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Abstract

We present a texture network called Deep Encoding

Pooling Network (DEP) for the task of ground terrain

recognition. Recognition of ground terrain is an important

task in establishing robot or vehicular control parameters,

as well as for localization within an outdoor environment.

The architecture of DEP integrates orderless texture details

and local spatial information and the performance of DEP

surpasses state-of-the-art methods for this task. The GTOS

database (comprised of over 30,000 images of 40 classes

of ground terrain in outdoor scenes) enables supervised

recognition. For evaluation under realistic conditions, we

use test images that are not from the existing GTOS dataset,

but are instead from hand-held mobile phone videos of sim-

ilar terrain. This new evaluation dataset, GTOS-mobile,

consists of 81 videos of 31 classes of ground terrain such

as grass, gravel, asphalt and sand. The resultant network

shows excellent performance not only for GTOS-mobile, but

also for more general databases (MINC and DTD). Lever-

aging the discriminant features learned from this network,

we build a new texture manifold called DEP-manifold. We

learn a parametric distribution in feature space in a fully

supervised manner, which gives the distance relationship

among classes and provides a means to implicitly represent

ambiguous class boundaries. The source code and database

are publicly available1.

1. Introduction

Ground terrain recognition is an important area of re-

search in computer vision for potential applications in au-

tonomous driving and robot navigation. Recognition with

CNNs have achieved success in object recognition and the

CNN architecture balances preservation of relative spatial

information (with convolutional layers) and aggregation of

spatial information (pooling layers). This structure is de-

1http://ece.rutgers.edu/vision/

Figure 1: Homogeneous textures (upper row) compared to

more common real-world instances with local spatial struc-

ture that provides an important cue for recognition (lower

row).

signed for object recognition, scene understanding, face

recognition, and applications where spatial order is criti-

cal for classification. However, texture recognition uses an

orderless component to provide invariance to spatial lay-

out [5, 18, 38].

In classic approaches for texture modeling, images are

filtered with a set of handcrafted filter banks followed by

grouping the outputs into texton histograms [7, 16, 21, 34],

or bag-of-words [6, 15]. Later, Cimpoi et al. [5] introduce

FV-CNN that replace the handcrafted filter banks with pre-

trained convolutional layers for the feature extractor, and

achieve state-of-the-art results. Recently, Zhang et al. [38]

introduce Deep Texture Encoding Network (Deep-TEN)

that ports the dictionary learning and feature pooling ap-

proaches into the CNN pipeline for an end-to-end mate-

rial/texture recognition network. Recognition algorithms

that focus on texture details work well for images contain-

ing only a single material. But for “images in the wild”, ho-

mogeneous surfaces rarely fill the entire field-of-view, and
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Figure 2: The result of texture manifold by DEP-manifold. Images with color frames are images in test set. The material

classes are (from upper left to counter-clockwise): plastic cover, painted turf, turf, steel, stone-cement, painted cover, metal

cover, brick, stone-brick, glass, sandpaper, asphalt, stone-asphalt, aluminum, paper, soil, mulch, painted asphalt, leaves,

limestone, sand, moss, dry leaves, pebbles, cement, shale, roots, gravel and plastic. Not all classes are shown here for space

limitations.

many materials exhibit regular structure.

For texture recognition, since surfaces are not com-

pletely orderless, local spatial order is an important cue for

recognition as illustrated in Figure 1. Just as semantic seg-

mentation balances local details and global scene context

for pixelwise recognition [1, 17, 25, 29, 30, 40], we design

a network to balance both an orderless component and or-

dered spatial information.

As illustrated in Figure 3, we introduce a Deep En-

coding Pooling Network (DEP) that leverages an orderless

representation and local spatial information for recognition.

Outputs from convolutional layers are fed into two feature

representation layers jointly; the encoding layer [38] and

the global average pooling layer. The encoding layer is em-

ployed to capture texture appearance details and the global

average pooling layer accumulates spatial information. Fea-

tures from the encoding layer and the global average pool-

ing layer are processed with bilinear models [31]. We apply

DEP to the problem of ground terrain recognition using an

extended GTOS dataset [36]. The resultant network shows

excellent performance not only for GTOS, but also for more

general databases (MINC [1] and DTD [4]).

