
Structured Attention Guided Convolutional Neural Fields

for Monocular Depth Estimation

Dan Xu1, Wei Wang1, Hao Tang1, Hong Liu2∗, Nicu Sebe1, Elisa Ricci1,3∗

1Multimedia and Human Understanding Group, University of Trento,
2Key Laboratory of Machine Perception, Shenzhen Graduate School, Peking University,

3 Technologies of Vision Group, Fondazione Bruno Kessler

{dan.xu, wei.wang, hao.tang, niculae.sebe, e.ricci}@unitn.it hongliu@pku.edu.cn

Abstract

Recent works have shown the benefit of integrating Con-

ditional Random Fields (CRFs) models into deep architec-

tures for improving pixel-level prediction tasks. Following

this line of research, in this paper we introduce a novel ap-

proach for monocular depth estimation. Similarly to previ-

ous works, our method employs a continuous CRF to fuse

multi-scale information derived from different layers of a

front-end Convolutional Neural Network (CNN). Differently

from past works, our approach benefits from a structured at-

tention model which automatically regulates the amount of

information transferred between corresponding features at

different scales. Importantly, the proposed attention model

is seamlessly integrated into the CRF, allowing end-to-end

training of the entire architecture. Our extensive experi-

mental evaluation demonstrates the effectiveness of the pro-

posed method which is competitive with previous methods

on the KITTI benchmark and outperforms the state of the

art on the NYU Depth V2 dataset.

1. Introduction

The problem of recovering depth information from im-

ages has been widely studied in computer vision. Tradi-

tional approaches operate by considering multiple observa-

tions of the scene of interest, e.g. derived from two or more

cameras or corresponding to different lighting conditions.

More recently, the research community has attempted to

relax the multi-view assumption by addressing the task of

monocular depth estimation as a supervised learning prob-

lem. Specifically, given a large training set of pairs of im-

ages and associated depth maps, depth prediction is casted

as a pixel-level regression problem, i.e. a model is learned to

directly predict the depth value corresponding to each pixel

of an RGB image.

In the last few years several approaches have been

proposed for addressing this task and remarkable perfor-
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Figure 1. Monocular depth prediction from different CRF-based

models: Xu et al. [36] (c) and ours (d). (a) and (b) are the input

RGB image and the corresponding ground truth depth map.

mance has been achieved thanks to deep learning models

[5, 6, 22, 36, 18]. Recently, various Convolutional Neural

Network (CNN) architectures have been proposed, tackling

different sub-problems such as how to jointly estimate depth

maps and semantic labels [35], how to build models robust

to noise or how to combine multi-scale features [10]. Focus-

ing on the latter issue, recent works have shown that CRFs

can be integrated into deep architectures [22, 31] and can

be exploited to optimally fuse the multi-scale information

derived from inner layers of a CNN [36].

Inspired by these works, in this paper we also propose

to exploit the flexibility of graphical models for multi-scale

monocular depth estimation. However, we significantly de-

part from previous methods and we argue that more accu-

rate estimates can be obtained operating not only at the pre-

diction level but exploiting directly the internal CNN fea-

ture representations. To this aim, we design a novel CRF

model which automatically learns robust multi-scale fea-

tures by integrating an attention mechanism. Our attention

model allows to automatically regulate how much informa-

tion should flow between related features at different scales.
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Attention models have been successfully adopted in

computer vision and they have shown to be especially use-

ful for improving the performance of CNNs in pixel-level

prediction tasks, such as semantic segmentation [4, 13]. In

this work we demonstrate that attention models are also ex-

tremely beneficial in the context of monocular depth pre-

diction. We also show that the attention variables can be

jointly estimated with multi-scale feature representations

during CRF inference and that, by employing a structured

attention model [17] (i.e. by imposing similarity constraints

between attention variables for related pixels and scales),

we can further boost performance. Through extensive ex-

perimental evaluation we demonstrate that our method pro-

duces more accurate depth maps than traditional approaches

based on CRFs [22, 31] and multi-scale CRFs [36] (Fig.1).

