
FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation

Yaoqing Yang†

yyaoqing@andrew.cmu.edu

Chen Feng‡

cfeng@merl.com

Yiru Shen§

yirus@g.clemson.edu

Dong Tian‡

tian@merl.com

†Carnegie Mellon University ‡Mitsubishi Electric Research Laboratories (MERL) §Clemson University

Abstract

Recent deep networks that directly handle points in a

point set, e.g., PointNet, have been state-of-the-art for su-

pervised learning tasks on point clouds such as classifica-

tion and segmentation. In this work, a novel end-to-end

deep auto-encoder is proposed to address unsupervised le-

arning challenges on point clouds. On the encoder side,

a graph-based enhancement is enforced to promote local

structures on top of PointNet. Then, a novel folding-based

decoder deforms a canonical 2D grid onto the underlying

3D object surface of a point cloud, achieving low recon-

struction errors even for objects with delicate structures.

The proposed decoder only uses about 7% parameters of

a decoder with fully-connected neural networks, yet leads

to a more discriminative representation that achieves hig-

her linear SVM classification accuracy than the benchmark.

In addition, the proposed decoder structure is shown, in

theory, to be a generic architecture that is able to recon-

struct an arbitrary point cloud from a 2D grid. Our code

is available at http://www.merl.com/research/

license#FoldingNet

1. Introduction

3D point cloud processing and understanding are usu-

ally deemed more challenging than 2D images mainly due

to a fact that point cloud samples live on an irregular struc-

ture while 2D image samples (pixels) rely on a 2D grid in

the image plane with a regular spacing. Point cloud geo-

metry is typically represented by a set of sparse 3D points.

Such a data format makes it difficult to apply traditional

deep learning framework. E.g. for each sample, traditio-

nal convolutional neural network (CNN) requires its neig-

hboring samples to appear at some fixed spatial orientations

and distances so as to facilitate the convolution. Unfortuna-

tely, point cloud samples typically do not follow such con-

straints. One way to alleviate the problem is to voxelize

a point cloud to mimic the image representation and then

to operate on voxels. The downside is that voxelization has

to either sacrifice the representation accuracy or incurs huge

redundancies, that may pose an unnecessary cost in the sub-

Input 2D grid 1st folding 2nd folding

Table 1. Illustration of the two-step-folding decoding. Column

one contains the original point cloud samples from the ShapeNet

dataset [57]. Column two illustrates the 2D grid points to be fol-

ded during decoding. Column three contains the output after one

folding operation. Column four contains the output after two fol-

ding operations. This output is also the reconstructed point cloud.

We use a color gradient to illustrate the correspondence between

the 2D grid in column two and the reconstructed point clouds after

folding operations in the last two columns. Best viewed in color.

sequent processing, either at a compromised performance or

an rapidly increased processing complexity. Related prior-

arts will be reviewed in Section 1.1.

In this work, we focus on the emerging field of unsu-

pervised learning for point clouds. We propose an auto-

encoder (AE) that is referenced as FoldingNet. The output

from the bottleneck layer in the auto-encoder is called a co-

deword that can be used as a high-dimensional embedding

of an input point cloud. We are going to show that a 2D

grid structure is not only a sampling structure for imaging,

but can indeed be used to construct a point cloud through

206

http://www.merl.com/research/license#FoldingNet
http://www.merl.com/research/license#FoldingNet

n
×

1
2

3)layer

perceptron

n
×

6
4

2)graph

layers

n
×

1
0

2
4

global

max-pooling

1
×

1
0

2
4

1
×

5
1

2

2)layer

perceptron

m×2

2D)grid)points)(fixed)

replicate

m)times

codeword

m
×

5
1

2

Graph-based Encoder

m
×

5
1

4

concatenate

3)layer

perceptron
3)layer

perceptron

m
×

3

m
×

5
1

5

Folding-based Decoder

1st)

folding)

2nd)

folding)

n
×

3

n
-b

y
-9

local

covariance

concatenate

input
C

h
a

m
fe

r)

D
is

ta
n

c
e

m×3

intermediate)

point)cloud

output

Figure 1. FoldingNet Architecture. The graph-layers are the graph-based max-pooling layers mentioned in (2) in Section 2.1. The 1st

and the 2nd folding are both implemented by concatenating the codeword to the feature vectors followed by a 3-layer perceptron. Each

perceptron independently applies to the feature vector of a single point as in [41], i.e., applies to the rows of the m-by-k matrix.

the proposed folding operation. This is based on the obser-

vation that the 3D point clouds of our interest are obtained

from object surfaces: either discretized from boundary re-

presentations in CAD/computer graphics, or sampled from

line-of-sight sensors like LIDAR. Intuitively, any 3D object

surface could be transformed to a 2D plane through certain

operations like cutting, squeezing, and stretching. The in-

verse procedure is to glue those 2D point samples back onto

an object surface via certain folding operations, which are

initialized as 2D grid samples. As illustrated in Table 1, to

reconstruct a point cloud, successive folding operations are

joined to reproduce the surface structure. The points are co-

lorized to show the correspondence between the initial 2D

grid samples and the reconstructed 3D point samples. Using

the folding-based method, the challenges from the irregular

structure of point clouds are well addressed by directly in-

troducing such an implicit 2D grid constraint in the decoder,

which avoids the costly 3D voxelization in other works [56].

It will be demonstrated later that the folding operations can

build an arbitrary surface provided a proper codeword. No-

tice that when data are from volumetric format instead of

2D surfaces, a 3D grid may perform better.