For ground terrain recognition, many class boundaries

are ambiguous. For example, “asphalt” class is similar to

“stone-asphalt” which is an aggregate mix of stone and as-

phalt. The class “leaves” is similar to “grass” because most

of the example images for “leaves” in the GTOS database

have grass in the background. Similarly, the grass images

contain a few leaves. Therefore, it is of interest to find not

only the class label but also the closest classes, or equiva-

lently, the position in the manifold. We introduce a new tex-

ture manifold method, DEP-manifold, to find the relation-

ship between newly captured images and images in dataset.

The t-Distributed Stochastic Neighbor Embedding (t-

SNE) [20] provides a 2D embedding and Barnes-Hut t-

SNE [33] accelerates the original t-SNE from O(n2) to
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Figure 3: A Deep Encoding Pooling Network (DEP) for material recognition. Outputs from convolutional layers are fed into

the encoding layer and global average pooling layer jointly and their outputs are processed with bilinear model.

O(n log n). Both t-SNE and and Barnes-Hut t-SNE are

non-parametric embedding algorithms, so there is no nat-

ural way to perform out-of-sample extension. Parametric

t-SNE [32] and supervised t-SNE [23, 24] introduce deep

neural networks into data embedding and realize non-linear

parametric embedding. Inspired by this work, we introduce

a method for texture manifolds that treats the embedded dis-

tribution from non-parametric embedding algorithms as an

output, and use a deep neural network to predict the man-

ifold coordinates of a texture image directly. This texture

manifold uses the features of the DEP network and is re-

ferred to as DEP-manifold.

The training set is a ground terrain database (GTOS) [36]

with 31 classes of ground terrain images (over 30,000 im-

ages in the dataset). Instead of using images from the GTOS

dataset for testing, we collect GTOS-mobile, 81 ground ter-

rains videos of similar terrain classes captured with a hand-

held mobile phone and with arbitrary lighting/viewpoint.

Our motivation is as follows: The training set (GTOS) is

obtained in a comprehensive manner (known distance and

viewpoints, high-res caliabrated camera) and is used to ob-

tain knowledge of the scene. The test set is obtained under

very different and more realistic conditions (a mobile imag-

ing device, handheld video, uncalibrated capture). Training

with GTOS and testing with GTOS-mobile enables evalua-

tion of knowledge transfer of the network.

2. Related Work

Tenenbaum and Freeman [31] introduce bilinear mod-

els to process two independent factors that underly a set of

observations. Lin et al. [19] introduce the Bilinear CNN

models that use outer product of feature maps from convo-

lutional layers of two CNNs and reach state-of-the-art for

fine grained visual recognition. However, this method has

two drawbacks. First, bilinear models for feature maps from

convolutional layers require that pairs of features maps have

compatible feature dimensions, i.e. the same height and

width. The second drawback is computational complex-

ity; this method computes the outer product at each loca-

tion of the feature maps. To utilize the advantage of bilinear

models and overcome these drawbacks, we employ bilin-

ear models for outputs from fully connected layers. Then,

outputs from fully connected layers can be treated as vec-

tors, and there is no dimensionality restriction for the outer

product of two vectors.

Material recognition is a fundamental problem in com-

puter vision, the analysis of material recognition has var-

ied from small sets collected in lab settings such as KTH-

TIPS [3] and CuRET [8], to large image sets collected in the

wild [1,4,35,36]. The size of material datasets have also in-

creased from roughly 100 images in each class [4, 35] to

over 1000 images in each class [1, 36]. The Ground Ter-

rain in Outdoor Scenes (GTOS) dataset has been used with

angular differential imaging [36] for material recognition

based on angular gradients. For our work, single images are

used for recognition without variation in viewing direction,

so reflectance gradients are not considered.

For many recognition problems, deep learning has

achieved great success, such as face recognition [2, 22, 26,

37], action recognition [41, 42] and disease diagnosis [39].

The success of deep learning has also transferred to ma-

terial recognition. We leverage a recent texture encoding

layer [38] that ports dictionary learning and residual encod-

ing into CNNs. We use this texture encoding layer as a

component in our network to capture orderless texture de-

tails.