Moreover, by performing experiments on the publicly avail-

able NYU Depth V2 [30] and on the KITTI [8] datasets, we

show that our approach outperforms most state of the art

methods.

Contributions. In summary, we make the following con-

tributions: (i) We propose a novel deep learning model

for calculating depth maps from still images which seam-

lessly integrates a front-end CNN and a multi-scale CRF.

Importantly, our model can be trained end-to-end. Differ-

ently from previous works [36, 22, 31] our framework does

not consider as input only prediction maps but operates di-

rectly at feature-level. Furthermore, by adopting appropri-

ate unary and pairwise potentials, our framework allows a

much faster inference. (ii) Our approach benefits from a

novel attention mechanism which allows to robustly fuse

features derived from multiple scales as well as to integrate

structured information. (iii) Our method demonstrates state-

of-the-art performance on the NYU Depth V2 [30] dataset

and is among the top performers on the more challenging

outdoor scenes of the KITTI benchmark [8]. The code is

made publicly available1.

2. Related work

Monocular Depth Estimation. The problem of monocu-

lar depth estimation has attracted considerable attention in

last decade. While earlier approaches are mostly based on

hand-crafted features [12, 16, 19, 28], more recent works

adopt deep architectures [5, 22, 31, 26, 20, 36, 9]. In [6] a

model based on two CNNs is proposed: a first network is

used for estimating depth at a coarse scale, while the sec-

ond one is adopted to refine predictions. In [20] a resid-

ual network integrating a novel reverse Huber loss is pre-

sented. In [2] a deep residual network is also employed

but the problem of depth estimation from still images is

translated from a regression to a classification task. Recent

works have also shown the benefit of adopting multi-task

1https://github.com/danxuhk/StructuredAttentionDepthEstimation

learning strategies, e.g. for jointly predicting depth and per-

forming semantic segmentation, ego-motion estimation or

surface normal computation [5, 38, 31]. Some recent papers

have proposed unsupervised or weakly supervised methods

for reconstructing depth maps [9, 18]. Other works have ex-

ploited the flexibility of graphical models within deep learn-

ing architectures for estimating depth maps. For instance, in

[31] a Hierarchical CRF is adopted to refine depth predic-

tions obtained by a CNN. In [22] a continuous CRF is pro-

posed for generating depth maps from CNN features com-

puted on superpixels. The most similar work to ours is [36],

where a CRF is adopted to combine multi-scale information

derived from multiple inner layer of a CNN. Our approach

develops from a similar intuition but further integrates an

attention model which significantly improves the accuracy

of the estimates. To our knowledge this is the first paper ex-

ploiting attention mechanisms in the context of monocular

depth estimation.

Fusing Multi-scale Information in CNNs. Many recent

works have shown the benefit of combining multi-scale in-

formation for pixel-level prediction tasks such as semantic

segmentation [3], depth estimation [36] or contour detec-

tion [32]. For instance, dilated convolutions are employed

in [3]. Multi-stream architectures with inputs at different

resolutions are considered in [1], while [25] proposed skip-

connections to fuse feature maps derived from different lay-

ers. In [32] deep supervision is exploited for fusing infor-

mation from multiple inner layers. CRFs have been con-

sidered for integrating multi-scale information in [36]. In

[4, 33] an attention model is employed for combining multi-

scale features in the context of semantic segmentation and

object contour detection. The approach we present in this

paper is radically different, as we employ a structured at-

tention model which is jointly learned within a CRF-CNN

framework.

3. Estimating Depth Maps with Structured At-

tention Guided Conditional Neural Fields

In this section we describe our approach for estimating

depth maps from still images. We first provide an overview

of our method and then introduce the proposed CRF model

with structured attention. We conclude this section provid-

ing some details about our implementation.