Despite being strongly expressive in reconstructing point

clouds, the folding operation is simple: it is started by

augmenting the 2D grid points with the codeword obtai-

ned from the encoder, which is then processed through a

3-layer perceptron. The proposed decoder is simply a con-

catenation of two folding operations. This design makes

the proposed decoder much smaller in parameter size than

the fully-connected decoder proposed recently in [1]. In

Section 4.6, we show that the number of parameters of our

folding-based decoder is about 7% of the fully connected

decoder in [1]. Although the proposed decoder has a sim-

ple structure, we theoretically show in Theorem 3.2 that this

folding-based structure is universal in that one folding ope-

ration that uses only a 2-layer perceptron can already re-

produce arbitrary point-cloud structure. Therefore, it is not

surprising that our FoldingNet auto-encoder exploiting two

consecutive folding operations can produce elaborate struc-

tures.

To show the efficiency of FoldingNet auto-encoder for

unsupervised representation learning, we follow the ex-

perimental settings in [1] and test the transfer classifica-

tion accuracy from ShapeNet dataset [7] to ModelNet da-

taset [57]. The FoldingNet auto-encoder is trained using

ShapeNet dataset, and tested out by extracting codewords

from ModelNet dataset. Then, we train a linear SVM clas-

sifier to test the discrimination effectiveness of the extracted

codewords. The transfer classification accuracy is 88.4%

on the ModelNet dataset with 40 shape categories. This

classification accuracy is even close to the state-of-the-art

supervised training result [41]. To achieve the best classi-

fication performance and least reconstruction loss, we use

a graph-based encoder structure that is different from [41].

This graph-based encoder is based on the idea of local fea-

ture pooling operations and is able to retrieve and propagate

local structural information along the graph structure.

To intuitively interpret our network design: we want to

impose a “virtual force” to deform/cut/stretch a 2D grid lat-

tice onto a 3D object surface, and such a deformation force

should be influenced or regulated by interconnections in-

duced by the lattice neighborhood. Since the intermediate

folding steps in the decoder and the training process can be

illustrated by reconstructed points, the gradual change of

the folding forces can be visualized.

Now we summarize our contributions in this work:

207

• We train an end-to-end deep auto-encoder that consu-

mes unordered point clouds directly.

• We propose a new decoding operation called folding

and theoretically show it is universal in point cloud re-

construction, while providing orders to reconstructed

points as a unique byproduct than other methods.

• We show by experiments on major datasets that folding

can achieve higher classification accuracy than other

unsupervised methods.

1.1. Related works

Applications of learning on point clouds include shape

completion and recognition [57], unmanned autonomous

vehicles [36], 3D object detection, recognition and classi-

fication [9, 33, 40, 41, 48, 49, 53], contour detection [21],

layout inference [18], scene labeling [31], category disco-

very [60], point classification, dense labeling and segmen-

tation [3, 10, 13, 22, 25, 27, 37, 41, 54, 55, 58],

Most deep neural networks designed for 3D point clouds

are based on the idea of partitioning the 3D space into re-

gular voxels and extending 2D CNNs to voxels, such as

[4, 11, 37], including the the work on 3D generative ad-

versarial network [56]. The main problem of voxel-based

networks is the fast growth of neural-network size with the

increasing spatial resolution. Some other options include

octree-based [44] and kd-tree-based [29] neural networks.

Recently, it is shown that neural networks based on purely

3D point representations [1, 41–43] work quite efficiently

for point clouds. The point-based neural networks can re-

duce the overhead of converting point clouds into other data

formats (such as octrees and voxels), and in the meantime

avoid the information loss due to the conversion.

The only work that we are aware of on end-to-end deep

auto-encoder that directly handles point clouds is [1]. The

AE designed in [1] is for the purpose of extracting features

for generative networks. To encode, it sorts the 3D points

using the lexicographic order and applies a 1D CNN on the

point sequence. To decode, it applies a three-layer fully

connected network. This simple structure turns out to out-

perform all existing unsupervised works on representation

extraction of point clouds in terms of the transfer classifi-

cation accuracy from the ShapeNet dataset to the ModelNet

dataset [1]. Our method, which has a graph-based enco-

der and a folding-based decoder, outperforms this method

in transfer classification accuracy on the ModelNet40 da-

taset [1]. Moreover, compared to [1], our AE design is

more interpretable: the encoder learns the local shape in-

formation and combines information by max-pooling on a

nearest-neighbor graph, and the decoder learns a “force”

to fold a two-dimensional grid twice in order to warp the

grid into the shape of the point cloud, using the informa-

tion obtained by the encoder. Another closely related work

reconstructs a point set from a 2D image [17]. Although

the deconvolution network in [17] requires a 2D image as

side information, we find it useful as another implementa-

tion of our folding operation. We compare FoldingNet with

the deconvolution-based folding and show that FoldingNet

performs slightly better in reconstruction error with fewer

parameters (see Supplementary Section 9).

It is hard for purely point-based neural networks to ex-

tract local neighborhood structure around points, i.e., featu-

res of neighboring points instead of individual ones. Some

attempts for this are made in [1,42]. In this work, we exploit

local neighborhood features using a graph-based frame-

work. Deep learning on graph-structured data is not a new

idea. There are tremendous amount of works on applying

deep learning onto irregular data such as graphs and point

sets [2,5,6,12,14,15,23,24,28,32,35,38,39,43,47,52,59].

Although using graphs as a processing framework for deep

learning on point clouds is a natural idea, only several se-

minal works made attempts in this direction [5, 38, 47].

