namics (i.e., with temporal memory). Both components are

integrated in a recurrent neural network based video gener-

ation architecture and trained in an end-to-end manner.

We conduct both qualitative and quantitative experi-

ments on diverse datasets, ranging from human motion to

semantic layout prediction, including a novel comparison

experiment to verify the generalization ability of proposed

dynamic prediction scheme, referred as predicting the past.

These experiments clearly indicate that prediction results of

our model could facilitate higher visual quality and more

precise prediction even to predict the complex motion pat-

terns as well as detailed object structures (i.e., with tiny ob-

jects), which significantly outperform prior arts.

2. Related Work

Video Prediction. Many previous work have been done

on video prediction task [40, 36, 25]. Some methods man-

aged to ease the task by introducing some prior knowledge.

For example, Denton et al. [5] proposed a video prediction

model on the basis of the hypothesis that a video sequence

could be factored into content and motion. Similarly, Ville-

gas et al. [38] proposed a motion-content disentanglement

network for pixel-level prediction of future frames in nat-

ural video sequences. An action-conditioned video predic-

tion framework developed by Lee et al. [30] utilized the ac-

tion prior knowledge as well as previous appearance infor-

mation to facilitate future motion prediction. Other methods

propose to take extra category information as inputs to facil-

itate prediction task. For example, multi-task learning was

utilized by Liang et al. [23] which simultaneously solved

the next frame video prediction and optical flow predic-

tion [33] tasks via a dual adversarial training mechanism.

Differently, Precup et al. [39] proposed a hierarchical ap-

proach of pixel-level video prediction, which utilized the

human skeleton information to facilitate better prediction

quality. Lu et al. [24] presents a modular data-driven frame-

work for video prediction based on an end-to-end differen-

tiable network architecture. Recently, Nev et al. [29] intro-

duces a new visual understanding task of predicting future

semantic segmentations, and proposed a batch model that

predicts all future frames at once.

Convolutional LSTM. Recently, the work of [34] pro-

posed a new extension of LSTM called ConvLSTM which

had a inherent convolutional scheme within the recurrent

architecture. And it had many applications [1, 32, 31] in a

large variety of computer vision research area. Marwah et

al. [26] proposed a video generation framework which uti-

lized the ConvLSTM to encode short-term and long-term

spatio-temporal context to generate videos on unseen cap-

tions. Stollenga et al. [37] proposed a recurrent neural net-

work based on convolutional LSTM that sequentially found

objects and their segmentations one at a time. Kalchbrenner

et al. [19] combined the ConvLSTM into a deep generative

model which modelled the factorization of the joint like-

lihood of inputs in the form of video data. Jia et al. [17]

introduced a class of dynamic filtering networks, referred

as DFN, that applied by dynamically generating filters ac-

cording to an image.

However, previous video prediction methods tend to pro-

duce unsatisfied results when encountered video sequence

with rich structural information and complex motion de-

tails. And different from above methods, we propose a

structure preserving framework which utilizes the high fre-

quency video content and employs temporal-adaptive con-

volutional kernels to facilitate the video prediction task.

Note that our work fully utilizes the motion information be-

tween inputs to explicitly capture the spatial-temporal vari-

ation of inputs. It is different from the work of [17], which

captures the spatial transformation with one frame as the

input. Meanwhile, our model use the important mutual in-

formation between different channels of the feature map

to generate new kernels, but the DFN [17] performs the

transformation on each channel of one feature map inde-
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Figure 2. The proposed structure preserving video prediction framework. Left: two-branch framework. At the first training stage we train

the encoder and decoder modules, while at the second stage all modules are trained together. Right: temporal-adaptive prediction module.

pendently.

3. Structure Preserving Video Prediction

3.1. Motivation

Previous prediction works are mainly based on the

Encoder − LSTM − Decoder architecture [38, 5, 38].

Some of them propose several variant frameworks which

employ the prior knowledge over datasets. For example, the

MCNet [38] and DrNet [5] disentangle the motion and con-

tent parts of video sequence in an unsupervised way for bet-

ter prediction quality; the work of [39] decomposes video

into articulated motion and appearance parts which tackle

the task as predicting the low dimension manifold of human

motion.

