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Abstract

We describe a system that automatically extracts 3D ge-

ometry of an indoor scene from a single 2D panorama. Our

system recovers the spatial layout by finding the floor, walls,

and ceiling; it also recovers shapes of typical indoor ob-

jects such as furniture. Using sampled perspective sub-

views, we extract geometric cues (lines, vanishing points,

orientation map, and surface normals) and semantic cues

(saliency and object detection information). These cues are

used for ground plane estimation and occlusion reasoning.

The global spatial layout is inferred through a constraint

graph on line segments and planar superpixels. The re-

covered layout is then used to guide shape estimation of

the remaining objects using their normal information. Ex-

periments on synthetic and real datasets show that our ap-

proach is state-of-the-art in both accuracy and efficiency.

Our system can handle cluttered scenes with complex ge-

ometry that are challenging to existing techniques.

1. Introduction

The recent surge in interest in immersive mixed reality

has resulted in the widespread availability of both commer-

cial and consumer 360◦ camera systems. The consumer-

grade cameras include Ricoh Theta and Samsung Gear 360

while the higher-end ones include Nokia Ozo and Jaunt

One. Immersive panoramas are used in social apps such

as Facebook Spaces. Also, consumers can now contribute

to Google Street View by uploading panoramas. These de-

velopments highlight the importance of panoramic content

creation.

Panoramic or 360◦ images and videos, however, can only

provide limited immersive experience, due to lack of stereo

parallax. In this paper, we address the problem of automat-

ically adding depth to a single 360◦ panorama. This has the

benefit of being able to synthesize stereo views, thus allow-

ing the user to experience 3D immersive visualization of the
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Figure 1. Our approach. (a) Geometric cues (such as line seg-

ments, surface normal) and semantic cues (object masks) are used

to automatically convert 2D panoramas to 3D ones. (b) Recovered

3D depth map and closeup views of an object. (c) Two different

virtual views.

scene using a VR headset. We currently restrict the scope

to indoor scenes.

We present a novel efficient technique to infer 3D struc-

ture based on a single 2D panorama. More specifically, we

estimate the spatial layout (consisting of floor, wall, and

ceiling) using the Manhattan world assumption, and recover

depths of typical indoor objects (e.g., furniture). Fig. 1 il-

lustrates our proposed technique, with results for a repre-

sentative input panorama.

What sets our work apart from prior work on adding

depth to panoramas is that in addition to inferring the global

layout, we use semantic cues and depth propagation to re-

cover object depth. This is critical to producing plausible
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Figure 2. Cue extraction pipeline. (a) We sample the input panorama as local perspective sub-views. (b) We estimate saliency, detect objects

(top) and extract lines, per-pixel normals (bottom) for each sub-view image. (c) The scene is partitioned into objects and background using

object masks. Lines and planes are used to recover background shape while normal information is used to recover object shape.

depth for the entire panorama, which could be of a cluttered

indoor scene.

2. Related Work

Much work has been done in extracting depth informa-

tion from single image. Given the ill-posedness of the prob-

lem, approaches with different priors have been used, in-

cluding low-level vision of shape-from-X, direct use of ge-

ometric features, and use of scene semantics. In this section,

we briefly review representative techniques.

Shape-from-X. There are many approaches that use shape-

from-X [25, 6, 19, 3, 2, 13, 12], which have various levels

of success in indoor scene recovery. Most approaches, how-

ever, rely on textures to estimate camera parameters. The

lack of parallax in single panoramas also makes the appli-

cation of shape-from-X unstable.

Geometry-based techniques. Geometry-based single view

methods [15, 17, 9, 24, 23, 28] typically make use of low-

level geometric information such as lines, vanishing points,

and geometric priors (walls, ceilings, etc) for reconstruc-

tion. Compared with regular perspective images, panora-

mas, especially indoor panoramas, contain global spatial

layouts that link all geometric primitives. A recent solu-

tion [30] exploits such spatial arrangements but can fail on

cluttered scenes due to occlusions that cause incomplete ge-

ometry.