3.1. Problem Formulation and Overview

As stated in the introduction, the problem of predicting

a depth map from a single RGB image can be treated as

a supervised learning problem. Denoting as I the space

of RGB images and as D the domain of real-valued depth

maps, given a training set T = {(Ii,Di)}
M
i=1, Ii 2 I and

Di 2 D, we are interested in learning a non-linear mapping

Φ : I ! D.
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Figure 2. Illustration of the proposed network for monocular depth estimation. The blue blocks indicate the front-end CNN, which in our

implementation is made by an encoder and associated decoder (Section 3.3). The gray box contains a schematic representation of the

proposed Structured Attention guided CRF model. Inside, the green boxes indicate the estimated attention maps, while the light blue ones

represent the features jointly inferred with our CRF. The arrows indicates the dependencies among the estimated variables used in our

message passing algorithm (Section 3.2.3). The dashed arrows indicate the updates involving the attention model.

In analogy with previous works [22, 36], we propose to

learn the mapping Φ by building a deep architecture which

is composed by two main building blocks: a front-end CNN

and a CRF model. The main purpose of the proposed CRF

model is to combine multi-scale information derived from

the inner layers of the front-end CNN. Differently from pre-

vious research [22, 36], our CRF model does not simply act

in order to refine the final prediction map of the CNN nei-

ther requires as input multiple score maps of the same size.

In this paper we argue that better estimates can be obtained

with a more flexible model which accepts as inputs a set

of S multi-scale feature maps X = {Xs}
S
s=1 derived di-

rectly from the front-end intermediate layers. To facilitate

the modeling, all the multi-scale feature maps are resized to

the same resolution via upsampling or downsampling oper-

ations. Here Xs = {xi
s}

N
i=1, xi

s 2 R
N , indicates a set of

feature vectors.

The main idea behind the design of the proposed multi-

scale CRF model is to estimate the depth map D associated

to an RGB image I by exploiting the features at the last

layer XS and a set of auxiliary feature representations de-

rived from the intermediate scales s = 1, . . . , S − 1. To do

that, we propose to learn a set of latent feature maps Ys =
{yi

s}
N
i=1, s = 1, . . . , S and to model the dependencies be-

tween the representations learned at the last layer and those

corresponding to each intermediate scales by introducing an

appropriate attention model A = {As}
S−1
s=1 , parameterized

by binary variables As = {a
i
s}

N
i=1, ais 2 {0, 1}. Intuitively,

the attention variable ais regulates the information which is

allowed to flow between each intermediate scale s and the

final scale S for pixel i. In other words, by learning the at-

tention maps we automatically discover which information

derived from inner CNN representations is relevant for final

depth estimation. Furthermore, in order to obtain accurate

attention maps As we propose to learn a structured attention

model, i.e. we impose structural constraints on the estimated

variables ais enforcing those corresponding to neighboring

pixels to be related. Importantly, the proposed CRF jointly

infers the hidden features and the attention maps.

Figure 2 schematically depicts the proposed framework

and our CRF model. The idea of modeling the relationships

between the learned representations at the finer scale and

the features corresponding to each intermediate layer is in-

spired by the recent DenseNet architecture [14]. As demon-

strated in our experiments (Section 4), this strategy leads to

improved performance with respect to a cascade model as

proposed in [36].

3.2. Structured Attention Guided Multi-Scale CRF

3.2.1 Proposed Model

Given the observed multi-scale feature maps X, we jointly

estimate the latent multi-scale representations Y and the

attention variables A by designing a Conditional Random

Field model with the following associated energy function:

E(Y,A) = Φ(Y,X) + Ξ(Y,A) + Ψ(A) (1)

The first term in (1) is the sum of unary potentials relating

the latent features representations yi
s with the associated ob-

servations xi
s, i.e. :

Φ(Y,X) =
S
X

s=1

X

i

φ(yi
s,x

i
s) = −

S
X

s=1

X

i

1

2
kyi

s − xi
sk

2

(2)

As in previous works [22, 36] we consider Gaussian func-

tions, such as to enforce the estimated latent features to be

close to their corresponding observations. The second term

is defined as:

Ξ(Y,A) =
X

s 6=S

X

i,j

ξ(ais,y
i
s,y

j
S) (3)

It models the relationship between the latent features at the

last scale with those of each intermediate scale. This term

also involves the attention variables ais which regulate the
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flow of information between related scales. We define:

ξ(ais,y
i
s,y

j
S) = aisξy(y

i
s,y

j
S) = aisy

i
sK

s
i,jy

j
S (4)

where Ks
i,j 2 R

Cs⇥CS and Cs, CS refer to the number of

channels of features scale s and S, respectively. Finally, the

third term in (1) aims to enforce some structural constraints

among attention variables. For instance, it is reasonable to

assume that the estimated attention maps for related pixels

and scales should be similar. To keep the computational

cost limited, we only consider dependencies among atten-

tion variables at the same scale and we define:

Ψ(A) =
X

s 6=S

X

i,j

ψ(ais, a
j
s) =

X

s 6=S

X

i,j

βs
i,ja

i
sa

j
s (5)

where βs
i,j are coefficients to be learned. To model depen-

dencies between pairs of attention variables we consider a

bilinear function, in analogy with previous works [17].

3.2.2 Deriving Mean-Field Updates

Following previous works [37, 36] we resort on mean-field

approximation. We derive mean-field inference equations

for both latent features and attention variables. By denoting

as Eq the expectation with respect to the distribution q, we

get:

q(yi
s) / exp

⇣

φ(yi
s,x

i
s) + (6)

Eq(ai
s)
{ais}

X

j

E
q(yj

S
){ξy(y

i
s,y

j
S)}

⌘

,

q(yi
S) / exp

⇣

φ(yi
S ,x

i
S) + (7)

X

s 6=S

X

j

E
q(aj

s)
{ajs}Eq(yj

s)
{ξy(y

i
S ,y

j
s)}

⌘

,

q(ais) / exp
⇣

aisEq(yi
s)

n

X

j

E
q(yj

S
)

n

ξy(y
i
s,y

j
S)
oo

+
X

s

X

j

E
q(aj

s)
{ψ(ais, a

j
s)}

⌘

, (8)

By considering the potentials defined in (2), (3) and (5)

and denoting as āis = Eq(ai
s)
{ais} and ȳi

s = Eq(yi
s)
{yi

s}, the

following mean-fields updates can be derived for the latent

feature representations:

ȳi
s = xi

s + āis

X

j

Ks
i,j ȳ

j
S (9)

ȳi
S = xi

S +
X

s 6=S

X

j

ājsK
s
i,j ȳ

j
s (10)

Since ais are binary variables, āis =
q(ai

s=1)
q(ai

s=0)+q(ai
s=1) .

Therefore, the updates for āis can be derived considering

(8) and the definitions of potential functions (3) and (5):

āis = σ

0

@−
X

j

ȳi
sK

s
i,j ȳ

j
S −

X

s

X

j

βs
i,j ā

j
s

1

A (11)

where σ() denotes the sigmoid function. Eqn. (11) shows

that, in analogy with previous methods employing an atten-

tion model [4, 13], in our framework we also compute the

attention variables by applying a sigmoid function to the

features derived by our CNN model. In addition, as we also

consider dependencies among different ais as in structured

models [17], our updates also involve related attention vari-

ables.

To infer the latent multi-scale representations Y and the

attention variables A, we implement the mean-field updates

as a neural network (see Section 3.2.3). In this way we are

able to simultaneously learn the parameters of the CRFs and

those of the front-end CNN. When the inference is com-

plete, the final depth map is obtained considering the final

estimate associated to the last scale ȳS (see Section 3.3).

3.2.3 Implementation with Neural Networks

To enable end-to-end optimization of the whole network,

we implement the proposed multi-scale model in neural net-

works. The target is to perform mean-field updates for both

the attention variables and the multi-scale feature maps ac-

cording to the derivation described in Section 3.2.2.

To perform mean-field updates of the attention model A

we follow (11). In practice, the update of each attention

map as can be implemented in several steps as follows: (i)

perform the message passing from the two associated fea-

ture maps ȳs and ȳS (ȳs and ȳS are initialized with cor-

responding feature observations xs and xS , respectively).

The message passing is performed via convolutional opera-

tions as âs  ys'(Ks⌦ ȳS), where Ks is a convolutional

kernel corresponding to the s-th scale and the symbols ⌦
and ' denote the convolutional and the element-wise prod-

uct operation, respectively; (ii) perform the message pass-

ing on the attention map with ãs  βs ⌦ ās, where βs is

a convolutional kernel; (iii) perform the normalization with

sigmoid functionās  σ(−(âs ⊕ ãs)), where ⊕ denotes

element-wise addition operation.