However, these methods are very easy to encounter the

following two problems briefly mentioned in Section 1:

Static structure loss. Figure 4(A) demonstrates the pre-

dicted results of ConvLSTM [34] on CityScape datasets.

We observe that the structure of static objects can not be

kept during prediction. For example, the shape of build-

ing changes rapidly and the lampposts are missing. This is

due to the fact that previous methods ignore the rich struc-

ture information contained in the raw-pixel inputs, which

could substantially facilitate the static structural prediction.

A two-branch video prediction framework is proposed in

section 3.2, which contains a multi-frequency analysis mod-

ule to deal with this problem.

Dynamic structure loss. Figure 4(B) presents the pre-

dicted results of ConvLSTM [34] on Human3.6M datasets,

which is a human walking sequence. We observe that the

predicted results contain severe motion blur compared to

the ground truth, i.e., the lower body of human is totally un-

recognisable because of the motion blur. This mainly arises

from that the moving direction of body parts are different,

(i.e., one leg moving forward while the other moving back-

ward). To this end, we propose a temporal adaptive convo-

lution scheme to explicitly solving this problem. Details are

given in section 3.3.

3.2. Two­branch video prediction framework

To deal with static structure loss, we propose a two-

branch video prediction framework. As shown in Figure 2,

the whole framework consists of three main modules, i.e.,

the encoder module, the prediction module and the decoder

module. The main contribution in this framework lies in

that we use two branches in the encoder and prediction

modules to capture different frequency domain information,

which boosts the prediction accuracy by a large margin.

Note that the high frequency information could be obtained

simply passed through a high pass filter. The details of three

modules are given as follows.

Encoder module. Let X = (X1, ...,XT ) denote a video

sequence of T, (= N +M) frames in the training set, and

our task is to perform M time-steps prediction given N

frames as inputs. The two-branch encoders are designed

for two different frequency domains. To be specific, the

raw pixels are directly passed to the first encoder, denoted

as EL. As for the second branch, we firstly process the

raw inputs with a high pass filter, denoted as HF , and then

feed the output into another encoder, denoted as EH . For

a T-frame input, the outputs of EL and EH are denoted

as FL = (FL
1 , ...,F

L
T ) and FH = (FH

1 , ...,FH
T ) respec-

tively. In the following we drop the subscript L and H

for brevity.

Prediction module. In this module, we adopt the seq-

to-seq architecture [3] for prediction. We take the N time

steps outputs from the encoder modules as the inputs, de-
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Figure 3. The detailed structure of proposed prediction module.

The upper part is proposed temporal-adaptive convolution kernel,

Tem-K, while the lower part is the temporal fusion scheme,Fus-4.

noted as (F1, ...,FN ). And the first N time steps outputs

are denoted as (F̂1, ..., F̂N ). In the following M time steps

we sequentially set Ft+1 = F̂t, t = N, ..., N + M − 1
as inputs to produce the final M time steps prediction, de-

notes as (F̂N+1, ..., F̂N+M ). Meanwhile, inspired from the

DenseNet architecture [14], whose dense connection is per-

formed in the channel direction of the CNN, we propose

a temporal dense connection scheme. As shown in Figure

3, the hidden state of the last 4 time-steps are first passed

through a fusion sub-module, then feed into the next time-

step for prediction. By doing so, we aim to purse a more

efficient temporal information sharing mechanism to facili-

tate the video prediction task. More details of this temporal-

adaptive convolution module are specified in Section 3.3.

Decoder module. The decoder module takes the out-

puts of prediction module as inputs. Similar to the recent

work [16] on the image to image translation task, our de-

coder module can also be considered as a refinement mod-

ule, which utilizes the high frequency information to refine

the blurry outputs, i.e., the low frequency prediction, to a

more precise version. We train the two-branch encoders and

decoder modules together to minimize the regression loss.

And formally, let X̂ = (X̂1, ..., X̂N , X̂N+1, ..., X̂N+M ) de-

note the outputs of decoder module.

3.3. Temporal adaptive prediction module

To capture the temporal varying motion patterns and deal

with the dynamic structure loss problem, we propose a

novel temporal-adaptive convolution module shown in Fig-

ure 3:
This module is developed on the basis of ConvL-
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Figure 4. Illustration of structure loss. (A) Static structure loss.