These works try to generalize the convolution operations

from 2D images to graphs. However, since it is hard to

define convolution operations on graphs, we use a simple

graph-based neural network layer that is different from pre-

vious works: we construct the K-nearest neighbor graph (K-

NNG) and repeatedly conduct the max-pooling operations

in each node’s neighborhood. It generalizes the global max-

pooling operation proposed in [41] in that the max-pooling

is only applied to each local neighborhood to generate local

data signatures. Compared to the above graph based convo-

lution networks, our design is simpler and computationally

efficient as in [41]. K-NNGs are also used in other applica-

tions of point clouds without the deep learning framework

such as surface detection, 3D object recognition, 3D object

segmentation and compression [20, 50, 51].

The folding operation that reconstructs a surface from a

2D grid essentially establishes a mapping from a 2D regu-

lar domain to a 3D point cloud. A natural question to ask

is whether we can parameterize 3D points with compatible

meshes that are not necessarily regular grids, such as cross-

parametrization [30]. From Table 2, it seems that Folding-

Net can learn to generate “cuts” on the 2D grid and generate

surfaces that are not even topologically equivalent to a 2D

grid, and hence make the 2D grid representation universal

to some extent. Nonetheless, the reconstructed points may

still have genus-wise distortions when the original surface

is too complex. For example, in Table 2, see the missing

winglets on the reconstructed plane and the missing holes

on the back of the reconstructed chair. To recover those fi-

ner details might require more input point samples and more

complex encoder/decoder networks. Another method to le-

arn the surface embedding is to learn a metric alignment

layer as in [16], which may require computationally inten-

sive internal optimization during training.

208

1.2. Preliminaries and Notation

We will often denote the point set by S. We use bold

lower-case letters to represent vectors, such as x, and use

bold upper-case letters to represent matrices, such as A.

The codeword is always represented by θ. We call a ma-

trix m-by-n or m× n if it has m rows and n columns.

2. FoldingNet Auto-encoder on Point Clouds

Now we propose the FoldingNet deep auto-encoder. The

structure of the auto-encoder is shown in Figure 1. The in-

put to the encoder is an n-by-3 matrix. Each row of the ma-

trix is composed of the 3D position (x, y, z). The output is

an m-by-3 matrix, representing the reconstructed point po-

sitions. The number of reconstructed points m is not neces-

sarily the same as n. Suppose the input contains the point

set S and the reconstructed point set is the set Ŝ. Then, the

reconstruction error for Ŝ is computed using a layer defined

as the (extended) Chamfer distance,

dCH(S, Ŝ) = max

{
1

|S|

∑

x∈S

min
x̂∈Ŝ

‖x− x̂‖2,

1

|Ŝ|

∑

x̂∈Ŝ

min
x∈S

‖x̂− x‖2



 .

(1)

The term min
x̂∈Ŝ

‖x − x̂‖2 enforces that any 3D point x

in the original point cloud has a matching 3D point x̂ in the

reconstructed point cloud, and the term minx∈S ‖x̂ − x‖2
enforces the matching vice versa. The max operation en-

forces that the distance from S to Ŝ and the distance vice

versa have to be small simultaneously. The encoder com-

putes a representation (codeword) of each input point cloud

and the decoder reconstructs the point cloud using this co-

deword. In our experiments, the codeword length is set as

512 in accordance with [1].

2.1. Graph­based Encoder Architecture

The graph-based encoder follows a similar design in [46]

which focuses on supervised learning using point cloud

neighborhood graphs. The encoder is a concatenation

of multi-layer perceptrons (MLP) and graph-based max-

pooling layers. The graph is the K-NNG constructed from

the 3D positions of the nodes in the input point set. In expe-

riments, we choose K = 16. First, for every single point v,

we compute its local covariance matrix of size 3-by-3 and

vectorize it to size 1-by-9. The local covariance of v is com-

puted using the 3D positions of the points that are one-hop

neighbors of v (including v) in the K-NNG. We concate-

nate the matrix of point positions with size n-by-3 and the

local covariances for all points of size n-by-9 into a ma-

trix of size n-by-12 and input them to a 3-layer perceptron.

The perceptron is applied in parallel to each row of the in-

put matrix of size n-by-12. It can be viewed as a per-point

function on each 3D point. The output of the perceptron is

fed to two consecutive graph layers, where each layer ap-

plies max-pooling to the neighborhood of each node. More

specifically, suppose the K-NN graph has adjacency matrix

A and the input matrix to the graph layer is X. Then, the

output matrix is
Y = Amax(X)K, (2)

where K is a feature mapping matrix, and the (i,j)-th entry

of the matrix Amax(X) is

(Amax(X))ij = ReLU(max
k∈N (i)

xkj). (3)

The local max-pooling operation maxk∈N (i) in (3) essen-

tially computes a local signature based on the graph struc-

ture. This signature can represent the (aggregated) topology

information of the local neighborhood. Through concatena-

tions of the graph-based max-pooling layers, the network

propagates the topology information into larger areas.

2.2. Folding­based Decoder Architecture

The proposed decoder uses two consecutive 3-layer per-

ceptrons to warp a fixed 2D grid into the shape of the in-

put point cloud. The input codeword is obtained from the

graph-based encoder. Before we feed the codeword into the

decoder, we replicate it m times and concatenate the m-by-

512 matrix with an m-by-2 matrix that contains the m grid

points on a square centered at the origin. The result of the

concatenation is a matrix of size m-by-514. The matrix is

processed row-wise by a 3-layer perceptron and the output

is a matrix of size m-by-3. After that, we again concatenate

the replicated codewords to the m-by-3 output and feed it

into a 3-layer perceptron. This output is the reconstructed

point cloud. The parameter n is set as per the input point

cloud size, e.g. n = 2048 in our experiments, which is the

same as [1].We choose m grid points in a square, so m is

chosen as 2025 which is the closest square number to 2048.