When the attention maps are updated, we use them as

guidance to update the last scale feature map yS . The

mean-field updates of yS can be carried out according to

(10) as follows: (i) perform the message passing from the

s-th scale to the S-th scale by ŷs  Ks ⌦ ȳs; (ii) multi-

ply for the attention model and add the unary term xS by

ȳS  xS ⊕
P

s(ās ' ŷs). The computation of mean-field

updates for the latent features corresponding to intermedi-

ate scales can be performed similarly, according to (9). In

our implementation to reduce the computational overhead,

we do not perform the mean-field updates for the interme-

diate scales. The attention maps and the last scale feature

map are iteratively updated.

We would like to remark that, as a consequence of the

definition of the potential functions in (2), (3) and (5), the

computations of the mean-field updates in our approach are

much more efficient than in [36] where Gaussian functions
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Table 1. NYU Depth V2 dataset: comparison with state of the art. In bold we indicate the best method adopting on the original set, while

in italics we indicate the best method using the extended set.

Method Extra Training Data ?
Error (lower is better) Accuracy (higher is better)

rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

Saxena et al. [29] No (795) 0.349 - 1.214 0.447 0.745 0.897

Karsch et al. [16] No (795) 0.35 0.131 1.20 - - -

Liu et al. [24] No (795) 0.335 0.127 1.06 - - -

Ladicky et al. [19] No (795) - - - 0.542 0.829 0.941

Zhuo et al. [39] No (795) 0.305 0.122 1.04 0.525 0.838 0.962

Wang et al. [31] No (795) 0.220 0.094 0.745 0.605 0.890 0.970

Liu et al. [23] No (795) 0.213 0.087 0.759 0.650 0.906 0.976

Roi and Todorovic [26] No (795) 0.187 0.078 0.744 - - -

Xu et al. [36] No (795) 0.139 0.063 0.609 0.793 0.948 0.984

Ours No (795) 0.125 0.057 0.593 0.806 0.952 0.986

Eigen et al. [6] Yes (120K) 0.215 - 0.907 0.611 0.887 0.971

Eigen and Fergus [5] Yes (120K) 0.158 - 0.641 0.769 0.950 0.988

Laina et al. [20] Yes (12K) 0.129 0.056 0.583 0.801 0.950 0.986

Li et al. [21] Yes (24K) 0.139 0.058 0.505 0.820 0.960 0.989

Xu et al. [36] Yes (12K) 0.121 0.052 0.586 0.811 0.954 0.987

are considered for pairwise potentials. Indeed, Gaussian

convolutions involve a much higher computational over-

head both in the forward and in the backward pass. We

further discuss this aspect in Section 4.

3.3. Network Structure and Optimization

Network Structure and Implementation. The overall

framework for monocular depth estimation is made by a

CNN architecture and the proposed CRF model (Fig. 2).

The CNN architecture is made of two main components,

i.e. a fully convolutional encoder and a fully convolutional

decoder. The encoder naturally supports any network struc-

ture. In this work we specifically employ ResNet-50 [11].

In our implementation the proposed CRF is adopted to re-

fine the last scale feature map derived from the semantic

layer res5c, which receives message from the other scale

feature maps derived from res3c and res4f. res3c, res4f
and res5c are the last layers of different convolutional

blocks. In each convolutional block, every layer outputs

a feature map with the same number of channels. Before

message passing, all the feature maps are first upsampled

using a deconvolutional operation to the same size, i.e. 1/4

resolution of the original input image, and the number of

channels is set to 256 for all of them. The kernel size for

both Ks and βs is set to 3 with stride 1 and padding 1 to

have a local receptive field and to speed up the calculation.

The proposed multi-scale CRF module outputs a refined

feature map.To obtain the final prediction we upsample the

feature map to the original resolution as the input image

using deconvolutional operations. Each time we upsample

the feature map by a factor of 2, at the same time reducing

by half the number of feature channels.