3. Deep Encoding Pooling Network

Encoding Layer The texture encoding layer [38] inte-

grates the entire dictionary learning and visual encoding

pipeline into a single CNN layer, which provides an or-

derless representation for texture modeling. The encoding
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layer acts as a global feature pooling on top of convolu-

tional layers. Here we briefly describe prior work for com-

pleteness. Let X = {x1, ...xm} be M visual descriptors,

C = {c1, ...cn} is the code book with N learned codewords.

The residual vector rij is calculated by rij = xi−cj , where

i = 1...m and j = 1...n. The residual encoding for code-

word cj can be represented as

ej =

N
∑

i=1

wijrij , (1)

where wij is the assigning weight for residual vector rij and

is given by

wij =
exp(−sj‖rij‖

2
)

∑m

k=1
exp(−sk‖rik‖

2
)
, (2)

s1, ...sm are learnable smoothing factors. With the texture

encoding layer, the visual descriptors X are pooled into a

set of N residual encoding vectors E = {e1, ...en}. Simi-

lar to classic encoders, the encoding layer can capture more

texture details by increasing the number of learnable code-

words.

Bilinear Models Bilinear models are two-factor models

such that their outputs are linear in one factor if the other

factor is constant [10]. The factors in bilinear models bal-

ance the contributions of the two components. Let at and bs

represent the material texture information and spatial infor-

mation with vectors of parameters and with dimensionality

I and J . The bilinear function Y ts is given by

Y ts =
I

∑

i=1

J
∑

j=1

wija
t
ib

s
j , (3)

where wij is a learnable weight to balance the interaction

between material texture and spatial information. The outer

product representation captures a pairwise correlation be-

tween the material texture encodings and spatial observa-

tion structures.

Deep Encoding Pooling (DEP) Network Our Deep En-

coding Pooling Network (DEP) is shown in Figure 3. As in

prior transfer learning algorithms [19, 38], we employ con-

volutional layers with non-linear layers from ImageNet [9]

pre-trained CNNs as feature extractors. Outputs from con-

volutional layers are fed into the texture encoding layer and

the global average pooling layer jointly. Outputs from the

texture encoding layer preserve texture details, while out-

puts from the global average pooling layer preserve local

spatial information. The dimension of outputs from the tex-

ture encoding layer is determined by the codewords N and

the feature maps channel C (N×C). The dimension of out-

puts from the global average pooling layer is determined by

the feature maps channel C. For computational efficiency

and to robustly combine feature maps with bilinear mod-

els, we reduce feature maps dimension with fully connected

layers for both branches. Feature maps from the texture en-

coding layer and the global average pooling layer are pro-

cessed with a bilinear model and followed by a fully con-

nected layer and a classification layer with non-linearities

for classification. Table 1 is an instantiation of DEP based

on 18-layer ResNet [12]. We set 8 codewords for the tex-

ture encoding layer. The size of input images are 224×224.

Outputs from CNNs are fed into the texture encoding layer

and the global average pooling layer jointly. The dimension

of outputs from the texture encoding layer is 8×512 = 4096
and the dimension of outputs from global average pooling

layer is 512. We reduce the dimension of feature maps

from the deep encoding layer and the global average pool-

ing layer to 64 via fully connected layers. The dimension

of outputs from bilinear model is 64× 64 = 4096. Follow-

ing prior works [27, 38], resulting vectors from the texture

encoding layer and bilinear model are normalized with L2

normalization.

The texture encoding layer and bilinear models are both

differentiable. The overall architecture is a directed acyclic

graph and all the parameters can be trained by back prop-

agation. Therefore, the Deep Encoding Pooling Network

is trained end-to-end using stochastic gradient descent with

back-propagation.

4. Recognition Experiments

We compare the DEP network with the following three

methods based on ImageNet [28] pre-trained 18-layer

ResNet [12]: (1) CNN with ResNet, (2) CNN with Deep-

Ten and(3) CNN with bilinear models. All three methods

support end-to-end training. For equal comparison, we use

an identical training and evaluation procedure for each ex-

periment.

CNN with global average pooling (ResNet) We follow

the standard procedure to fine-tune pre-trained ResNet, by

replacing the last 1000-way fully connected layer with the

output dimension of 31. The global average pooling works

as feature pooling that encodes the 7×7×512 dimensional

features from the 18-layer pre-trained ResNet into a 512 di-

mensional vector.