Definition 1. We call the concatenation of replicated code-

words to low-dimensional grid points, followed by a point-

wise MLP a folding operation.

The folding operation essentially forms a universal 2D-

to-3D mapping. To intuitively see why this folding ope-

ration is a universal 2D-to-3D mapping, denote the input

2D grid points by the matrix U. Each row of U is a two-

dimensional grid point. Denote the i-th row of U by ui and

the codeword output from the encoder by θ. Then, after

concatenation, the i-th row of the input matrix to the MLP

is [ui,θ]. Since the MLP is applied in parallel to each row

of the input matrix, the i-th row of the output matrix can

be written as f([ui,θ]), where f indicates the function con-

ducted by the MLP. This function can be viewed as a pa-

rameterized high-dimensional function with the codeword

209

θ being a parameter to guide the structure of the function

(the folding operation). Since MLPs are good at approxi-

mating non-linear functions, they can perform elaborate fol-

ding operations on the 2D grids. The high-dimensional co-

deword essentially stores the force that is needed to do the

folding, which makes the folding operation more diverse.

The proposed decoder has two successive folding ope-

rations. The first one folds the 2D grid to 3D space, and

the second one folds inside the 3D space. We show the

outputs after these two folding operations in Table 1. From

column C and column D in Table 1, we can see that each fol-

ding operation conducts a relatively simple operation, and

the composition of the two folding operations can produce

quite elaborate surface shapes. Although the first folding

seems simpler than the second one, together they lead to

substantial changes in the final output. More successive

folding operations can be applied if more elaborate surface

shapes are required. More variations of the decoder inclu-

ding changes of grid dimensions and the number of folding

operations can be found in Supplementary Section 8.

3. Theoretical Analysis

Theorem 3.1. The proposed encoder structure is permuta-

tion invariant, i.e., if the rows of the input point cloud matrix

are permuted, the codeword remains unchanged.

Proof. See Supplementary Section 6.

Then, we state a theorem about the universality of the

proposed folding-based decoder. It shows the existence of a

folding-based decoder such that by changing the codeword

θ, the output can be an arbitrary point cloud.

Theorem 3.2. There exists a 2-layer perceptron that can re-

construct arbitrary point clouds from a 2-dimensional grid

using the folding operation.

More specifically, suppose the input is a matrix U of size

m-by-2 such that each row of U is the 2D position of a

point on a 2-dimensional grid of size m. Then, there exists

an explicit construction of a 2-layer perceptron (with hand-

crafted coefficients) such that for any arbitrary 3D point

cloud matrix S of size m-by-3 (where each row of S is the

(x, y, z) position of a point in the point cloud), there ex-

ists a codeword vector θ such that if we concatenate θ to

each row of U and apply the 2-layer perceptron in parallel

to each row of the matrix after concatenation, we obtain the

point cloud matrix S from the output of the perceptron.

Proof in sketch. The full proof is in Supplementary Section

7. In the proof, we show the existence by explicitly con-

structing a 2-layer perceptron that satisfies the stated pro-

perties. The main idea is to show that in the worst case, the

points in the 2D grid functions as a selective logic gate to

map the 2D points in the 2D grid to the corresponding 3D

points in the point cloud.

Notice that the above proof is just an existence-based one

to show that our decoder structure is universal. It does not

indicate what happens in reality inside the FoldingNet auto-

encoder. The theoretically constructed decoder requires 3m
hidden units while in reality, the size of the decoder that we

use is much smaller. Moreover, the construction in Theo-

rem 3.2 leads to a lossless reconstruction of the point cloud,

while the FoldingNet auto-encoder only achieves lossy re-

construction. However, the above theorem can indeed gua-

rantee that the proposed decoding operation (i.e., concate-

nating the codewords to the 2-dimensional grid points and

processing each row using a perceptron) is legitimate be-

cause in the worst case there exists a folding-based neu-

ral network with hand-crafted edge weights that can recon-

struct arbitrary point clouds. In reality, a good parameteri-

zation of the proposed decoder with suitable training leads

to better performance.

4. Experimental Results

4.1. Visualization of the Training Process

It might not be straightforward to see how the decoder

folds the 2D grid into the surface of a 3D point cloud.

Therefore, we include an illustration of the training pro-

cess to show how a random 2D manifold obtained by the

initial random folding gradually turns into a meaningful

point cloud. The auto-encoder is a single FoldingNet trai-

ned using the ShapeNet part dataset [58] which contains 16

categories of the ShapeNet dataset. We trained the Folding-

Net using ADAM with an initial learning rate 0.0001, batch

size 1, momentum 0.9, momentum2 0.999, and weight de-

cay 1e−6, for 4 × 106 iterations (i.e., 330 epochs). The

reconstructed point clouds of several models after different

numbers of training iterations are reported in Table 2. From

the training process, we see that an initial random 2D mani-

fold can be warped/cut/squeezed/stretched/attached to form

the point cloud surface in various ways.

4.2. Point Cloud Interpolation

A common method to demonstrate that the codewords

have extracted the natural representations of the input is to

see if the auto-encoder enables meaningful novel interpola-

tions between two inputs in the dataset. In Table 3, we show

both inter-class and intra-class interpolations. Note that we

used a single AE for all shape categories for this task.

