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Figure 1: Image correction results on an underexposed input. Existing LDR methods have the limitation in recovering the

missing details, as shown in (b)-(f). In comparison, we recover the missing LDR details in the HDR domain and preserve

them through tone mapping, producing a more favorable result as shown in (g).

Abstract

Image correction aims to adjust an input image into a

visually pleasing one. Existing approaches are proposed

mainly from the perspective of image pixel manipulation.

They are not effective to recover the details in the un-

der/over exposed regions. In this paper, we revisit the image

formation procedure and notice that the missing details in

these regions exist in the corresponding high dynamic range

(HDR) data. These details are well perceived by the hu-

man eyes but diminished in the low dynamic range (LDR)

domain because of the tone mapping process. Therefore,

we formulate the image correction task as an HDR trans-

formation process and propose a novel approach called

Deep Reciprocating HDR Transformation (DRHT). Given

an input LDR image, we first reconstruct the missing de-

tails in the HDR domain. We then perform tone mapping

on the predicted HDR data to generate the output LDR im-

age with the recovered details. To this end, we propose a

united framework consisting of two CNNs for HDR recon-

struction and tone mapping. They are integrated end-to-end

for joint training and prediction. Experiments on the stan-

dard benchmarks demonstrate that the proposed method

performs favorably against state-of-the-art image correc-

tion methods.

1. Introduction

The image correction problem has been studied for

decades. It dates back to the production of Charge-Coupled

Devices (CCDs), which convert optical perception to digi-

tal signals. Due to the semiconductors used in the CCDs,

there is an unknown nonlinearity existed between the scene

radiance and the pixel values in the image. This nonlin-

earity is usually modeled by gamma correction, which has

resulted in a series of image correction methods. These

methods tend to focus on image pixel balance via dif-

ferent approaches including histogram equalization [28],

edge preserving filtering [11, 1], and CNN encoder-decoder

[41]. Typically, they function as a preprocessing step for

many machine vision tasks, such as optical flow estima-

tion [3, 15], image decolorization [37, 36], image deblur-

ring [30, 29], face stylization [39, 35] and tracking [38].

Despite the demonstrated success, existing methods have

the limitation in correcting images with under/over expo-

sure. An example is shown in Figure 1, where the state-of-

the-art image correction methods fail to recover the missing

details in the underexposed regions. This is because the

pixel values around these regions are close to 0, and the de-

tails are diminished within them. Although different image

pixel operators have been proposed for image correction,
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the results are still unsatisfactory, due to the ill-posed nature

of the problem. Thus, a question is raised if it is possible to

effectively recover the missing details during the image cor-

rection process.

To answer the aforementioned question, we trace back

to the image formation procedure. Today’s cameras still

require the photographer to carefully choose the exposure

duration (∆t) and rely on the camera response functions

(CRFs) to convert a natural scene (S) into an LDR image

(I), which can be written as [5]:

I = fCRF (S ×∆t), (1)

However, when an inappropriate exposure duration is cho-

sen, the existing CRFs can neither correct the raw data in

the CCDs nor the output LDR images. This causes the

under/over exposure in the LDR images. Based on this

observation, we propose an end-to-end framework, called

Deep Reciprocating HDR Transformation (DRHT), for im-

age correction. It contains two CNN networks. The first

CNN network reconstructs the missing details in the HDR

domain and the second CNN network transfers the details

back to the LDR domain. Through the reciprocating HDR

transformation process, LDR images are corrected in the in-

termediate HDR domain.

Overall, the contribution in this work can be summarized

as follows. We interpret image correction as the Deep Re-

ciprocating HDR Transformation (DRHT) process. An end-

to-end DRHT model is therefore proposed to address the

image correction problem. To demonstrate the effective-

ness of the proposed network, we have conducted extensive

evaluations on the proposed network with the state-of-the-

art methods, using the standard benchmarks.

2. Related Work

In this section, we discuss relevant works to our problem,

including image restoration and filtering, image manipula-

tion, and image enhancement techniques.

Image Restoration and Filtering. A variety of state-of-

the-art image correction methods have been proposed. Im-

age restoration methods improve the image quality mainly

by reducing the noise via different deep network de-

signs [19, 40, 52], low-rank sparse representation learn-

ing [21] or soft-rounding regularization [26]. Noise reduc-

tion can help improve the image quality, but cannot recover

the missing details. Edge-aware image filtering techniques

are also broadly studied for smoothing the images while

maintaining high contrasted structures [2, 22, 33], smooth-

ing repeated textures [23, 47, 50] or removing high contrast

details [24, 54, 55]. Further operations can be done to en-

hance the images by strengthening the details filtered out by

these methods and then adding them back. Although these

filtering methods are sensitive to the local structures, over-

exposed regions are usually smoothed in the output images

and therefore details can hardly be recovered.