End-to-end optimization. As stated above, the proposed

model can be trained end-to-end, i.e. the parameters of the

front-end encoder Θe, those associated to the structured at-

tention guided CRF Θc, and those of the decoder Θd can be

jointly optimized. Given the training data set T , following

previous works [36], we use a square loss function for the

optimization, i.e. :

LF ((I,D;Θe,Θc,Θd) =

M
X

i=1

kF (Ili;Θe,Θc,Θd)−D
l
ik

2
2

The whole network is jointly optimized via back-
propagation with standard stochastic gradient descent.

4. Experiments

We demonstrate the effectiveness of the proposed ap-

proach performing experiments on two publicly available

datasets: the NYU Depth V2 [30] and the KITTI [8]

datasets. The following subsections describe our experi-

mental setup and the results of our evaluation.

4.1. Experimental Setup

Datasets. The NYU Depth V2 dataset [30] has 120K pairs

of RGB and depth maps gathered with a Microsoft Kinect.

The image resolution is 640 ⇥ 480 pixels. The dataset is

split into a training (249 scenes) and a test set (215 scenes).

Following previous works [22, 39, 36] in our experiments

we consider a subset of 1449 RGB-D pairs, of which 795

are used for training and the rest for testing. The data aug-

mentation is performed on the fly by cropping the images to

320⇥ 240 pixels, randomly flipping and scaling them with

a ratio ρ 2 {1, 1.2, 1.5}.

The KITTI dataset [8], originally built for testing com-

puter vision algorithms in several tasks in the context of

autonomous driving, contains depth images captured with

a LiDAR sensor mounted on a driving vehicle. In our ex-

periments we follow the experimental protocol proposed by

Eigen et al. [6] and consider 22,600 images correspond-

ing to 32 scenes as training data and 697 images asoociated
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Figure 3. Examples of predicted depth maps on the NYU V2 test dataset: original RGB images (top row), predicted depth maps (center)

and ground truth (bottom row).

Table 2. KITTI dataset: comparison with state of the art. In bold we indicate the best performances in the monocular setting, while in

italics those corresponding to the stereo setting.

Method
Setting Error (lower is better) Accuracy (higher is better)

range stereo? rel sq rel rms δ < 1.25 δ < 1.252 δ < 1.253

Saxena et al. [29] 0-80m No 0.280 - 8.734 0.601 0.820 0.926

Eigen et al. [6] 0-80m No 0.190 - 7.156 0.692 0.899 0.967

Liu et al. [23] 0-80m No 0.217 0.092 7.046 0.656 0.881 0.958

Zhou et al. [38] 0-80m No 0.208 1.768 6.858 0.678 0.885 0.957

Kuznietsov et al. [18] (only supervised) 0-80m No - - 4.815 0.845 0.957 0.987

Ours 0-80m No 0.122 0.897 4.677 0.818 0.954 0.985

Garg et al. [7] 0-80m Yes 0.177 1.169 5.285 0.727 0.896 0.962

Garg et al. [7] L12 + Aug 8x 1-50m Yes 0.169 1.080 5.104 0.740 0.904 0.958

Godard et al. [9] 0-80m Yes 0.148 1.344 5.927 0.803 0.922 0.963

Kuznietsov et al. [18] 0-80m Yes - - 4.621 0.852 0.960 0.986

to other 29 scenes as test data. The RGB image resolution

is reduced by half with respect to the original 1224 ⇥ 368
pixels. The ground-truth depth maps are generated by re-

projecting the 3D points collected from velodyne laser into

the left monocular camera as detailed in [7].

Implementation Details. The proposed approach is im-

plemented using the Caffe framework [15] and runs on a

single Nvidia Titan X GPU with 12 GB memory. While

the proposed framework is general, following recent works

[36, 20], we adopt the ResNet50 [11] as the front-end net-

work architecture. As stated above in the implementation,

we consider three-level feature maps derived from differ-

ent semantic convolutional layers (i.e. res3c, res4f and

res5c). These feature maps are fused with the proposed

CRF model for the final prediction of the depth map. During

training, the front-end network is initialized with ImageNet

pretrained parameters. Differently from [36] which requires

a pretraining phase of the front-end CNN, we jointly opti-

mize the whole network. The initial learning rate is set to

10e− 9, and is decreased 10 times every 40 epochs. In total

60 epochs are used for training. The mini-batch size is set

to 16. The weight decay and the momentum are 0.0005 and

0.99, respectively.