4.3. Illustration of Point Cloud Clustering

We also provide an illustration of clustering 3D point

clouds using the codewords obtained from FoldingNet. We

used the ShapeNet dataset to train the AE and obtain code-

words for the ModelNet10 dataset, which we will explain

in details in Section 4.4. Then, we used T-SNE [34] to

obtain an embedding of the high-dimensional codewords in

210

Input 5K iters 10K iters 20K iters 40K iters 100K iters 500K iters 4M iters

Table 2. Illustration of the training process. Random 2D manifolds gradually transform into the surfaces of point clouds.

Source Interpolations Target

Table 3. Illustration of point cloud interpolation. The first 3 rows: intra-class interpolations. The last 3 rows: inter-class interpolations.

R
2. The parameter “perplexity” in T-SNE was set as 50.

We show the embedding result in Figure 2. From the fi-

gure, we see that most classes are easily separable except

{dresser (violet) v.s. nightstand (pink)} and {desk (red) v.s.

table (yellow)}. We have visually checked these two pairs

of classes, and found that many pairs cannot be easily dis-

tinguished even by a human. In Table 4, we list the most

common mistakes made in classifying the ModelNet10 da-

taset.

4.4. Transfer Classification Accuracy

In this section, we show the efficiency of FoldingNet in

representation learning and feature extraction from 3D point

clouds. In particular, we follow the routine from [1, 56] to

train a linear SVM classifier on the ModelNet dataset [57]

using the codewords (latent representations) obtained from

the auto-encoder, while training the auto-encoder from the

ShapeNet dataset [7]. The train/test splits of the Model-

211

Figure 2. The T-SNE clustering visualization of the codewords

obtained from FoldingNet auto-encoder.

Item 1 Item 2 Number of mistakes

dresser night stand 19

table desk 15

bed bath tub 3

night stand table 3

Table 4. The first four types of mistakes made in the classification

of ModelNet10 dataset. Their images are shown in the Supple-

mentary Section 11.

Net dataset in our experiment is the same as in [41, 56].

The point-cloud-format of the ShapeNet dataset is obtai-

ned by sampling random points on the triangles from the

mesh models in the dataset. It contains 57447 models from

55 categories of man-made objects. The ModelNet datasets

are the same one used in [41], and the MN40/MN10 data-

sets respectively contain 9843/3991 models for training and

2468/909 models for testing. Each point cloud in the se-

lected datasets contains 2048 points with (x,y,z) positions

normalized into a unit sphere as in [41].

The codewords obtained from the FoldingNet auto-

encoder is of length 512, which is the same as in [1] and

smaller than 7168 in [57]. When training the auto-encoder,

we used ADAM with an initial learning rate of 0.0001 and

batch size of 1. We trained the auto-encoder for 1.6 × 107

iterations (i.e., 278 epochs) on the ShapeNet dataset. Si-

milar to [1, 41], when training the AE, we applied random

rotations to each point cloud. Unlike the random rotations

in [1, 41], we applied the rotation that is one of the 24 axis-

aligned rotations in the right-handed system. When training

the linear SVM from the codewords obtained by the AE,

we did not apply random rotations. We report our results in

Table 5. The results of [8, 19, 26, 45] are according to the

report in [1, 56]. Since the training of the AE and the trai-

ning of the SVM are based on different datasets, the expe-

riment shows the transfer robustness of the FoldingNet. We

also include a figure (see Figure 3) to show how the recon-

struction loss decreases and the linear SVM classification

0 50 100 150 200 250
Training epochs

0.75

0.8

0.85

0.9

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

R
e
c
o
n
s
tr

u
c
ti
o
n
 l
o
s
s
 (

c
h
a
m

fe
r

d
is

ta
n
c
e
)

Chamfer distance v.s. classification accuracy on ModelNet40

Figure 3. Linear SVM classification accuracy v.s. reconstruction

loss on ModelNet40 dataset. The auto-encoder is trained using

data from the ShapeNet dataset.

Method MN40 MN10

SPH [26] 68.2% 79.8%

LFD [8] 75.5% 79.9%

T-L Network [19] 74.4% -

VConv-DAE [45] 75.5% 80.5%

3D-GAN [56] 83.3% 91.0%

Latent-GAN [1] 85.7% 95.3%

FoldingNet (ours) 88.4% 94.4%

Table 5. The comparison on classification accuracy between Fol-

dingNet and other unsupervised methods. All the methods train

a linear SVM on the high-dimensional representations obtained

from unsupervised training.

accuracy increases during training. From Table 5, we can

see that FoldingNet outperforms all other methods on the

MN40 dataset. On the MN10 dataset, the auto-encoder pro-

posed in [1] performs slightly better. However, the point-

cloud format of the ModelNet10 dataset used in [1] is not

public, so the point-cloud sampling protocol of ours may be

different from the one in [1]. So it is inconclusive whet-

her [1] is better than ours on MN10 dataset.