Image Manipulation. Image correction has also been

done via pixel manipulation for different purposes, such

as color enhancement [48] and mimicking different

themes/styles [42, 43]. Son et al. [34] propose a tone trans-

fer model to perform region-dependent tone shifting and

scaling for artistic style enhancement. Yan et al. [49] ex-

ploit the image contents and semantics to learn tone adjust-

ments made by photographers via their proposed deep net-

work. However, these works mainly focus on manipulating

the LDR images to adapt to various user preferences.

Image Enhancement. Histogram equalization is the most

widely used method for image enhancement by balancing

the histogram of the image. Global and local contrast ad-

justments are also studied in [14, 31] for enhancing the con-

trast and brightness. Kaufman et al. [17] propose a frame-

work to apply carefully designed operators to strengthen the

detected regions (e.g., faces and skies), in addition to the

global contrast and saturation manipulation. Fu et al. [8]

propose a weighted variational method to jointly estimate

the reflectance and illumination for color correction. Guo et

al. [10] propose to first reconstruct and refine the illumina-

tion map from the maximum values in the RGB channels

and then enhance the illumination map. Recently, Shen et

al. [32] propose a deep network to directly learn the map-

ping relations of low-light and ground truth images. This

method can successfully recover rich details buried in low

light conditions, but it tends to increase the global illumina-

tion and generate surrealistic images.

All these methods, however, cannot completely recover

the missing details in the bright and dark regions. This is

mainly because both their inputs and their enhancing op-

erations are restricted to work in the LDR domain, which

does not offer sufficient information to recover all the de-

tails while maintaining the global illumination.

3. Deep Reciprocating HDR Transformation

An overview of the proposed method is shown in Fig-

ure 2(b). We first illustrate our reformulation of image cor-

rection. We then show our HDR estimation network to pre-

dict HDR data given LDR input. Finally, we show that the

HDR data is tone mapped into the output LDR using a LDR

correction network. The details are presented as follows:

3.1. Image Correction Reformulation

Although human can well perceive the HDR data, it re-

quires empirically configuring the camera during the imag-

ing process. An overview of scene capturing and produc-

ing LDR is shown in Figure 2(a). However, when under
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(a) Image formulation process

(b) Deep Reciprocating HDR Transformation (DRHT) pipeline

Figure 2: An overview of image formulation process and the proposed DRHT pipeline. Given an input under/over exposed

LDR image, we first reconstruct the missing details in the HDR domain and map them back to the output LDR domain.

extreme lighting conditions (e.g., the camera is facing the

sun), details in the natural scenes are lost during the tone

mapping process. They cannot be recovered by existing im-

age correction methods in the LDR domain.

In order to recover the degraded regions caused by un-

der/over exposures, we trace back to the image formation

procedure and formulate the correction as the Deep Recip-

rocating HDR Transformation process: Ŝ = f1(I; θ1) and

Î ldr = f2(Ŝ; θ2), where Ŝ and Î ldr represent the recon-

structed HDR data and the corrected LDR image, respec-

tively. θ1 and θ2 are the CNN parameters. Specifically, we

propose the HDR estimation network (f1) to first recover

the details in the HDR domain and then the LDR correction

network (f2) to transfer the recovered HDR details back to

the LDR domain. Images are corrected via this end-to-end

DRHT process.

3.2. HDR Estimation Network

We propose a HDR estimation network to recover the

missing details in the HDR domain, as explained below:

Network Architecture. Our network is based on a fully

convolutional encoder-decoder network. Given an input

LDR image, we encode it into a low dimensional latent rep-

resentation, which is then decoded to reconstruct the HDR

data. Meanwhile, we add skip connections from each en-

coder layer to its corresponding decoder layer. They enrich

the local details during decoding in a coarse-to-fine man-

ner. To facilitate the training process, we also add a skip

connection directly from the input LDR to the output HDR.

Instead of learning to predict the whole HDR data, the HDR

estimation network only needs to predict the difference be-

tween the input and output, which shares some similarity to

residual learning [12]. We train this network from scratch

and use batch normalization [16] and ELU [4] activation for

all the convolutional layers.