CNN with texture encoding (Deep-TEN) The Deep

Texture Encoding Network (Deep-TEN) [38] embeds the

texture encoding layer on top of the 50-layer pre-trained

ResNet [12]. To make an equal comparison, we replace the

50-layer ResNet with 18-layer ResNet. Same as [38], we
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Figure 4: Comparison of images from the GTOS dataset (left) and GTOS-mobile (right) video frames. The training set is

the ground terrain database (GTOS) with 31 classes of ground terrain images (over 30,000 images in the dataset). GTOS is

collected with calibrated viewpoints. GTOS-mobile, consists of 81 videos of similar terrain classes captured with a handheld

mobile phone and with arbitrary lighting/viewpoint. A total of 6066 frames are extracted from the videos with a temporal

sampling of approximately 1/10th seconds. The figure shows individual frames of 31 ground terrain classes.

layer name output size encoding-pooling

conv1 112×112×64 7×7, stride 2

conv2 x 56×56×64





3× 3, 64

3× 3, 64



× 2

conv3 x 28×28×128





3× 3, 128

3× 3, 128



× 2

conv4 x 14×14×256





3× 3, 256

3× 3, 256



× 2

conv5 x 7×7×512





3× 3, 512

3× 3, 512



× 2

encoding / pooling 8 x 512 / 512 8 codewords / ave pool

fc1 1 / fc1 2 64 / 64 4096×64 / 512×64

bilinear mapping 4096 -

fc2 128 4096×128

classification n classes 128×n

Table 1: The architecture of Deep Encoding Pooling Net-

work based on 18-layer ResNet [12]. The input image size

is 224× 224.

reduce the number of CNN streams outputs channels from

512 to 128 with a 1×1 convolutional layer. We replace the

global average pooling layer in the 18-layer ResNet with

texture encoding layer, set the number of codewords to 32

for experiments. Outputs from the texture encoding layer

are normalized with L2 normalization. A fully connected

layer with soft max loss follows the texture encoding layer

for classification.

CNN with bilinear models (Bilinear-CNN) Bilinear-

CNN [19] employs bilinear models with feature maps from

convolutional layers. Outputs from convolutional layers of

two CNN streams are multiplied using outer product at each

location and pooled for recognition. To make an equal com-

parison, we employ the 18-layer pre-trained ResNet as CNN

streams for feature extractor. Feature maps from the last

convolutional layer are pooled with bilinear models. The

dimension of feature maps for bilinear models is 7×7×512

and the pooled bilinear feature is of size 512×512. The

pooled bilinear feature is fed into classification layer for

classification.

4.1. Dataset and Evaluation

Dataset Extending the GTOS database [36], we collect

GTOS-mobile consisting of 81 videos obtained with a mo-

bile phone (Iphone SE) and extract 6066 frames as a test set.

To simulate real world ground terrain collection, we walk

through similar ground terrain regions in random order to

collect the videos. Scale is changed arbitrarily by moving

far or close and changes in viewing direction are obtained

by motions in a small arc. The resolution of the videos

is 1920×1080, and we resize the short edge to 256 while

keeping the aspect ratio for experiments. As a result, the

resolution of the resized images are 455×256. Some ma-

terials in GTOS were not accessible due to weather, there-

fore we removed the following classes: dry grass, ice mud,

mud-puddle, black ice and snow from the GTOS dataset.

Additionally, we merged very similar classes of asphalt and

metal. The original GTOS set is 40 classes, as shown in Fig-

ure 4, there are 31 material classes in the modified dataset.

The class names are (in the order of top-left to bottom-

right): asphalt, steel, stone-cement, glass, leaves, grass,
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ResNet [12] Bilinear CNN [19] Deep-TEN [38] DEP (ours)

Single scale 70.82 72.03 74.22 76.07

Multi scale 73.16 75.43 76.12 82.18

Table 2: Comparison our Deep Encoding Pooling Network (DEP) with ResNet (left) [12], Bilinear CNN (mid) [19] and

Deep-TEN (right) [38] on GTOS-mobile dataset with single scale and multi scale training. For ResNet, we replace the

1000-way classification layer with a new classification layer, the output dimension of new classification layer is 31.

plastic cover, turf, paper, gravel, painted turf, moss, cloth,

stone-asphalt, dry leaves, mulch, cement, pebbles, sand-

paper, roots, plastic, stone-brick, painted cover, limestone,

soil, sand, shale, aluminum, metal cover, brick, painted as-

phalt.