4.5. Semi­supervised Learning: What Happens
when Labeled Data are Rare

One of the main motivations to study unsupervised clas-

sification problems is that the number of labeled data is

usually much smaller compared to the number of unlabe-

led data. In Section 4.4, the experiment is very close to this

setting: the number of data in the ShapeNet dataset is large,

which is more than 5.74 × 104, while the number of data

in the labeled ModelNet dataset is small, which is around

1.23 × 104. Since obtaining human-labeled data is usually

hard, we would like to test how the performance of Folding-

Net degrades when the number of labeled data is small. We

still used the ShapeNet dataset to train the FoldingNet auto-

encoder. Then, we trained the linear SVM using only a% of

the overall training data in the ModelNet dataset, where a

can be 1, 2, 5, 7.5, 10, 15, and 20. The test data for the linear

SVM are always all the data in the test data partition of the

212

10-2 10-1 100

Available Labeled Data/Overall Labeled Data

0.5

0.6

0.7

0.8

0.9

1

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Classification Accuracy v.s. Number of Labeled Data

5% 7.5%

15%
10%

2%

1%

20%

100%

Figure 4. Linear SVM classification accuracy v.s. percentage of

available labeled training data in ModelNet40 dataset.

0 100 200 300 400

Training epochs

0.75

0.8

0.85

0.9

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

0.03

0.035

0.04

0.045

0.05
R

e
c
o
n
s
tr

u
c
ti
o
n
 l
o
s
s
 (

c
h
a
m

fe
r

d
is

ta
n

c
e

)Comparing FC decoder with Folding decoder

Folding decoder

FC decoder

Figure 5. Comparison between the fully-connected (FC) decoder

in [1] and the folding decoder on ModelNet40.

ModelNet dataset. If the codewords obtained by the auto-

encoder are already linearly separable, the required number

of labeled data to train a linear SVM should be small. To

demonstrate this intuitive statement, we report the experi-

ment results in Figure 4. We can see that even if only 1% of

the labeled training data are available (98 labeled training

data, which is about 1∼3 labeled data per class), the test

accuracy is still more than 55%. When 20% of the training

data are available, the test classification accuracy is already

close to 85%, higher than most methods listed in Table 5.

4.6. Effectiveness of the Folding­Based Decoder

In this section, we show that the folding-based deco-

der performs better in extracting features than the fully-

connected decoder proposed in [1] in terms of classification

accuracy and reconstruction loss. We used the ModelNet40

dataset to train two deep auto-encoders. The first auto-

encoder uses the folding-based decoder that has the same

structure as in Section 2.2, and the second auto-encoder

uses a fully-connected three-layer perceptron as proposed

in [1]. For the fully-connected decoder, the number of in-

puts and number of outputs in the three layers are respecti-

vely {512,1024}, {1024,2048}, {2048,2048×3}, which are

the same as in [1]. The output is a 2048-by-3 matrix that

contains the three-dimensional points in the output point

cloud. The encoders of the two auto-encoders are both the

graph-based encoder mentioned in Section 2.1. When trai-

ning the AE, we used ADAM with an initial learning rate

0.0001, a batch size 1, for 4× 106 iterations (i.e., 406 epo-

chs) on the ModelNet40 training dataset.

After training, we used the encoder to process all data

in the ModelNet40 dataset to obtain a codeword for each

point cloud. Then, similar to Section 4.4, we trained a li-

near SVM using these codewords and report the classifica-

tion accuracy to see if the codewords are already linearly

separable after encoding. The results are shown in Figure 5.

During the training process, the reconstruction loss (mea-

sured in Chamfer distance) keeps decreasing, which means

the reconstructed point cloud is more and more similar to

the input point cloud. At the same time, the classification

accuracy of the linear SVM trained on the codewords is in-

creasing, which means the codeword representation beco-

mes more linearly separable.

From the figure, we can see that the folding decoder al-

most always has a higher accuracy and lower reconstruction

loss. Compared to the fully-connected decoder that relies

on the unnatural “1D order” of the reconstructed 3D points

in 3D space, the proposed decoder relies on the folding of

an inherently 2D manifold corresponding to the point cloud

inside the 3D space. As we mentioned earlier, this folding

operation is more natural than the fully-connected decoder.

Moreover, the number of parameters in the fully-connected

decoder is 1.52 × 107, while the number of parameters in

our folding decoder is 1.05× 106, which is about 7% of the

fully-connected decoder.

One may wonder if uniformly random sampled 2D

points on a plane can perform better than the 2D grid points

in reconstructing point clouds. From our experiments, 2D

grid points indeed provide reduced reconstruction loss than

random points (Table 6 in Supplementary Section 8). No-

tice that our graph-based max-pooling encoder can be vie-

wed as a generalized version of the max-pooling neural net-

work PointNet [41]. The main difference is that the pool-

ing operation in our encoder is done in a local neighbor-

hood instead of globally (see Section 2.1). In Supplemen-

tary Section 10, we show that the graph-based encoder ar-

chitecture is better than an encoder architecture without the

graph-pooling layers mentioned in Section 2.1 in terms of

robustness towards random disturbance in point positions.

5. Acknowledgment

This work is supported by MERL. The authors would

like to thank the helpful comments and suggestions from

the anonymous reviewers, Teng-Yok Lee, Ziming Zhang,

Zhiding Yu, Siheng Chen, Yuichi Taguchi, Mike Jones and

Alan Sullivan.

213

References

[1] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas. Re-

presentation learning and adversarial generation of 3d point

clouds. arXiv preprint arXiv:1707.02392, 2017. 2, 3, 4, 6, 7,

8

[2] J. Atwood and D. Towsley. Diffusion-convolutional neural

networks. In Advances in Neural Information Processing

Systems, pages 1993–2001, 2016. 3

[3] A. Boulch, B. L. Saux, and N. Audebert. Unstructured

point cloud semantic labeling using deep segmentation net-

works. In Eurographics Workshop on 3D Object Retrieval,

volume 2, 2017. 3

[4] A. Brock, T. Lim, J. M. Ritchie, and N. Weston. Generative

and discriminative voxel modeling with convolutional neu-

ral networks. Advances in Neural Information Processing

Systems, Workshop on 3D learning, 2017. 3

[5] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-

dergheynst. Geometric deep learning: going beyond eucli-

dean data. IEEE Signal Processing Magazine, 34(4):18–42,

2017. 3

[6] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral net-

works and locally connected networks on graphs. Internati-

onal Conference on Learning Representations (ICLR), 2014.