Semantic-based techniques. Semantic methods classify

the image into different geometric regions based on appear-

ance cues (e.g., color and texture). Hoiem et al. [10, 11]

construct the surface layout by labeling the image using

geometric classes. The room layout and objects have also

been represented as boxes. For example, Hedau et al. [9, 8]

handle clutter by modeling the room space with a paramet-

ric 3D “box” and iteratively refitting the box. Schwing et

al. [23] jointly infer the room layout with the objects present

in the scene. Choi et al. [5] build a 3D Geometric Phrase

Model that combines semantic and geometric relationships

between objects.

Data-driven techniques. More recently, data-driven ap-

proaches have shown certain levels of success. Concep-

tually, the problem can be reduced to single-image depth

inference. [21, 7, 22, 27, 16, 20, 4] learn from exten-

sive 3D data to generate a per-pixel depth map. Karsch et

al. [14] use a non-parametric learning framework to recover

depth from a single image, and extended that framework to

videos. While deep networks can be fine-tuned, the lack of

explicit low-level geometric relationships makes it difficult

to produce visually compelling results. Moreover, existing

networks are trained on perspective images with a limited

field-of-view without exploiting panoramic properties that

reveal global geometric arrangements.

Depth from panoramas. In contrast with non-panoramic

approaches mentioned above, our method explores the

global geometric information represented by panoramas.

Previous explorations in panoramic reconstruction include

[32, 12, 30]. Zhang et al. [32] exploited the contextual con-

straints of panorama images to overcome the limitation of

small field-of-view for object detection. Ikehata et al. [12]

addressed a new SfM approach using indoor panoramic im-

age streams as inputs to reconstruct the indoor scenes. They

fused single-view and multi-view reconstruction techniques

together via geometric relationship detection.

The work of Yang et al. [30] is the closest to ours since

they proposed a technique to also recover the shape of 3D

rooms from a full-view indoor panorama. However, it fails

to recover the object structure in cluttered scenes due to a

lack of higher degree of freedom (DOF) clues. By contrast,

our algorithm not only considers the geometric cues but also

takes semantic cues into account, which primarily improves

the algorithm capability for highly cluttered scenes.
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Figure 3. Examples of how the saliency map and object detection

information complement each other, with highlights within dashed

red circles. Top row: The sofa is only partially visible, and so not

detected as an object. Bottom row: The blue cabinet is not detected

even though it is fully visible. Both show up as salient regions.

3. Overview of Algorithm

Our system is illustrated in Fig. 2. We first sample from

the panorama image to generate local perspective sub-views

Fig. 2(a). More specifically, we sample 18 views equally

around the panorama, with each view spanning a FOV of

90◦. Saliency and object detection information is first ex-

tracted per sub-view, as shown in Fig. 2(b). We also collect

geometric information, e.g. lines and per-pixel normals, for

each sub-view. All the resulting information are mapped to

the panorama and analyzed to produce the panoramic object

mask, line segments, and normal map shown in Fig. 2(c).

The object mask is used to partition the panorama into

layout (background) and object (foreground). The back-

ground depth is computed first. Using a piecewise linear

assumption, we project the panorama to a sphere. We then

partition the sphere into superpixels based on context infor-

mation, thereby reducing panoramic reconstruction to esti-

mating the depth of each superpixel. We enforce geometric

constraints among superpixels and lines and tackle the non-

linear optimization problem by decomposing it into two lin-

ear subproblems and solving them in an alternating fashion

iteratively. We further construct constraints among super-

pixels in object regions and reduce their DOF by initializing

superpixel normals with the rough surface normal map. Fi-

nally, object depth is recovered by propagating depth from

the ground portion of the background.

We shall now describe the details of each part, starting

with the preprocessing step of cue extraction.

4. Preprocessing Step: Cue Extraction

For each perspective sub-view, we extract geometric

cues (namely, lines, geometry context, orientation map,

and approximate surface normal) as well as semantic cues

(namely, saliency and object detection map).

Line segment and vanishing point extraction. We ap-

ply the line segment detection (LSD) algorithm [26] on the

sub-views in a similar manner as [32]. Since straight line

segments in perspective images correspond to geodesics on

a unit sphere in the panorama, we estimate the vanishing

points using a geodesic voting method. Subsequently, the

line segments are grouped based on the vanishing direc-

tions. Fig. 2(c) shows the colored line segments with three

Manhattan directions.