Multi-scale Training Images in the GTOS dataset were

captured from a fixed distance between the camera and

ground terrain, however the distance between the camera

and ground terrain can be arbitrary in real world applica-

tions. We infer that extracting different resolution patches

with different aspect ratio from images in GTOS simu-

late observing materials at different distance and viewing

angle will be helpful for recognition. So for image pre-

processing, instead of directly resizing the full resolution

images into 256×256 as [36], we resize the full resolution

images into different scales, and extract 256×256 center

patches for experiment. Through empirical validation, we

find that resizing the full resolution images into 256×256,

384×384 and 512×512 works best.

Training procedure We employ an identical data aug-

mentation and training procedure for experiments. For sin-

gle scale training experiment, we resize the full resolution

images into 384×384 and extract 256×256 center patches

as training set. For multi scale training experiment, we re-

size the full resolution images into 256×256, 384×384 and

512×512, and extract 256×256 center patches as training

set. For the training section data augmentation, following

prior work [14, 38], we crop a random size (0.8 to 1.0) of

the original size and a random aspect ratio (3/4 to 4/3) of the

original aspect ratio, resize the cropped patches to 224×224

for experiment. All images are pre-processed by subtracting

a per color channel mean value and normalized to unit vari-

ance with a 50% chance horizontal flip. The learning rate

of newly added layers is 10 times of the pre-trained layers.

The experiment starts with learning rate at 0.01, momentum

0.9, batch size 128; the learning rate decays by factor of 0.1

for every 10 epochs, and is finished after 30 epochs.

4.2. Recognition Results

Evaluation on GTOS-mobile Table 2 is the clas-

sification accuracy of fine-tuning ResNet [12], bilinear

Method DTD [4] Minc-2500 [1]

FV-CNN [5] 72.3% 63.1%

Deep-TEN [38] 69.6% 80.4%

DEP (ours) 73.2% 82.0%

Table 3: Comparison with state-of-the-art algorithms on

Describable Textures Dataset (DTD) and Materials in Con-

text Database (MINC).

CNN [19], Deep-TEN [38] and the proposed DEP on the

GTOS-mobile dataset. When comparing the performance

of single-scale and multi-scale training, multi-scale train-

ing outperforms single-scale training for all approaches.

It proves our inference that extracting different resolution

patches with different aspect ratio from images in GTOS to

simulate observing materials at different distance and view-

ing angle will be helpful for recognition. The multi-scale

training accuracy for combined spatial information and tex-

ture details (DEP) is 82.18%. That’s 9.02% better than only

focusing on spatial information (ResNet) and 6% better than

only focusing on texture details (Deep-TEN). To gain in-

sight into why DEP outperforms ResNet and Deep-TEN for

material recognition, we visualize the features before classi-

fication layers of ResNet, Deep-TEN and DEP with Barnes-

Hut t-SNE [33] . We randomly choose 10000 images from

training set for the experiment. The result is shown in Fig-

ure 5. Notice that DEP separates classes farther apart and

each class is clustered more compactly.

Evaluation on MINC and DTD Dataset To show the

generality of DEP for material recognition, we experiment

on two other material/texture recognition datasets: Describ-

able Textures Database (DTD) [4] and Materials in Context

Database (MINC) [1]. For an equal comparison, we build

DEP based on a 50-layer ResNet [12], the feature maps

channels from CNN streams are reduced from 2048 to 512

with a 1×1 convolutional layer. The result is shown in Ta-

ble 3, DEP outperforms the state-of-the-art on both datasets.

Note that we only experiment with single scale training. As

mentioned in [19], multi-scale training is likely to improve

results for all methods.
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(a) ResNet (b) Deep-TEN (c) DEP (ours)

Figure 5: The Barnes-Hut t-SNE [33] and confusion matrix of three material recognition models: ResNet (left), Deep-TEN

(mid) and DEP (right). For Barnes-Hut t-SNE, we randomly choose 10000 images from training set and extract features

before classification layers of three models for experiment. We see that DEP separates and clusters the classes better. Some

classes are misclassified, however, they are typically recognized as a nearby class. (Dark blue represents higher values and

light blue represents lower values in the confusion matrix.)
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Figure 6: The deep network for texture manifold, we em-

ploy DEP as feature extractor, outputs from the last fully

connected layer of DEP works as input for texture embed-

ding.