(B) Dynamic structure loss. Best view in color.

STM [34]. We follow the same notation settings except
the input feature Ft, the new designed dynamic kernel set

Wt ={Wxi
t , Whi

t , Wxf
t , Whf

t , Wxc
t , Whc

t , Wxo
t , Who

t },

cell input Ĉt−1 and hidden state input Ĥt−1:

it−1 = σ(Wxi
t ∗ Ft−1 +Whi

t ∗ Ĥt−1 +Wci ◦ Ĉt−1 + bi),

ft−1 = σ(Wxf
t ∗ Ft−1 +Whf

t ∗ Ĥt−1 +Wcf ◦ Ĉt−1 + bf ),

Ct−1 = ft−1 ◦ Ĉt−1 + it ◦ tanh(W
xc
t ∗ Ft−1 +Whc

t ∗ Ĥt−1 + bc),

ot−1 = σ(Wxo
t ∗ Ft−1 +Who

t ∗ Ĥt−1 +Wco ◦ Ct−1 + bo),

Ht−1 = ot−1 ◦ tanh(Ct−1),
(1)

with Wt, Ĉt−1 and Ĥt−1 computed as follow:

Wt = φWt
(Ft−1;Ft−2),Wt ∈ Wt

Ĥt−1 = φH(∆Ht−1,∆Ht−2,∆Ht−3),

Ĉt−1 = φC(∆Ct−1,∆Ct−2,∆Ct−3),

∆Ht−i = Ht−(i+1) −Ht−(i+2), i = 1, 2, 3,

∆Ct−i = Ct−(i+1) − Ct−(i+2), i = 1, 2, 3.

(2)

Here Wt denotes one convolution kernel with shape

(Wk, Hk, CI , CO), where Wk, Hk, CI , CO stand for the

kernel width, kernel height, input channel and output chan-

nel respectively. φWt
is a kernel generation function, de-

noted as Tem-K, designed to fully utilize the temporal vari-

ation information while φH and φC are 1-layer CNN, de-

noted as Fus-4, designed to generate hidden state and cell

by fusing previous ones.
We use Wt(i, j) to denote the ith input channel and jth

output channel of Wt. Ft(i) denotes the ith channel of input
feature map Ft. Then,

W̃t(i, j) = φ̃W(Ft(i)−Ft−1(j)), i, j = 1, ..., C. (3)
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Here, the kernel generation function φ̃W is a 3-layer CNN.

In contrast to the common convolution operation, which

performs channel-wise summation, φ̃W firstly performs the

channel subtraction to obtain the temporal variation infor-

mation, and then encodes it into the current convolution ker-

nel. Inspired from Jia et al. [17], we perform channel-wise

softmax [2] along the input channel:

Wψ
t (·, j) = Softmax(W̃ψ

t (·, j)), j = 1, ..., C, (4)

This increases the sparsity of the generated kernel, which

means that majority values within the generated kernel are

near 0, while a small portion of them are close to 1. In-

tuitively, the convolution operation performed by a sparse

kernel with binary values of 0 or 1, could perform spatial

transformation in a pixel-wise manner. By doing so, we

could mimic the complex motion dynamics more precisely.

It should be noticed that, the proposed temporal adaptive

convolution kernels can be seamlessly integrated into other

convolution based recurrent architectures, besides the Con-

vLSTM [34].

3.4. Implementation details

We give some implementation details in this section.

Loss function design. It is common to get a poor local

minima when training a heavy neural network all parts to-

gether [28]. The training process for the proposed network

is divided into two phases:

At the first phase, we train the encoder together with the

decoder modules. We propose a regression loss L1 to con-

strain our model in both low and high frequency domain:

L1 = ||X − X̂ ||1 + ||HF (X )−HF (X̂ )||1, (5)

where the HF is the high pass filter mentioned in the en-
coder module of section 3.2. At the second phase, we train
the whole framework, keeping the learning rate of the en-
coder and decoder modules at a relative low values com-
pared to the prediction module. The prediction module is
also trained with a regression loss L2:

L2 =

N+M−1∑

i=1

(||Xi+1 − X̂i||1 + ||Fi+1 − F̂i||1

+ ||HF (Xi+1)−HF (X̂i)||1).