Geometric context and orientation map generation. We

follow the same strategy in [32] to extract the geometric

context (GC) [9] and orientation map (OM) [15], respec-

tively. We use GC for ground region estimation and OM

when solving the energy function for extraction of object

depth in Sec. 7.

Surface normal estimation. We use the normal estimation

network of Bansal et al. [1] to extract the higher DOF pixel-

wise surface normal from the sub-views. Fig. 2(b) shows

the rough normal map for sampled view, and Fig. 2(c)

shows the fused panoramic normal map.

Saliency and object detection. To better isolate the objects

from room layouts, we fuse the results of saliency [31] and

object detection algorithms [18]. The object detection algo-

rithm works well when the entire object is visible. The first

column of Fig. 3 shows that the chairs and television have

been correctly detected. However, it fails in the cases where

the object is occluded or the object is unusual. Saliency de-

tection helps in these situations because partially visible or

unusual objects typically show up as being salient. In the

first row of Fig. 3, the sofa (circled) is not detected, while

the saliency map includes it. The second row illustrates the

same occurrence with the blue cabinet (also circled).

5. Object Mask Generation

To separate the layout (background) from object (fore-

ground) for separate analysis, we extract the object mask

for the panorama. Recall that object detection information

and saliency map are recovered in each perspective sub-

view, as shown in Fig. 2(b). Both types of information

are warped back to the panorama (in spherical coordinates).

Where the information overlap, we average, yielding the

final panoramic results as shown in Fig. 2(c). The object

mask in the panorama is then computed using saliency and

object detection information that have been transferred and

merged from the sub-views.

The object mask is computed by optimizing this unary

energy function:

EM = woEo + wsEs, (1)

where EM denotes the object mask, Eo, Es denotes the ob-

ject detection output and saliency map, respectively. wo and

ws are weights for two energy terms. We solve this function

with the binary-label graph-cut. Fig. 2(c) shows an example

object mask that highlights objects in the scene.

3928



ℎ"

 l :  lines

s :  super pixels

h :  end points of line

T :  T-junctions

   :  Neighborhoods

V P r
2

V P l
2

 Manhattan direction

θ

Figure 4. Geometric reasoning. Left: Line occlusions. The Manhattan directions are color-coded. The shaded areas Ω
r

2,Ω
l

2 are the

spherical quadrilateral neighborhood of l2 with vanishing points V P r

2 , V P l

2, respectively. Pixels within Ω
r

2 have normals consistent with

the blue Manhattan direction, while those within Ω
l

2 are voting for different Manhattan directions. Right: Geometry constraints. We use

different colors to highlight constraints between different geometric entities (planes, lines, and superpixels). Illustrated here are constraints

between intersected lines (l3 with l4), line and superpixels (l5 with s3), and adjacent superpixels (s1 with s2).

6. Extraction of Spatial Layout

We apply a panoramic graph-cut to over-segment the

panorama. Instead of imposing the graph-cut onto the orig-

inal panorama image, we uniformly sample the unit sphere

(details are in the supplementary file) and then impose

graph-cut onto the sphere for segmentation. We project the

spherical superpixels back to the panorama. The number of

superpixels varies for different scenes (generally from 500

to 800). Three example superpixels s1, s2, s3 are shown in

the right image of Fig. 4.

We denote the set of all superpixels S, and our goal is to

recover the normal ni for each superpixel si as well as its

distance di to the viewpoint. To do this, we consider pair-

wise constraints among adjacent superpixels and lines, as

shown in the right image of Fig. 4. Using occlusion detec-

tion, we can robustly represent the pairwise relationship be-

tween line-line, line-superpixel, and superpixel-superpixel

in a constraint graph [30].

Additionally, object and ground region information is

used as guidance to refine the structure of the constraint

graph. We now describe how the ground is detected. Note

that we use the Manhattan world assumption in recovering

the 3D layout.

6.1. Ground Region Detection

Detecting the ground is a crucial step in computing the

layout and object depths depend on knowing where the

ground is. The GC labels the ground with a high precision

but at rather low recall, while the surface normal estimation

from a deep learning model preserves smoothness. We ini-

tialize the ground region with superpixels that are labeled

as ground by GC; we then use the surface normal maps as

seeds to propagate the ground region. This step is necessary

because overall, the GC labels are not very accurate. During

propagation, we keep a moving average for the pixel-wise

normal, which is weighted by cos(φ) (φ being the pitch an-

gle), to compensate for the non-uniform sampling nature of

equirectangular projection. The propagation step ends when

the angle difference between a new normal and the moving

average is larger than 10◦.