3

[7] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Hu-

ang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su, et al.

Shapenet: An information-rich 3d model repository. CoRR,

2015. 2, 6

[8] D.-Y. Chen, X.-P. Tian, Y.-T. Shen, and M. Ouhyoung.

On visual similarity based 3D model retrieval. Computer

Graphics Forum, 22(3):223–232, 2003. 7

[9] X. Chen, K. Kundu, Y. Zhu, A. G. Berneshawi, H. Ma, S. Fi-

dler, and R. Urtasun. 3D object proposals for accurate object

class detection. In Advances in Neural Information Proces-

sing Systems, pages 424–432, 2015. 3

[10] S. Christoph Stein, M. Schoeler, J. Papon, and F. Worgotter.

Object partitioning using local convexity. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Re-

cognition, pages 304–311, 2014. 3

[11] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser,

and M. Nießner. Scannet: Richly-annotated 3D reconstructi-

ons of indoor scenes. Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2017. 3

[12] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolu-

tional neural networks on graphs with fast localized spectral

filtering. In Advances in Neural Information Processing Sy-

stems, pages 3844–3852, 2016. 3

[13] D. Dohan, B. Matejek, and T. Funkhouser. Learning hierar-

chical semantic segmentations of LIDAR data. In Internati-

onal Conference on 3D Vision (3DV), pages 273–281. IEEE,

2015. 3

[14] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bomba-

rell, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams. Convo-

lutional networks on graphs for learning molecular finger-

prints. In Advances in neural information processing sys-

tems, pages 2224–2232, 2015. 3

[15] M. Edwards and X. Xie. Graph based convolutional neural

network. CoRR, 2016. 3

[16] D. Ezuz, J. Solomon, V. G. Kim, and M. Ben-Chen. Gwcnn:

A metric alignment layer for deep shape analysis. Computer

Graphics Forum, 36(5):49–57, 2017. 3

[17] H. Fan, H. Su, and L. Guibas. A point set generation network

for 3D object reconstruction from a single image. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2017. 3, 13

[18] A. Geiger and C. Wang. Joint 3D object and layout infe-

rence from a single RGB-D image. In German Conference

on Pattern Recognition, pages 183–195. Springer, 2015. 3

[19] R. Girdhar, D. F. Fouhey, M. Rodriguez, and A. Gupta. Le-

arning a predictable and generative vector representation for

objects. In European Conference on Computer Vision, pages

484–499. Springer, 2016. 7

[20] A. Golovinskiy, V. G. Kim, and T. Funkhouser. Shape-based

recognition of 3d point clouds in urban environments. In 12th

International Conference on Computer Vision, pages 2154–

2161. IEEE, 2009. 3

[21] T. Hackel, J. D. Wegner, and K. Schindler. Contour de-

tection in unstructured 3d point clouds. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Re-

cognition, pages 1610–1618, 2016. 3

[22] T. Hackel, J. D. Wegner, and K. Schindler. Fast semantic

segmentation of 3D point clouds with strongly varying den-

sity. ISPRS Annals of Photogrammetry, Remote Sensing &

Spatial Information Sciences, 3(3), 2016. 3

[23] Y. Hechtlinger, P. Chakravarti, and J. Qin. A generalization

of convolutional neural networks to graph-structured data.

arXiv preprint arXiv:1704.08165, 2017. 3

[24] M. Henaff, J. Bruna, and Y. LeCun. Deep convolutional net-

works on graph-structured data. arXiv:1506.05163, 2015. 3

[25] J. Huang and S. You. Point cloud labeling using 3D convolu-

tional neural network. In 23rd International Conference on

Pattern Recognition (ICPR), pages 2670–2675. IEEE, 2016.

3

[26] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation

invariant spherical harmonic representation of 3d shape des-

criptors. In Symposium on geometry processing, volume 6,

pages 156–164, 2003. 7

[27] B.-S. Kim, P. Kohli, and S. Savarese. 3D scene understan-

ding by voxel-CRF. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision, pages 1425–1432,

2013. 3

[28] T. N. Kipf and M. Welling. Semi-supervised classification

with graph convolutional networks. International Confe-

rence on Learning Representations (ICLR), 2017. 3

[29] R. Klokov and V. Lempitsky. Escape from cells: Deep Kd-

networks for the recognition of 3D point cloud models. In-

ternational Conference on Computer Vision (ICCV), 2017.

3

[30] V. Kraevoy and A. Sheffer. Cross-parameterization and com-

patible remeshing of 3D models. ACM Transactions on

Graphics (TOG), 23(3):861–869, 2004. 3

[31] K. Lai, L. Bo, and D. Fox. Unsupervised feature learning

for 3D scene labeling. In IEEE International Conference on

214

Robotics and Automation (ICRA), pages 3050–3057. IEEE,

2014. 3

[32] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein. Cay-

leynets: Graph convolutional neural networks with complex

rational spectral filters. arXiv:1705.07664, 2017. 3

[33] Y. Li, S. Pirk, H. Su, C. R. Qi, and L. J. Guibas. Fpnn: Field

probing neural networks for 3D data. In Advances in Neural

Information Processing Systems, pages 307–315, 2016. 3

[34] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne.