Evaluation Metrics. In analogy with previous works [5,

6, 31, 36], to quantitatively assess the performance of our

method we consider several evaluation metrics. Specif-
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Figure 4. NYU V2 dataset. Comparison with previous methods:

running time vs. rel error.

ically if Q is the total number of pixels of the test set

and d̄i and di denote the estimated and the ground-truth

depth for pixel i, we compute: (i) the mean relative er-

ror (rel): 1
Q

PQ

i=1
|d̄i−di|

di
; (ii) the root mean squared er-

ror (rms):

q

1
Q

PQ

i=1(d̄i − di)2; (iii) the mean log10 error

(log10): 1
Q

PQ

i=1 k log10(d̄i) − log10(di)k and (iv) the ac-

curacy with threshold t, i.e. the percentage of d̄i such that

δ = max(di

d̄i
, d̄i

di
) < t, where t 2 [1.25, 1.252, 1.253].

In order to compare our results with previous methods on

the KITTI dataset we crop our images using the evaluation

crop applied by Eigen et al. [6].

4.2. Experimental Results

To demonstrate the effectiveness of the proposed frame-

work we first conduct a comparison with state of the art

methods both on the NYU Depth V2 dataset and on the

KITTI benchmark. We also conduct an in-depth analysis

of our method, evaluating both accuracy and computational

efficiency.

NYU Depth V2 Dataset. Table 1 shows the results of the

comparison with state of the art methods on the NYU Depth

V2 dataset. As baselines we consider both approaches

based on hand-crafted features (Saxena et al. [29], Karsch

et al. [16], Ladicky et al. [19]) and deep learning ar-

chitectures. Concerning the latter category, we compare

with methods which exploit multiscale information (Eigen

et al. [6], Eigen and Fergus [5], Li et al. [21]), with ap-

proaches which consider graphical models (Liu et al. [24],

Liu et al. [22], Zhuo et al. [39], Wang et al. [31], Xu et

al. [36]) and neural regression forests ([26]), and with meth-

ods which explore the utilization of the reverse Huber loss

function (Laina et al. [20]). The numerical results associ-

ated to previous methods are taken directly from the origi-

nal papers. For a fair comparison in the table we also report

information about the adopted training set, as it represents

an important factor for CNN performance. In particular, we

separate methods which adopt the original training set in [6]

and those which consider an extended dataset for learning

their deep models.

Our results clearly show that the proposed approach

outperforms all supervised learning methods adopting the

original dataset in [6]. Importantly, the performance im-

provements over previous works based on CRFs models

[31, 22, 36] are significant. In particular, we believe that the

increase in accuracy with respect to [36] confirms our initial

intuition that operating directly at feature-level and integrat-

ing an attention model into a CRF leads to more accurate

depth estimates. Finally, we would like to point out that

our approach also outperforms most methods considering

an extended training set. Furthermore, the performance gap

between our framework and the deep model in [36] trained

on 95K samples is very narrow. We also provide some ex-

amples of depth maps estimated with the proposed method

in Fig. 3. Comparing our prediction with ground truth it

is clear that our approach is quite accurate even at objects

boundaries (notice, for instance, the accuracy in recovering

fine-grained details in case of objects like chairs and tables).

Finally, we compare the proposed approach with previ-

ous methods considering the computational cost in the test

phase. Figure 4 depicts the mean relative error vs the run-

ning time (i.e. time to classify one image) for some of the

baseline methods (numbers are taken from the original pa-

pers). Our approach guarantees the best trade-off between

accuracy and time (notice that the deep model in Laina et

al. [20] is trained on an extended dataset). It is interesting

to compare our method with [36]: the proposed framework

not only outperforms [36] in terms of accuracy when both

models are trained on the original set [6]) but, by adopt-

ing different potential functions in the CRF, results into a

much faster inference. Another interesting comparison is

with [31] and [22], as these works are also based on CRFs.