6.2. Line Occlusion Detection

For each line li, we use two markers (bli, b
r
i ), b

{l,r}
i ∈

{0, 1} to represent occlusion on its left/right sides. bi = 1
indicates the corresponding side is coplanar with the line,

while bi = 0 indicates the side is occluded by the line. We

use three measures to locally evaluate the possibility of each

assignment for each line, namely, normal consistency, ob-

ject region prior, and likelihood of T-junction:

Eoccl = ωnEn(b
l
i, b

r
i )+ωTET (b

l
i, b

r
i )+Ebias(b

l
i, b

r
i ). (2)

En represents the object region prior and normal consis-

tency, ET is the likelihood that a T-junction exists, and

Ebias encodes preference for each assignment.

To measure normal consistency, we parametrize the

sphere using 8-level subdivision of an embedding icosa-

hedron. We extract spherical quadrilateral neighborhoods

Ωl,r
i for each line li, as defined by [30], and calculate the

normal consistency measure as

C
{l,r}
i =

∑

v∈V
{l,r}
i

|m⊺

i n(v)|
∑

v∈V
{r,l}
i

|m⊺

i n(v)|+ τ
, (3)

where V
{l,r}
i is the set of vertices located in Ωl,r

i , mi is

the direction of line li, and n(v) is the vertex normal of v

acquired from the normal map. C
{l,r}
i will be close to zero
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where vertex normals are consistent and perpendicular to li,

as neighbor Ωr
2 of l2 in Fig. 4 (left), otherwise, C

{l,r}
i will

be a large value such as Ωl
2.

We use weight parameter c
{l,r}
obj to encode the object re-

gion prior. If line li is adjacent to the object mask on one

side, we treat li as an edge of the object. The object is fore-

ground with a high probability, with the other side of li be-

ing occluded by the object (e.g., l1 in Fig. 4(left)). c
{l,r}
obj is

decreased on the object side and increased on the other side;

En(b
l
i, b

r
i ) in Eqn. 2 is

En(b
l
i, b

r
i ) = clobjC

l
ib

l
i + crobjC

r
i b

r
i . (4)

As with [30, 17], we also estimate the likelihood of T-

junction ET (b
l
i, b

r
i ) as evidence of occlusion. The left im-

age in Fig. 4 shows two detected T-junctions T1, T2. Let

T l,r
i ∈ {0, 1} be the likelihood of a T-junction existing on

the {left, right} side of line li. The occlusion measure is

ET (b
l
i, b

r
i ) = max{0, T l

i − T r
i }b

l
i +max{0, T r

i − T l
i }b

r
i .
(5)

We consider b
{l,r}
i = 0 to be a singular configuration,

and penalize it by assigning a larger value to corresponding

Ebias. Ebias is a mapping from each assignment of b
{l,r}
i

to a scalar; details are in Section. 9. We minimize Eoccl for

each line independently.

6.3. Layout Constraint

We construct constraints for the 3D layout using back-

ground superpixels and lines. We parametrize each super-

pixel si ∈ S with a normal vector ni ∈ R
3 and a scalar

di ∈ R representing the distance from the viewpoint to si.
As before, mi is the direction of line li and is one of the

three Manhattan directions. dLi ,h
L
i are the depth and nor-

malized direction of an endpoint of li, respectively. A pair

of adjacent superpixels (si, sj) share a set of points Ni,j

on their boundaries. We focus on two types of constraints:

connection and coplanarity.