5. Texture Manifold

Inspired by Parametric t-SNE [32] and supervised t-SNE

[23, 24], we introduce a parametric texture manifold ap-

proach that learns to approximate the embedded distribu-

tion of non-parametric embedding algorithms [20, 33] us-

ing a deep neural network to directly predict the 2D man-

ifold coordinates for the texture images. We refer to this

manifold learning method using DEP feature embedding as

DEP-manifold. Following prior work [24,32], the deep neu-

ral network structure is depicted in Figure 6. Input fea-

tures are the feature maps before the classification layer of

DEP, which means each image is represented by a 128 di-

mensional vector. Unlike the experiment in [24, 32], we

add non-linear functions (Batch Normalization and ReLU)

before fully connected layers, and we do not pre-train the

network with a stack of Restricted Boltzmann Machines

(RBMs) [13]. We train the embedding network from scratch

instead of the three-stage training procedure (pre-training,

construction and fine-tuning) in parametric t-SNE and su-

pervised t-SNE. We randomly choose 60000 images from

the multi-scale GTOS dataset for the experiment. We ex-

periment with DEP-parametric t-SNE, and DEP-manifold

based on outputs from the last fully connected layer of DEP.
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(a) DEP-parametric t-SNE (b) DEP-manifold

Figure 7: Comparison the performance between DEP-parametric t-SNE and DEP-manifold with 60000 images from multi-

scale GTOS dataset. For the embedded distribution of DEP-Parametric t-SNE, the classes are distributed unevenly with

crowding in some areas and sparseness in others. The DEP-manifold has a better distribution of classes within the 2D

embedding.

Implementation For the DEP-manifold, we employ

Barnes-Hut t-SNE [33] as a non-parametric embedding to

build the embedded distribution. Following prior setting

[33], we set perplexity to 30 and the output dimension of

PCA to 50 for the experiment. For training the deep em-

bedding network, we experiment with batch size 2048 and

the parameters of the fully connected layers are initialized

with the Xavier distribution [11]. We employ L2 loss as the

objective function for the experiment. The initial learning

rate is 0.01, and decays by a factor of 0.1 every 30 epochs.

The experiment is finished after 80 epochs. On an NVIDIA

Titan X card, the training takes less than 5 minutes.

Texture Manifold The texture manifold results are shown

in Figure 7. For the embedded distribution of DEP-

Parametric t-SNE, the classes are distributed unevenly with

crowding in some areas and sparseness in others. The DEP-

manifold has a better distribution of classes within the 2D

embedding. We illustrate the texture manifold embedding

by randomly choosing 2000 images from training set to get

the embedded distribution; then we embed images from test

set into the DEP-manifold. Note that the test set images

are not used in the computation of the DEP-manifold. The

result is shown in Figure 2. By observing the texture man-

ifold, we find that for some classes, although the recogni-

tion accuracy is not perfect, the projected image is within

the margin of the correct class, such as cement and stone-

cement. Based on the similarity of material classes on the

texture manifold, we build the confusion matrix for material

recognition algorithms as shown in Figure 5. For visualiza-

tion, the one dimensional ordering of the confusion matrix

axes are obtained from a one-dimensional embedding of the

2D manifold so that neighboring classes are close. Observe

that for the DEP recognition (Figure 5 c), there are very few

off-diagonal elements in the confusion matrix. And the off-

diagonal elements are often near diagonal indicating find

when these images are misclassified, they are recognized as

closely-related classes.

6. Conclusion

We have developed methods for recognition of ground

terrain for potential applications in robotics and automated

vehicles. We make three significant contributions in this

paper: 1) introduction of Deep Encoding Pooling network

(DEP) that leverages an orderless representation and local

spatial information for recognition; 2) Introduction of DEP-

manifold that integrates DEP network on top of a deep neu-

ral network to predict the manifold coordinates of a texture

directly; 3) Collection of the GTOS-mobile database com-

prised of 81 ground terrains videos of similar terrain classes

as GTOS, captured with a handheld mobile phone to eval-

uate knowledge-transfer between different image capture

methods but within the the same domain.
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