(6)

For the dynamic LSTM module, we proposed an addi-

tional loss function L3:

L3 =
1

N +M

N+M∑

t=1

||(||Ft − F̂t||1)− σths||1, (7)

where the loss term means that we encourage the outputs

to be different from the inputs and the σths is a predefined

threshold with fixed value. Finally, we could train the whole

network using the following loss function:

L = λ1L1 + λ2L2 + λ3L3 + λ4

∑
||Θ||22, (8)

where the L2 regularization term over all the parameters ,

Θ, is to prevent the model from over-fitting. Details about

the network structures and parameters settings are specified

as follow:

Two-stream encoder. Both two encoders have three

convolution layers and each layer is followed with a

leakyReLU [13] layer (the leaky rate is 0.1) as the activa-

tion function. All three layers share the same stride of 2

and kernel size 3× 3, and the output channels are 8, 16, 32

respectively. So the shape of feature maps is (256,256,3)-

(128,128,8)-(64,64,16)-(32,32,32). The difference between

these two streams lies in that the inputs are first processed

by a standard 5 × 5 LoG [12] filter before feed into high

frequency encoder.

Temporal-adaptive convLSTM. The kernel size of con-

vLSTM is (9,9,32,32). We use a three-layer convolution

network to generate the temporal-adaptive kernel, and each

layer is of stride 2 with no activation layer. And we use a

single convolution layer to implement the hidden state fu-

sion module, with input shape of (32,32,128) and output

shape of (32,32,32). And these two branches share the same

architecture.

Decoder. The decoder is implemented with three trans-

pose convolution layers with kernel size 3× 3 and stride 2.

Each layer is followed with a ReLU [10] layer. Note that

we concatenate feature maps of these two branches along

the channel direction as the inputs. So the shape of feature

maps is (32,32,64)-(64,64,16)-(128,128,8)-(256,256,3).

Training procedure. As mentioned in Section 3.2,

we train the model at two phases. To be specific, at

the first phase we train the encoder and decoder with

learning rate of 1e-4 and batch size of 32 for 3 epochs;

at the second phase the whole model is trained with

batch size of 64 for 10 epochs, while the learning rate

of encoder of decoder is reduced to 1e-5, and that of

the temporal-adaptive convLSTM is 1e-4. We use the

AdamOptimizer [20] during the whole training procedure

with β = 0.9. And the hyper-parameters in Equa-

tion 8, {λ1, λ2, λ3, λ4, σths} is set differently on differ-

ent datasets. For example, on Human3.6M datasets [15],

{λ1, λ2, λ3, λ4, σths} is {1, 5, 10, 0.0001, 0.014}, which is

fine-tuned on other datasets.

4. Experiments

4.1. Datasets

We evaluate our model on three diverse datasets as fol-

lows:
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Figure 5. Quantitative comparison of different prediction models on three datasets in term of SSIM and PSNR. Best view in color. There is a

noticeable performance drop on Human3.6M Datasets with CDNA [9], i.e., PSNR 42 in original paper and PSNR 38 in our implementation.

This mainly results from the difference of target video resolution i.e., 64x64 in original paper and 256x256 in our implementation.

• UCF-101 Datasets [35]. This dataset contains videos

of athletes practicing 101 different actions. Because of the

motion complexity, the future is highly unpredictable. In

our experiments, we choose the ”Clean-Jerk” term with 49

video sequences of resolution resized to 256x256. Here we

denote the chosen subsets as Clean-Jerk Datasets.

• Human3.6M Datasets [15]. This dataset contains a

variety of human daily actions with 17 different scenarios.

The main difficulties of prediction lie in that human3.6M

datasets [15] contain many subtle movements throughout

all video sequences, for example random swing of limbs.

• CityScape Datasets [4]. This large scale dataset con-

tains 2,975/500 train/val video sequences with 19 semantic

classes. We follows the Nev et al. [29] to obtain the seman-

tic layouts. Note that on this dataset our task is to pre-

dict the semantic layouts given the previous ones. And

all video sequences are resized to 128x256.