Loss Function. Given an input image I , the output of this

network Ŝ = f1(I; θ1), and the ground truth HDR image

Y , we use the Mean Square Error (MSE) as the objective

function:

Losshdr =
1

2N

N
∑

i=1

∥

∥

∥
Ŝi − α(Yi)

γ
∥

∥

∥

2

2

, (2)

where i is the pixel index and N refers to the total number of

pixels. α and γ are two constants in the nonlinear function

to convert the ground truth HDR data into LDR, which is

empirically found to facilitate the network convergence. We

pretrain this network in advance before integrating it with

the remaining modules.

3.3. LDR Correction Network

We propose a LDR correction network, which shares the

same architecture as that of the HDR estimation network. It

1800



aims to preserve the recovered details in the LDR domain,

as explained below:

Loss Function. The output of the HDR estimation network

Ŝ is in LDR as shown in Eq. 2. We first map it to the HDR

domain via inverse gamma correction. The mapped result

is denoted as Ŝfull. We then apply a logarithmic operation

to preserve the majority of the details and feed the output

to the LDR correction network. Hence, the recovered LDR

image Î ldr through our network becomes:

Î ldr = f2(log(Ŝfull + δ); θ2), (3)

where log() is used to compress the full HDR domain for

convergence while maintaining a relatively large range of

intensity, and δ is a small constant to remove zero values.

With the ground truth LDR image Igt, the loss function is:

Lossldr =
1

2N

N
∑

i=1

(
∥

∥

∥
Îi

ldr
− Igti

∥

∥

∥

2

2

+ ǫ
∥

∥

∥
Ŝi − α(Yi)

γ
∥

∥

∥

2

2

),

(4)

where ǫ is a balancing parameter to control the influence of

the HDR reconstruction accuracy.

Hierarchical Supervision. We train this LDR correction

network together with the aforementioned HDR estimation

network. We adopt this end-to-end training strategy in or-

der to adapt our whole model to the domain reciprocat-

ing transformation. To facilitate the training process, we

adopt the hierarchical supervision training strategies simi-

lar to [13]. Specifically, we start to train the encoder part

and the shallowest deconv layer of the LDR correction net-

work by freezing the learning rates of all other higher de-

conv layers. During training, higher deconv layers are grad-

ually added for fine tuning while the learning rates of the

encoder and shallower deconv layers will be decreased. In

this way, this network can learn to transfer the HDR details

to LDR domain in a coarse-to-fine manner.

3.4. Implementation Details

The proposed DRHT model is implemented under the

Tensorflow framework [9] on a PC with an i7 4GHz CPU

and an NVIDIA GTX 1080 GPU. The network parameters

are initialized using the truncated normal initializer. We use

9×9 and 5×5 kernel sizes to generate 64-dimensional fea-

ture maps for the first two conv layers and their counterpart

deconv layers for both networks, and the remaining kernel

size is set to 3 × 3. For loss minimization, we adopt the

ADAM optimizer [20] with an initial learning rate of 1e-

2 for 300 epochs, and then use learning rate of 5e-5 with

momentum β1 = 0.9 and β2 = 0.998 for another 100

epochs. α and γ in Eq. 2, and δ in Eq. 3 are set to 0.03,

0.45 and 1/255, respectively. We also clip the gradients to

avoid the gradient explosion problem. The general training

takes about ten days and the test time is about 0.05s for a

256×512 image.

(a) Input DRHT (64.75) (b) Input DRHT (65.61)

(c) Input DRHT (61.80) (d) Input DRHT (69.28)

(e) Input DRHT (62.69) (f) Input DRHT (69.04)

(g) Input DRHT (69.57) (h) Input DRHT (62.17)

(i) Input DRHT (61.80) (j) Input DRHT (65.18)

low difference high difference

Figure 3: Internal Analysis. We compare the reconstructed

HDR images with the ground truth HDR images using the

HDR-VDP-2 metric. The average Q score and SSIM index

on this test set are 61.51 and 0.9324, respectively.

4. Experiments

In this section, we first present the experiment setups and

internal analysis on the effectiveness of the HDR estimation

network. We then compare our DRHT model with the state-

of-the-art image correction methods on two datasets.