Journal of Machine Learning Research, 9(Nov):2579–2605,

2008. 5

[35] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst.

Geodesic convolutional neural networks on riemannian ma-

nifolds. In Proceedings of the IEEE International conference

on computer vision workshops, pages 37–45, 2015. 3

[36] D. Maturana and S. Scherer. 3D convolutional neural net-

works for landing zone detection from LIDAR. In IEEE In-

ternational Conference on Robotics and Automation (ICRA),

pages 3471–3478. IEEE, 2015. 3

[37] D. Maturana and S. Scherer. Voxnet: A 3D convolutional

neural network for real-time object recognition. In IEEE/RSJ

International Conference on Intelligent Robots and Systems

(IROS), pages 922–928. IEEE, 2015. 3

[38] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and

M. M. Bronstein. Geometric deep learning on graphs and

manifolds using mixture model CNNs. Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2017. 3

[39] M. Niepert, M. Ahmed, and K. Kutzkov. Learning convoluti-

onal neural networks for graphs. In International Conference

on Machine Learning, pages 2014–2023, 2016. 3

[40] G. Pang and U. Neumann. Fast and robust multi-view 3D ob-

ject recognition in point clouds. In International Conference

on 3D Vision (3DV), pages 171–179. IEEE, 2015. 3

[41] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep

learning on point sets for 3D classification and segmenta-

tion. Proceedings of the IEEE Conference on Computer Vi-

sion and Pattern Recognition, 2017. 2, 3, 7, 8, 13

[42] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep

hierarchical feature learning on point sets in a metric space.

Advances in Neural Information Processing Systems, 2017.

3

[43] S. Ravanbakhsh, J. Schneider, and B. Poczos. Deep learning

with sets and point clouds. International Conference on Le-

arning Representations (ICLR), workshop track, 2017. 3

[44] G. Riegler, A. O. Ulusoys, and A. Geiger. Octnet: Learning

deep 3D representations at high resolutions. Proceedings of

the IEEE Conference on Computer Vision and Pattern Re-

cognition, 2017. 3

[45] A. Sharma, O. Grau, and M. Fritz. Vconv-DAE: Deep vo-

lumetric shape learning without object labels. In Compu-

ter Vision-ECCV 2016 Workshops, pages 236–250. Springer,

2016. 7

[46] Y. Shen, C. Feng, Y. Yang, and D. Tian. Mining point cloud

local structures by kernel correlation and graph pooling. Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2018. 4

[47] M. Simonovsky and N. Komodakis. Dynamic edge-

conditioned filters in convolutional neural networks on

graphs. Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2017. 3

[48] R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng.

Convolutional-recursive deep learning for 3D object classifi-

cation. In Advances in Neural Information Processing Sys-

tems, pages 656–664, 2012. 3

[49] S. Song and J. Xiao. Deep sliding shapes for amodal 3D

object detection in RGB-D images. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 808–816, 2016. 3

[50] J. Strom, A. Richardson, and E. Olson. Graph-based seg-

mentation for colored 3d laser point clouds. In IEEE/RSJ

International Conference on Intelligent Robots and Systems

(IROS), pages 2131–2136. IEEE, 2010. 3

[51] D. Thanou, P. A. Chou, and P. Frossard. Graph-based com-

pression of dynamic 3d point cloud sequences. IEEE Tran-

sactions on Image Processing, 25(4):1765–1778, 2016. 3

[52] J.-C. Vialatte, V. Gripon, and G. Mercier. Generalizing the

convolution operator to extend cnns to irregular domains.

arXiv preprint arXiv:1606.01166, 2016. 3

[53] E. Wahl, U. Hillenbrand, and G. Hirzinger. Surflet-pair-

relation histograms: a statistical 3D-shape representation for

rapid classification. In Fourth International Conference on

3-D Digital Imaging and Modeling, pages 474–481. IEEE,

2003. 3

[54] P. Wang, Y. Gan, P. Shui, F. Yu, Y. Zhang, S. Chen, and

Z. Sun. 3d shape segmentation via shape fully convolutional

networks. Computers & Graphics, 2017. 3

[55] Y. Wang, R. Ji, and S.-F. Chang. Label propagation from

ImageNet to 3D point clouds. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 3135–3142, 2013. 3

[56] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum.

Learning a probabilistic latent space of object shapes via 3D

generative-adversarial modeling. In Advances in Neural In-

formation Processing Systems, pages 82–90, 2016. 2, 3, 6,

7

[57] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and

J. Xiao. 3D Shapenets: A deep representation for volumetric

shapes. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1912–1920, 2015. 1,

2, 3, 6, 7

[58] L. Yi, V. G. Kim, D. Ceylan, I. Shen, M. Yan, H. Su, A. Lu,

Q. Huang, A. Sheffer, L. Guibas, et al. A scalable active fra-

mework for region annotation in 3d shape collections. ACM

Transactions on Graphics (TOG), 35(6):210, 2016. 3, 5

[59] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salak-

hutdinov, and A. Smola. Deep sets. Advances in Neural

Information Processing Systems, 2017. 3

[60] Q. Zhang, X. Song, X. Shao, H. Zhao, and R. Shibasaki.

Unsupervised 3D category discovery and point labeling from

a large urban environment. In IEEE International Con-

ference on Robotics and Automation (ICRA), pages 2685–

2692. IEEE, 2013. 3

215