Connection Constraints. Spatial smoothness is a prior of-

ten used for handling ill-posed problems; in our context,

connection constraints are a form of spatial smoothness. We

can impose stronger connection constraints because of the

additional information extracted in the line occlusion detec-

tion step. For each pair of adjacent superpixels (si, sj), we

deem them to be connected if no occluding lines intersect

Ni,j and they have similar depths. In the right image of

Fig. 4, the pair of adjacent superpixels s1, s2 is one such

example of being connected, while s2, s3 are not connected

(being occluded by l5). Let h ∈ R
3 be the direction of the

point in Ni,j , and di(h) be the depth inferred from super-

pixel si, so that di(h) = di/(ni
⊺
h). We define Epp

con to

represent the cost:

Epp
con =

∑

Ni,j

∑

h∈Ni,j

‖h⊺(dinj − djni)‖
2. (6)

We deem line li and superpixel sj to be connected if sj
is not on the occluded side of li. Let Nli,sj be the set of

common points of li, sj , and let M⊥
i be the set of two Man-

hattan directions perpendicular to mi. We enforce the depth

consistency on Nli,sj using the following objective:

Elp
con =

∑

Nli,sj

∑

h∈Nli,sj

∑

m∈M⊥
i

‖m⊺(djh−(h
⊺
nj)d

L
i h

L
i )‖

2.

(7)

Coplanarity Constraints. We apply these constraints on

lines and superpixels to check for coplanarity. The general

idea for coplanarity detection is similar to that of [12], but

we extend the framework to equirectangular coordinates.

For each pair of lines (li, lj) of different directions, we cal-

culate their intersection hinter. We also compute distance

Q(hinter, li) between li to hinter defined as:

Q(hinter, li) = min
h∈li

arccos

(

h
⊺
hinter

‖h‖‖hinter‖

)

. (8)

We define the distance between hinter and the pair of lines

(li, lj) to be max(Q(hinter, li), Q(hinter, lj)). If this value

is less than 10◦, we further check the normal consistency of

(li, lj).

We denote H to be the spherical convex hull (spheri-

cal triangle or quadrilateral) for the point set of (li, lj) and

hinter. We then project H back to the surface normal map

to retrieve normal values. We deem (li, lj) to be coplanar

if: 1) the average normal is less than 15◦ from the expected

Manhattan direction, and 2) the standard deviation of nor-

mal values in H is less than 5◦. We also verify that H is

located on both the non-occlusion sides of li, lj . As the il-

lustration, in Fig. 4(right), (l3, l4) is a pair of coplanar lines,

and their convex hull is a spherical triangle.

If a pair of lines are determined to be coplanar, we find

the superpixels that intersect H; we refer to this set of su-

perpixels as Scop(li, lj). For each superpixel, we enforce its

normal perpendicular to the direction of (li, lj) by optimiz-

ing

Ep
cop =

∑

(li,lj)

∑

sk∈Scop(li,lj)

‖n⊺

kmi‖
2 + ‖n⊺

kmj‖
2. (9)

Coplanarity provides an additional type of constraint among

pairs of detached lines and superpixels. For each sk ∈
Scop(li, lj), we apply constraints on dk similar to the con-

nection case:

Elp
cop =

∑

(li,lj)

∑

sk∈Scop(li,lj)

‖dk−n
⊺

kh
L
i d

L
i ‖

2+‖dk−n
⊺

kh
L
j d

L
j ‖

2.

(10)

We directly minimize the difference between the normal

of these superpixels and the expected Manhattan direction.
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Figure 5. Object depth propagation. (a) Background (layout) and

object superpixels (sl and so, respectively). (b) Our propagation

process. (c) Resulting depthmap of both background (layout) and

object.

7. Extraction of Object Depth

Indoor objects such as sofas and beds almost always

rest on the ground; as such, we can infer object depth by

propagating depth information from the ground plane and

avoid “floating” objects or objects interpenetrating with the

ground. Fig. 5 shows the process of object depth propaga-

tion that starts from the layout (background) superpixel sl
to connected object superpixel so1 , before propagating to

other nodes (so2 , so3 ).

To compute object depth, we first find adjacent pairs of

superpixels located near the boundary of ground and ob-

ject regions. Let us denote such a pair (so, sl), as shown

in Fig. 5(a). We check the line occlusion detection results

to make sure no occluding lines are covering the intersec-

tion of (so, sl). Subsequently, depth consistency is imposed

along the points of intersection of both superpixels, similar

to the connection constraints in Eqn. 6.

For superpixels and lines located inside the object region,

we apply connection constraints between adjacent superpix-

els. Similar to Eqn. 6, we impose consistency of depths on

the boundary pixels among adjacent superpixels and check

no occluding line intersecting their boundary. We impose

consistency of depth on the boundary pixels among adja-

cent superpixels within the same side of any occluding line.