4.1. Experiments Setups

Datasets. We conduct experiments on the city scene

panorama dataset [51] and the Sun360 outdoor panorama

dataset [45]. Specifically, since the low-resolution (64×128

pixels) city scene panorama dataset [51] contains LDR and

ground truth HDR image pairs, we use the black-box Adobe

Photoshop software to empirically generate ground truth

LDR images with human supervision. Therefore, we use

39, 198 image pairs (i.e., the input LDR and the ground

truth HDR) to train the first network and use 39, 198 triplets

(i.e., the input LDR, the ground truth HDR and the ground

truth LDR) to train the whole network. We use 1, 672 im-

ages from their testing set for evaluation. To adapt our

models to the real images with high resolution, we use the

Physically Based Rendering Technology (PBRT) [27] to

generate 119 ground truth HDR scenes as well as the in-

put and ground truth LDR images, which are then divided

into 42, 198 patches for training. We also use 6, 400 images

from the Sun360 outdoor panorama dataset [45] for end-to-

end finetuning (i.e., ǫ in Eq. 4 is fixed as 0), as they do not
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(a) Input (b) CAPE [17] (c) DJF [22] (d) L0S [46]

(e) WVM [8] (f) SMF [50] (g) DRHT (h) Ground Truth

(i) Input (j) CAPE [17] (k) DJF [22] (l) L0S [46]

(m) WVM [8] (n) SMF [50] (o) DRHT (p) Ground Truth

(q) Input (r) CAPE [17] (s) DJF [22] (t) L0S [46]

(u) WVM [8] (v) SMF [50] (w) DRHT (x) Ground Truth

Figure 4: Visual comparison on overexposed images in the bright scenes. The proposed DRHT method can effectively

recover the missing details buried in the overexposed regions compared with state-of-the-art approaches

have ground truth HDR images, and use 1, 200 images for

evaluation. The input images are corrupted from the orig-

inals by adjusting the exposure (selected from the interval

[-6, 3], in order not to learn the mapping between one spe-

cific exposure degree and the ground truth) and contrasts to

over/under expose the visible details. We resize the images

to 256×512 pixels in this dataset.

Evaluation Methods. We compare the proposed

method to 5 state-of-the-art image correction methods

Cape [17],WVM [8], SMF [50], L0S [46] and DJF [22]

on the dataset. Among them, Cape [17] enhances the im-

ages via a comprehensive pipeline including global con-

trast/saturation correction, sky/face enhancement, shadow-

saliency and texture enhancement. WVM [8] first decom-

poses the input image into reflectance and illumination

maps, and corrects the input by enhancing the illumina-

tion map. Since the enhancement operations are mostly

conducted on the detail layer extracted by existing filtering

methods, we further compare our results to state-of-the-art

image filtering methods. Meanwhile, we compare the pro-

posed method to two deep learning based image correction

methods: Hdrcnn [6] and DrTMO [7].

Evaluation Metrics. We evaluate the performance using

different metrics. When internal analyzing the HDR estima-

tion network, we use the widely adopted HDR-VDP-2 [25]

metric it reflects human perception on different images.

When comparing with existing methods, we use three com-

monly adopted image quality metrics: PSNR, SSIM [44]

and FSIM [53]. In addition, we provide the Q scores from

the HDR-VDP-2 [25] metric to evaluate the image quality.
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(a) Input (b) CAPE [17] (c) DJF [22] (d) L0S [46]

(e) WVM [8] (f) SMF [50] (g) DRHT (h) Ground Truth

(i) Input (j) CAPE [17] (k) DJF [22] (l) L0S [46]

(m) WVM [8] (n) SMF [50] (o) DRHT (p) Ground Truth

(q) Input (r) CAPE [17] (s) DJF [22] (t) L0S [46]

(u) WVM [8] (v) SMF [50] (w) DRHT (x) Ground Truth

Figure 5: Visual comparison on under/over exposed images in the dark scenes. The proposed DRHT method can effectively

recover the missing details in the under/over exposed regions while maintaining the global illumination.

4.2. Internal Analysis

As the proposed DRHT method first recovers the details

via the HDR estimation network, we demonstrate its effec-

tiveness in reconstructing the details in the HDR domain.

We evaluate on the city scene dataset using the HDR-VDP-

2 metric [25]. It generates the probability map and the Q

score for each test image. The probability map indicates the

difference between two images to be noticed by an observer

on average. Meanwhile, the Q score predicts the quality

degradation through a Mean-Opinion-score metric.

We provide some examples in Figure 3 which are from

the city scene test dataset. We overlay the predicted visual

difference on the generated result. The difference intensity

is shown via a color bar where the low intensity is marked

as blue while the high intensity is marked as red. It shows

that the proposed HDR estimation network can effectively

recover the missing details on the majority of the input im-

age. However, the limitation appears on the region where

the part of sun is occluded by the building, as shown in (j).