4.2. Baselines and Evaluation Setup

To demonstrate the effectiveness of our proposed model,

we compare our model with three strong methods, which

are MCNet [38], CDNA [9] and Nev et al. [29]. To be spe-

cific, MCNet [38] achieves state-of-the-art performance on

KTH datasets [22], and CDNA [9] performs best on Hu-

man3.6M datasets [15], while the Nev et al. [29] is the

first work on predicting the semantic layouts of CityScape

datasets [4]. To evaluate the dynamic structure loss, we

mainly compare the prediction results with MCNet [38]

as well as CDNA [9] on Human3.6M [15] and Clean-Jerk

datasets [35]. But we also demonstrate the results of these

two models on CityScape datasets [4] for further evalua-

tion. As for the static structure loss, we compare with Nev

et al. [29] on CityScape datasets [4], considering that it is

a dedicated designed model for this dataset. To ensure fair

comparison, all models are trained with the configuration

reported in their papers.

During evaluation, we perform 10 time steps forward

prediction given the previous 10 frames as inputs. We

demonstrate the quantitative evaluation in Section 4.3,

which includes PSNR and SSIM, commonly used to evalu-

ate the general performance in previous works [38, 9, 29].

Meanwhile we take two baselines for comparison: the first

one is the ConvLSTM [34], and the second one is pro-

posed two-branch framework, denoted as Two-B. While the

qualitative evaluation includes two aspects: one is to verify

the static structure preservation ability (mainly compared

with Nev et al. [29]); another is to examine the dynamic

prediction ability (mainly compared with MCNet [38] and

CDNA [9]). Details are given in Section 4.4.

4.3. Quantitative Evaluation

In the quantitative experiments, our goal is to verify

whether our model infers more reasonable future under

these evaluation metrics.

Figure 5 illustrates the quantitative results of our models

compared to prior methods. Note that all models produce

ten time steps prediction during training, but we demon-

strate the fifteen prediction results to verify the generaliza-

tion ability of these models. From Figure 5 we have several

observations:

First, the MCNet [38] as well as CDNA [9] achieve

promising prediction results on the articulated motion pre-

diction, i.e., Human3.6M datasets [15], but do not perform

well on CityScape datasets [4]. This mainly results from

that these two methods does not take complex structure in-

formation into consideration during prediction.

Second, the Nev et al. [29] generally performs bet-

ter than than MCNet [38] and CDNA [9] on CityScape

datasets [4], which splits the inputs into multiple spatial

scales, i.e., formulating a coarse-to-fine structure, to facili-

tate structure prediction.

Third, our model outperforms other three models by a
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Figure 6. Prediction results of different models. (A) Dynamic structure prediction. (B) Static structure prediction. Best view in color.

large margin, thanks to the usage of two kinds of informa-

tion, i.e., the dynamic motion as well as static structure to

purse better prediction quality. And the performance of pro-

posed model degrades more gracefully throughout the ten

frames prediction compared to prior work, e.g., MCNet [38]

on CityScape datasets [4], which clearly demonstrates the

robustness of our model.

4.4. Qualitative Evaluation

In the qualitative evaluation, we demonstrate the predic-

tion results on different models to address these two issues

mentioned in Section 3.1, i.e. dynamic structure loss and

static structure loss.

The Figure 6 (A) presents the prediction results at 4 time

steps on Clean-Jerk datasets [35]. From the top to bottom

we sequentially show the ground truth, the results of our

proposed model, MCNet [38] and CDNA [9]. It should be

noticed that the compound motion of athlete and bell ac-

tually forms a complex temporal dynamic structure. And

we observe that MCNet [38] makes it to capture the gen-

eral movements of the athlete (the third row), i.e., the go-

ing down motion, but the predicted frames are blurry and

the structure of the athlete is incomplete, i.e., the upper

body is almost missed out at time step ten. The last row

shows the prediction results of CDNA [9], whose the visual

quality of is relative higher than that of MCNet [38], but

this model do not capture the dynamic structure of the both

the athlete and bell, whose prediction is nearly stuck at all

time steps. Different from these two models, the temporal-

adaptive convolution module of our model successfully cap-

tures the dynamic structure of both two subjects and pre-

cisely predicts the moving direction of them. Meanwhile

Model
CityScape/Human3.6M/Clean-Jerk

PSNR SSIM

ConvLSTM 22.8/36.2/23.4 0.70/0.94/0.78

Two-B 25.2/37.2/25.3 0.74/0.96/0.85

Two-B+Fus-4 25.7/37.5/25.7 0.76/0.96/0.85

Two-B+Fus-4+Tem-K 26.6/39.7/27.5 0.77/0.97/0.89

Table 1. Ablation study of the proposed model.

benefiting from the multi-frequency analysis module which

utilizes different frequencies information of the inputs, the

predicted frames are visually satisfying, i.e., detailed struc-

tures are preserved.