We choose not to detect coplanarity for the lines and super-

pixels due to the possibility of the surface being curved.

Finally, we sum all the connection terms as Econ and

sum all coplanarity terms as Ecop, yielding a weighted en-

ergy objective function:

E = ωcon(E
pp
con + Elp

con) + ωcop(E
p
cop + Elp

cop), (11)

where ωcon, ωcop are two hyperparameters assigned manu-

ally.

8. Optimizing Depth of Entire Panorama

The energy function is the sum of non-linear squares. We

initialize the normals for spatial layout with orientation map

(OM), enforcing the initial layout normals in three Manhat-

tan directions. We then use the surface normal map to ini-

tialize object normals. We can alternatingly solve all depth

scalars d while fixing superpixel normals n and solve super-

pixel normals while fixing depth. The complete algorithm

is described in Algorithm 1; note that 1/2 refers to the in-

termediate results generated from updating d. During each

step, we use weighted averages to update normals conser-

vatively, with β as the update rate. To avoid the degenerate

case in which all depth values are zero, we find the super-

pixels labeled as ground in GC, and enforce the depth scalar

d of such superpixels to be at least 1.

Algorithm 1: Our constrained optimization algorithm.

Initialize superpixel normal in layout with OM ;

Initialize superpixel normal in object region with

surface normal map ;

repeat

dk+1 ← argmin
d

(ωconE
k
con + ωcopE

k
cop) ;

ñ← argmin
n

(ωconE
k+1/2
con + ωcopE

k+1/2
cop ) ;

n
k+1 ← (1− β)nk + βñ ;

n
k+1 ← n

k+1

‖nk+1‖
;

k ← k + 1 ;

until ∆|d| < ǫ1 and ∆|n| < ǫ2 or maximum iteration;

return (dk,nk) ;

9. Experimental Results

We validated our approach using three datasets. One

dataset we use is SUN360 database [29], which consists of

40 full-view indoor panoramas (with no depth information).

Another dataset of 20 panoramas is created using textured

3D point clouds that we captured using a FARO 3D scanner.

Each panorama (with depth) is generated by projecting the

point cloud to image space. Note that because the scanner

does cover the full panoramic space, we manually labeled

regions within the panorama as having valid data for eval-

uation purposes. The third dataset consists of 60 synthetic

panoramas we created using 3ds Max; note that we also

generate a depth map and normal map for each panorama.

Quantitative evaluation is performed on these datasets for

comparison with other state-of-the-art methods.

Implementation details. In our experiments, we set

weights ws = 0.3, wo = 0.7 for generating object mask.

For line occlusion detection, the weight c
{l,r}
obj = 0.1 in

object region; otherwise c
{l,r}
obj = 1. We set weights for

normal consistency and T-junction ωn = 3, ωT = 1, and

Ebias = 0 if bi = (1, 1), Ebias = 10 if bi = (0, 0), other-

wise Ebias = 2. For connection and coplanarity constraints,

we set ωcon = 0.8, ωcop = 0.2. For Algorithm 1, we set
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Figure 6. Comparison of depth error maps (normalized by mean

value) and average L2 errors for two panoramas.

(a)

(b)

(c)

Figure 7. Comparison of depth maps for three panoramas: (a)

ground truth, (b) results of [30], and (c) our results.

weight β = 0.7 and ǫ1, ǫ2 = 10−4. Although we formu-

late the layout constraints and object constraints in a single

constraint graph, we solve the layout depth and the object

depth separately to avoid solving the large sparse equation.

We use parameter ωground = 2 in solving for object depth,

and further enforce the depth consistency between adjacent

ground superpixels and object superpixels.

We implement our algorithm using MATLAB with C++

mex functions on a PC with Intel Core i7-4790 (3.60GHz)

processor and 8GB RAM. Cue extraction takes about 5 min-

utes, and the subsequent inference for a single 2048× 1024
full panorama takes less than 2 minutes. It takes about 1

minute to construct the constraint graph. Solving the itera-

tive optimization problem takes less than 10 seconds.

Quantitative analysis. We evaluate the quality of our re-

covered 3D room model on the labeled dataset and compare

the depth maps with ground truth. For FARO scanner data,

Background Object Region

FARO Syn. FARO Syn.