It brings high difference because the illumination contrast

is high around the boundary between sun and the building.

This difference is difficult to preserve in the HDR domain.

The average Q score and SSIM index on this test set are

61.51 and 0.9324, respectively. They indicate that the syn-

thesized HDR data through our HDR estimation network is

close to the ground truth HDR data.

4.3. Comparison with State-of-the-arts

We compare the proposed DRHT method with state-of-

the-art image correction methods on the standard bench-
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Methods
City Scene dataset Sun360 Outdoor dataset

PSNR SSIM FSIM Q score PSNR SSIM FSIM Q score

CAPE [17] 18.99 0.7435 0.8856 59.44 17.13 0.7853 0.8781 54.87

WVM [8] 17.70 0.8016 0.8695 53.17 11.25 0.5733 0.6072 41.12

L0S [46] 19.03 0.6644 0.7328 84.33 15.72 0.7311 0.7751 51.73

SMF [50] 18.61 0.7724 0.9035 81.07 14.85 0.6776 0.7622 50.77

DJF [22] 17.54 0.7395 0.9512 84.74 14.49 0.6736 0.7360 50.03

DRHT 28.18 0.9242 0.9622 97.87 22.60 0.7629 0.8691 56.17

Table 1: Quantitative evaluation on the standard datasets. The proposed DRHT method is compared with existing image

correction methods based on several metrics including PSNR, SSIM, FSIM and Q score. It shows that the proposed DRHT

method performs favorably against existing image correction methods.

Methods
City Scene dataset Sun360 Outdoor dataset

PSNR SSIM FSIM Q score PSNR SSIM FSIM Q score

Hdrcnn [6] 11.99 0.2249 0.5687 39.64 11.09 0.6007 0.8637 56.31

DrTMo [7] - - - - 14.64 0.6822 0.8101 52.39

DRHT 28.18 0.9242 0.9622 97.87 22.60 0.7629 0.8691 56.17

Table 2: Quantitative evaluation between the proposed DRHT method and two HDR prediction methods. The results of

DrTMo on the City Scene Dataset are not available as it requires high resolution inputs. The evaluation indicates the proposed

DRHT method is effective to generate HDR data compared with existing HDR prediction methods.

marks. The visual evaluation is shown in Figure 4 where

the input images are captured in over exposure. The image

filtering based methods are effective to preserve local edges.

However, they cannot recover the details in the overexposed

regions, as shown in (c), (d) and (f). It is because these

methods tend to smooth the flat region while preserving the

color contrast around the edge region. They fail to recover

the details, which reside in the overexposed regions where

the pixel values approach 255. Meanwhile, the image cor-

rection methods based on global contrast and saturation ma-

nipulation are not effective as shown in (r). They share the

similar limitations as image filtering based methods as the

pixel-level operation fails to handle overexposed images.

The results of WVM [8] tend to be brighter as shown in

(e), (m) and (u) as they over enhance the illumination layer

decomposed from the input image. Compared with existing

methods, the proposed DRHT method can successfully re-

cover the missing details buried in the over exposed regions

while maintaining the realistic global illumination.

Figure 5 shows some under/over exposed examples in

the low-light scenes. It shows that the image filtering based

methods can only strengthen existing details. CAPE [17]

performs well in the low-light regions as shown in (b) but

it simply adjusts the brightness and thus fails to correct all

missing details. Figure 5(i) shows that WVM [8] performs

poorly in the scenes with dark skies, as it fails to decom-

pose the dark sky into reflectance and the illumination lay-

ers. Meanwhile, the missing details in the under/over ex-

posed regions can be reconstructed via the proposed DRHT

method as shown in (h) and (p). Global illumination is also

maintained through residual learning.

We note that the proposed DRHT method tends to

slightly increase the intensity in the dark regions. There

are two reasons for this. First, DRHT is trained on the city

scene dataset [51], where the sun is always located near

the center of the images. Hence, when the input image

has some bright spots near to the center, the night sky will

tend to appear brighter as shown in Figure 5(p)). Second, as

we use the first network to predict the gamma compressed

HDR image and then map it back to the LDR in the logarith-

mic domain, low intensity values may be increased through

the inverse gamma mapping and logarithmic compression

as shown in Figure 5(h).

In additional to visual evaluation, we also provide quan-

titative comparison between the proposed method and ex-

isting methods as summarized in Table 1. It shows that the

proposed method performs favorably against existing meth-

ods under several numerical evaluation metrics.