We report the prediction results of CityScape datasets [4]

The Figure 6 (B). And we compare our model with Nev et

al. [29] as well as MCNet [38]. We observe that the slim

traffic sign is very difficult for Nev et al. [29] to predict. As

shown in the third row at Figure 6 (B), the traffic sign can be

only predicted by Nev et al. [29] at the first time step. The

prediction results of MCNet [38] are slightly better, i.e., the

lower part of the traffic sign is maintained, but still incom-

plete compared to ground truth. In contrast, our proposed

model successfully predicts the traffic sign at all time steps,

which clearly proves that the high frequency information is

a crucial reference for the static structure prediction. We

strongly suggest the readers to refer the supplementary ma-

terial for more examples.

4.5. Ablation Study

Figure 7 demonstrates results of an ablation study of our

proposed model, assessing the influence of all components

we use. Here we use two baselines for comparison. The

first one is the ConvLSTM [34], and the second one is the
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Figure 7. Ablation study on CityScape datasets [4]. Best view in

color.

proposed two-branch framework, denoted as Two-B. From

Figure 7 we observe that the ConvLSTM model fails to cap-

ture the slim traffic sign during prediction. In contrast, the

two-branch framework is able to capture this kind of static

structure in the short-term prediction (the third row in Fig-

ure 7), i.e., predicting the next frame, but fails to maintain

it in the long-term prediction, i.e., prediction the following

ten frames. On the basis of the two-branch framework, the

temporal-adaptive kernel makes it to predict long-term vari-

ation of the traffic sign (the fourth row in Figure 7). This

indicates that the two-branch module is able to cope with

the temporal-adaptive module to facilitate higher prediction

accuracy in dynamically changing objects.

As illustrated in Table 1, the quantitative results on three

datasets are presented for comparison. Note that these re-

sults are averaged on the whole test set of the first frame

prediction. Both the two-branch module (Two-B) and

the temporal-adaptive module (Tem-K) improve the pre-

diction accuracy by a large margin. The hidden state fu-

sion scheme (Fus-4) contributes the enhancement on the

CityScape datasets [4], while it does not lead to a signifi-

cant improvement on the other two.

4.6. Predicting the Past

To verify the generalization ability the temporal-adaptive

convolution module, we conduct a novel comparison ex-

periment, referred as predicting the past. To be specific,

the models are trained with temporal sequential order, but

are tested with temporal reverse order, which increases the

prediction difficulty because the temporal motion pattern is

never met by the models.
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Figure 8. Examples of predicting the past experiment. Best view

in color.

Figure 8 demonstrates two temporal orders (i.e., sequen-

tial and reverse) prediction results. The top two rows cor-

respond to these results of proposed structure preserving

model, and the up right conner of each result represents the

current generated 9 × 9 kernel. We select the Wxi(12, 12)
for visualization. The bottom two rows present these of the

two-branch architecture (i.e., without the temporal-adaptive

module). Here we have several observations: (1) the two-

branch architecture fails to give reasonable prediction on the

reverse order (the fourth row), i.e., the lower body is totally

stuck; (2) the generated kernel changes with the variation

of current inputs on both two orders, and brighter color in-

dicates higher value, whose sparsity verifies the hypothesis

in section 3.3; (3) the proposed structure preserving frame-

work produces sensible motion even on the reverse order

(the second row), which clearly shows the generalization

ability of the temporal-adaptive convolution module.

5. Conclusion
In this paper, we present a structure preserving video pre-

diction framework to explicitly address the static and dy-

namic structure loss issues. Extensive experiments demon-

strate the effectiveness of the proposed video prediction ap-

proach.
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