Ours 5.59 3.12 2.43 3.27

Yang et al. [30] 6.10 7.56 2.94 3.53

Chen et al. [4] 8.51 10.01 7.62 16.33

Table 1. Comparison of background and object region depth cosine

distance (×10
−2) for the FARO and synthetic datasets.

we compute depth map error in manually labeled valid re-

gions only. The error metric we use is the cosine distance,

i.e., 1−d
⊺

1d2/‖d1‖‖d2‖, where di is the vector uniformly

sampled from depth maps. Note that we normalize the pre-

dicted and ground truth depth maps using the mean value to

eliminate scale ambiguity.

We compare our method with the state-of-the-art

geometry-based method [30] and data-driven method [4].

The network of Chen et al. [4] takes a perspective image as

input and outputs depth along the z-axis. We warp the per-

spective depths generated by network back to the panorama

and average the depths where they overlap; the result-

ing merged-by-averaging panoramic depth map is used for

comparison.

Table 1 compares the average depth cosine errors over

the background (columns 2 and 3) and over object regions

only (columns 4 and 5). Fig. 6 shows typical L2 error maps

for two panoramas. Table 2 shows the time complexity and

performance corresponding to each cue extraction, while

self-evaluation results are shown in Table 3. Our experi-

ments show that our method significantly outperforms other

competing techniques on the quality of recovered depth, es-

pecially the object regions. In particular, our results com-

pared with Chen et al. [4] appear to point to the benefit of

using panoramic images with stronger global constraints for

depth inference.

Cue extraction TC AT (secs)

Line segment O(nls) 20

Vanishing point O(n2
vp) 40

Geometric context O(n2
gc) 90

Orientation map O(n2
om) 60

Surface normal estimation O(d2) 40

Saliency & object detection O(d2) 30

Table 2. Time complexity and performance. TC = time complex-

ity, AT = average time, nx = #features (line segment (x = ls),

vanishing point (x = vp), or size of geometric context (x = gc)

and orientation map (x = om)), d = #input nodes of fully con-

nected layer in neural network.

Qualitative analysis. Fig. 7 compares depth maps for three

panoramas. Despite a large number of superpixels in our

segmentation map, our depth map has better detail com-
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Figure 8. Our reconstruction results on eight different panoramas. In each case, immediately below the input panorama is the estimated

depth map; to its right is the shaded mesh and two virtual views.

cosine (×10−2) L2

Proposed 5.12 0.16

Proposed (no SF) 5.30 0.18

Proposed (no SC) 5.48 0.19

Proposed (no GC) 6.55 0.23

Proposed (no OM) 6.13 0.21

Table 3. Self-evaluation using FARO and synthetic datasets. SF =

surface normal, SC = semantic cue, GC = geometric context, and

OM = orientation map.

pared to that for Yang et al. [30]. This can be seen in the

closeup views. Fig. 8 shows some reconstruction results;

our system can convert 2D panoramas of indoor scenes to

3D room models with objects. The different virtual views

show how well the object depths have been extracted.

Our technique can fail if the object mask incorrectly lo-

calizes objects, as can be seen in the top row of Fig. 9.

Our system is highly dependent on the accuracy of semantic

cues; failures occur where both object and saliency detec-

tion fail. Here, since the object mask is misaligned, our

system is not able to recover the shape of the sofa. The sec-

ond failure case shown in the bottom row is a result of an

incorrect normal map; this causes the cars to appear to be

part of the wall.

10. Concluding Remarks

We have presented a new system to add depth to a 2D

panorama of an indoor scene. Our system uses seman-

tic cues and geometric cues to partition the panorama into

background (layout) and foreground (object). The layout,

which includes the ground plane, is recovered using geo-

metric cues. Layout information is then used to help ex-

Figure 9. Failure cases. In the first row, the sofa is not recovered.

In the second row, the cars are interpreted as wall texture.

tract object depth. Experiments show that our approach can

handle challenging cluttered scenes that are problematic for

state-of-the-art techniques.

Our approach is currently limited to indoor scenes; it

would be interesting to investigate how to extend it for out-

door scenes. Conceptually, a similar processing pipeline

can be adopted if we can effectively exploit cues unique to

outdoor structures such as buildings and roads. Given the

popularity of panoramic video, another direction would be

to add depth to such videos with additional use of structure

from motion and temporal regularization.
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