We further compare the proposed DRHT method with

two HDR prediction methods (i.e., DrTMO [7] and Hdr-

cnn [6]). These two methods can be treated as image correc-

tion methods because their output HDR image can be tone

mapped into the LDR image. In [7], two deep networks are

proposed to first generate up-exposure and down-exposure

LDR images from the single input LDR image. As each

image with limited exposure cannot contain all the details

of the scene to solve the under/over exposure problem, they

fuse these multiple exposed images and use [18] to gen-
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(a) Input (b) DrTMo [7] (c) Hdrcnn [6] (d) DRHT (e) Ground Truth

(e) Input (f) DrTMo [7] (g) Hdrcnn [6] (h) DRHT (e) Ground Truth

Figure 6: Visual comparison with two HDR based correction methods: DrTMo [7] and Hdrcnn [6], on the Sun360 outdoor

dataset. The proposed DRHT performs better than these two methods in generating visually pleasing images.

erate the final LDR images. Eilertsen et al. [6] propose a

deep network to blend the input LDR image with the re-

constructed HDR information in order to recover the high

dynamic range in the LDR output images. However, by

using the highlight masks for blending, their method can-

not deal with the under exposed regions and their results

tend to be dim as shown in Figures 6(c) and 6(g). Mean-

while, we can also observe obvious flaws in the output im-

ages of both DrTMO [7] and Hdrcnn [6] (e.g., the man’s

white shirt in Figure 6(b) and the blocking effect in the

snow in Figure 6(g)). The main reason lies in that exist-

ing tone mapping methods fail to preserve the local details

from the HDR domain when the under/exposure exposure

problem happens. In comparison, the proposed DRHT is ef-

fective to prevent this limitation because we do not attempt

to recover the whole HDR image but only focus on recov-

ering the missing details by residual learning. The quanti-

tative evaluation results shown in Table 2 indicate that the

proposed DRHT method performs favorably against these

HDR prediction methods.

4.4. Limitation Analysis

Despite the aforementioned success, the proposed

DRHT method contains limitation to recover the details

when significant illumination contrast appears on the input

images. Figure 7 shows one example. Although DRHT can

effectively recover the missing details of the hut in the un-

derexposed region (i.e., the red box in Figure 7), there are

limited details around the sun (i.e., the black box). This is

mainly because of the large area of overexposed sunshine

is rare in our training dataset. In the future, we will aug-

ment our training dataset to incorporate such extreme cases

to improve the performance.

5. Conclusion

In this paper, we propose a novel deep reciprocating

HDR transformation (DRHT) model for under/over ex-

(a) Input (b) DRHT

Figure 7: Limitation analysis. The proposed DRHT method

is effective to recover the missing details in the underex-

posed region marked in the red box, while limits on the

overexposed sunshine region marked in the black box.

posed image correction. We first trace back to the image

formulation process to explain why the under/over expo-

sure problem is observed in the LDR images, according

to which we reformulate the image correction as the HDR

mapping problem. We show that the buried details in the

under/over exposed regions cannot be completely recovered

in the LDR domain by existing image correction methods.

Instead, the proposed DRHT method first revisits the HDR

domain and recovers the missing details of natural scenes

via the HDR estimation network, and then transfers the re-

constructed HDR information back to the LDR domain to

correct the image via another proposed LDR correction net-

work. These two networks are formulated in an end-to-

end manner as DRHT and achieve state-of-the-art correc-

tion performance on two benchmarks.

Acknowledgements

We thank the anonymous reviewers for the insightful and

constructive comments, and NVIDIA for generous donation

of GPU cards for our experiments. This work is in part sup-

ported by an SRG grant from City University of Hong Kong

(Ref. 7004889), and by NSFC grant from National Natural

Science Foundation of China (Ref. 91748104, 61632006,

61425002).

1805



References

[1] L. Bao, Y. Song, Q. Yang, and N. Ahuja. An edge-preserving

filtering framework for visibility restoration. In International

Conference on Pattern Recognition, 2012.

[2] S. Bi, X. Han, and Y. Yu. An l1 image transform for edge-

preserving smoothing and scene-level intrinsic decomposi-

tion. ACM Transactions on Graphics, 2015.

[3] J. Cheng, Y.-H. Tsai, S. Wang, and M.-H. Yang. Segflow:

Joint learning for video object segmentation and optical

flow. In IEEE International Conference on Computer Vision,

2017.