Our model significantly outperforms [22] and [31] both in

terms of accuracy and of running time (see Fig.4 and Table

1): due to visualization issues we do not show [31] in Fig.4

as the original paper report a time of 40 seconds to recover

the depth map for a single image.

KITTI Dataset. A comparison with state of the art meth-

ods is also conducted on the KITTI dataset and the associ-

ated results are shown in Table 2. As baselines we consider

the work by Saxena et al. [27], Eigen et al. [6], Liu et

al. [22], Zhou et al. [38], Garg et al. [7], Godard et al. [9]

and Kuznietsov et al. [18]. Importantly, the first four meth-

ods only employ monocular images to predict depth infor-

mation, while in [7], [9] and [18] a stereo setting is consid-

ered in training and therefore these methods are not directly

comparable with our approach. As shown in the table, our

approach outperforms all previous methods considering a

supervised setting with the exception of the recent method

in [18]. With respect to [18] we obtain a lower error, while

the accuracy is slightly inferior. For sake of completeness

we also report the performance of previous methods consid-

ering a stereo setting. Among these methods, Kuznietsov
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Figure 5. Examples of depth prediction results on the KITTI dataset: qualitative comparison with previous methods. The sparse ground-

truth depth maps are interpolated for better visualization.

Table 3. Quantitative analysis of the main components of our method on the KITTI dataset.

Method

Error

(lower is better)

Accuracy

(higher is better)

rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

Front-end CNN (w/o multiple deep supervision) 0.168 1.072 5.101 0.741 0.932 0.981

Front-end CNN (w/ multiple deep supervision) 0.152 0.973 4.902 0.782 0.931 0.974

Multi-scale feature fusion with naive concatenation 0.143 0.949 4.825 0.795 0.939 0.978

Multi-scale feature fusion with CRFs (w/o attention model) 0.134 0.895 4.733 0.803 0.942 0.980

Multi-scale feature fusion with CRFs (w/ attention model) 0.127 0.869 4.636 0.811 0.950 0.982

Multi-scale feature fusion with CRFs (w/ structured attention model) 0.122 0.897 4.677 0.818 0.954 0.985

et al. [18] achieve the best performance by exploiting both

ground truth supervision and stereo information. Following

the same idea, we believe that an interesting future research

direction will be to integrate stereo cues into our framework.

A qualitative comparison with some state of the art methods

is also shown in Fig. 5.

Ablation Study. To further demonstrate the effectiveness

of the proposed method we conduct an ablation study on

the KITTI dataset. Table 3 shows the results of our analy-

sis. In the table, “multiple deep supervision” refers to train-

ing the front-end CNN with the approach in [32]; “w/ at-

tention model” refers to considering attention variables ais
in the optimization but discarding the structured potential;

“w/ structured attention model” indicates the using of the

structured attention model. In line with findings from pre-

vious works [31, 36, 22], embedding a CRFs model into

a deep architecture provides a significant improvement in

terms of performance. Furthermore, adopting a CRFs is an

extremely effective strategy for combining multi-scale fea-

tures, as it is evident when comparing our results with CRF

and those corresponding to naive feature concatenation. Fi-

nally and more importantly, by introducing the proposed

CRF model with an attention mechanism and, in particular,

with a structured attention one, we can significantly boost

performance.

5. Conclusions

We presented a novel approach for monocular depth esti-

mation. The main contribution of this work is a CRF model

which optimally combines multi-scale information derived

from the inner layers of a CNN by learning a set of latent

features representations and the associated attention model.

We demonstrated that by combining multi-scale informa-

tion at feature-level and by adopting a structured attention

mechanism, our approach significantly outperforms previ-

ous depth estimation methods based on CRF-CNN mod-

els [37, 22, 36]. Importantly, our framework can be used

in combination with several CNN architectures and can be

trained end-to-end. Extensive evaluation shows that our

method outperforms most baselines. Future research could

perform cross-domain detection tasks [34] based on the pre-

diction of the scene depth.
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