[4] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and

accurate deep network learning by exponential linear units

(elus). arXiv:1511.07289, 2015.

[5] P. Debevec and J. Malik. Recovering high dynamic range

radiance maps from photographs. In ACM Transactions on

Graphics (SIGGRAPH), 2008.

[6] G. Eilertsen, J. Kronander, G. Denes, R. Mantiuk, and

J. Unger. Hdr image reconstruction from a single exposure

using deep cnns. ACM Transactions on Graphics, 2017.

[7] Y. Endo, Y. Kanamori, and J. Mitani. Deep reverse tone map-

ping. ACM Transactions on Graphics, 2017.

[8] X. Fu, D. Zeng, Y. Huang, X.-P. Zhang, and X. Ding. A

weighted variational model for simultaneous reflectance and

illumination estimation. In IEEE Conference on Computer

Vision and Pattern Recognition, 2016.

[9] Google. Tensorflow.

[10] X. Guo, Y. Li, and H. Ling. Lime: Low-light image enhance-

ment via illumination map estimation. IEEE Transactions on

Image Processing, 2017.

[11] K. He, J. Sun, and X. Tang. Guided image filtering. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

2013.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In IEEE Conference on Computer

Vision and Pattern Recognition, 2016.

[13] S. He, J. Jiao, X. Zhang, G. Han, and R. Lau. Delving into

salient object subitizing and detection. In IEEE International

Conference on Computer Vision, 2017.

[14] S. J. Hwang, A. Kapoor, and S. B. Kang. Context-based au-

tomatic local image enhancement. In European Conference

on Computer Vision, 2012.

[15] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and

T. Brox. Flownet 2.0: Evolution of optical flow estimation

with deep networks. In IEEE Conference on Computer Vi-

sion and Pattern Recognition, 2017.

[16] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

International Conference on Machine Learning, 2015.

[17] L. Kaufman, D. Lischinski, and M. Werman. Content-aware

automatic photo enhancement. Computer Graphics Forum,

2012.

[18] M. Kim and J. Kautz. Consistent tone reproduction. In In-

ternational Conference on Computer Graphics and Imaging,

2008.

[19] Y. Kim, H. Jung, D. Min, and K. Sohn. Deeply aggregated

alternating minimization for image restoration. In IEEE Con-

ference on Computer Vision and Pattern Recognition, 2017.

[20] P. Kingma and J. Ba. Adam: A Method for Stochastic Opti-

mization. arXiv:1412.6980, 2014.

[21] J. Li, X. Chen, D. Zou, B. Gao, and W. Teng. Conformal

and low-rank sparse representation for image restoration. In

IEEE International Conference on Computer Vision, 2015.

[22] Y. Li, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep joint

image filtering. In European Conference on Computer Vi-

sion, 2016.

[23] S. Liu, J. Pan, and M.-H. Yang. Learning recursive filters for

low-level vision via a hybrid neural network. In European

Conference on Computer Vision, 2016.

[24] Z. Ma, K. He, Y. Wei, J. Sun, and E. Wu. Constant time

weighted median filtering for stereo matching and beyond. In

IEEE International Conference on Computer Vision, 2013.

[25] R. Mantiuk, K. Joong, A. Rempel, and W. Heidrich. Hdr-

vdp-2: A calibrated visual metric for visibility and quality

predictions in all luminance conditions. ACM Transactions

on Graphics, 2011.

[26] X. Mei, H. Qi, B.-G. Hu, and S. Lyu. Improving image

restoration with soft-rounding. In IEEE International Con-

ference on Computer Vision, 2015.

[27] M. Pharr, W. Jakob, and G. Humphreys. Physically based

rendering: From theory to implementation. 2016.

[28] S. Pizer, E. Amburn, J. Austin, R. Cromartie, A. Geselowitz,

T. Greer, H. Bart, J. Zimmerman, and K. Zuiderveld. Adap-

tive histogram equalization and its variations. Computer Vi-

sion, Graphics, and Image Processing, 1987.

[29] W. Ren, S. Liu, H. Zhang, J. Pan, X. Cao, and M.-H. Yang.

Single image dehazing via multi-scale convolutional neu-

ral networks. In European Conference on Computer Vision,

2016.

[30] W. Ren, J. Pan, X. Cao, and M.-H. Yang. Video deblur-

ring via semantic segmentation and pixel-wise non-linear

kernel. In IEEE International Conference on Computer Vi-

sion, 2017.

[31] A. Rivera, B. Ryu, and O. Chae. Content-aware dark image

enhancement through channel division. IEEE Transactions

on Image Processing, 2012.

[32] L. Shen, Z. Yue, F. Feng, Q. Chen, S. Liu, and J. Ma.

MSR-net:Low-light Image Enhancement Using Deep Con-

volutional Network. arXiv:1711.02488, 2017.

[33] X. Shen, C. Zhou, L. Xu, and J. Jia. Mutual-structure for

joint filtering. In IEEE International Conference on Com-

puter Vision, 2015.

[34] M. Son, Y. Lee, H. Kang, and S. Lee. Art-photographic detail

enhancement. Computer Graphics Forum, 2014.

[35] Y. Song, L. Bao, S. He, Q. Yang, and M.-H. Yang. Stylizing

face images via multiple exemplars. Computer Vision and

Image Understanding, 2017.

[36] Y. Song, L. Bao, X. Xu, and Q. Yang. Decolorization: Is

rgb2gray () out? In ACM SIGGRAPH Asia Technical Briefs,

2013.

[37] Y. Song, L. Bao, and Q. Yang. Real-time video decoloriza-

tion using bilateral filtering. In IEEE Winter Conference on

Applications of Computer Vision, 2014.

1806



[38] Y. Song, C. Ma, L. Gong, J. Zhang, R. Lau, and M.-H. Yang.

Crest: Convolutional residual learning for visual tracking. In

IEEE International Conference on Computer Vision, 2017.

[39] Y. Song, J. Zhang, L. Bao, and Q. Yang. Fast preprocess-

ing for robust face sketch synthesis. In International Joint

Conference on Artificial Intelligence, 2017.

[40] Y. Tai, J. Yang, X. Liu, and C. Xu. Memnet: A persistent

memory network for image restoration. In IEEE Interna-

tional Conference on Computer Vision, 2017.

[41] Y.-H. Tsai, X. Shen, Z. Lin, K. Sunkavalli, X. Lu, and M.-H.

Yang. Deep image harmonization. In IEEE Conference on

Computer Vision and Pattern Recognition, 2017.

[42] B. Wang, Y. Yu, T.-T. Wong, C. Chen, and Y.-Q. Xu. Data-

driven image color theme enhancement. ACM Transactions

on Graphics, 2010.

[43] B. Wang, Y. Yu, and Y.-Q. Xu. Example-based image color

and tone style enhancement. ACM Transactions on Graph-

ics, 2011.

[44] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image

quality assessment: from error visibility to structural simi-

larity. IEEE Transactions on Image Processing, 2004.

[45] J. Xiao, K. Ehinger, A. Oliva, and A. Torralba. Recognizing

scene viewpoint using panoramic place representation. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2012.

[46] L. Xu, C. Lu, Y. Xu, and J. Jia. Image smoothing via l0 gra-

dient minimization. ACM Transactions on Graphics, 2011.

[47] L. Xu, Q. Yan, Y. Xia, and J. Jia. Structure extraction from

texture via relative total variation. ACM Transactions on

Graphics, 2012.

[48] J. Yan, S. Lin, S. Bing Kang, and X. Tang. A learning-to-rank

approach for image color enhancement. In IEEE Conference

on Computer Vision and Pattern Recognition, 2014.

[49] Z. Yan, H. Zhang, B. Wang, S. Paris, and Y. Yu. Automatic

photo adjustment using deep neural networks. ACM Trans-

actions on Graphics, 2015.

[50] Q. Yang. Semantic filtering. In IEEE Conference on Com-

puter Vision and Pattern Recognition, 2016.

[51] J. Zhang and J.-F. Lalonde. Learning high dynamic range

from outdoor panoramas. In IEEE International Conference

on Computer Vision, 2017.

[52] K. Zhang, W. Zuo, S. Gu, and L. Zhang. Learning deep cnn

denoiser prior for image restoration. In IEEE Conference on

Computer Vision and Pattern Recognition, 2017.

[53] L. Zhang, L. Zhang, X. Mou, and D. Zhang. Fsim: A feature

similarity index for image quality assessment. IEEE Trans-

actions on Image Processing, 2011.

[54] Q. Zhang, X. Shen, L. Xu, and J. Jia. Rolling guidance filter.

In European Conference on Computer Vision, 2014.

[55] Q. Zhang, L. Xu, and J. Jia. 100+ times faster weighted me-

dian filter (wmf). In IEEE Conference on Computer Vision

and Pattern Recognition, 2014.

1807


