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Abstract

Automatic assessment of sentiment from visual content

has gained considerable attention with the increasing ten-

dency of expressing opinions on-line. In this paper, we solve

the problem of visual sentiment analysis using the high-level

abstraction in the recognition process. Existing method-

s based on convolutional neural networks learn sentiment

representations from the holistic image appearance. How-

ever, different image regions can have a different influence

on the intended expression. This paper presents a weakly

supervised coupled convolutional network with two branch-

es to leverage the localized information. The first branch

detects a sentiment specific soft map by training a fully con-

volutional network with the cross spatial pooling strategy,

which only requires image-level labels, thereby significant-

ly reducing the annotation burden. The second branch u-

tilizes both the holistic and localized information by cou-

pling the sentiment map with deep features for robust clas-

sification. We integrate the sentiment detection and classi-

fication branches into a unified deep framework and opti-

mize the network in an end-to-end manner. Extensive ex-

periments on six benchmark datasets demonstrate that the

proposed method performs favorably against the state-of-

the-art methods for visual sentiment analysis.

1. Introduction

Visual sentiment analysis from images has attracted sig-

nificant attention with the increasing tendency of express-

ing opinions through posting images on social media like

Flickr and Twitter. The automatic assessment of image sen-

timent has many applications, e.g. education, entertainment,

advertisement, etc. Recently, with the advances of convolu-

tional neural networks (CNNs), numerous deep approaches

have been proposed to predict sentiment [20,31]. The effec-

tiveness of machine learning based deep features have been

demonstrated over hand-crafted features (e.g. color, texture,

and composition) [17, 28, 34]) on visual sentiment predic-

tion. However, several issues remain when using CNNs to

Figure 1. Examples from the EmotionROI dataset [21]. The nor-

malized bounding boxes indicate the regions that influence the e-

voked sentiments annotated by 15 users. The first two examples

are joy images, and the last two examples are sadness and fear im-

ages, respectively. As can be seen, the sentiments can be evoked

by specific regions.

address such an abstract task as follows.

First, visual sentiment analysis is more challenging than

conventional recognition tasks due to a higher level of sub-

jectivity in the human recognition process [13]. It is nec-

essary to take more cues into consideration for visual sen-

timent prediction. Figure 1 shows examples from the E-

motionROI dataset [21], which provides the bounding box

annotations that invoke sentiment from 15 users. As can

be seen, humans’ emotional responses to images are de-

termined by local regions [29]. However, most existing

methods employ CNNs to learn feature representations only

from entire images [4, 30]. Second, providing more precise

annotations (e.g. bounding boxes [11]) than image-level la-

beling for training generally leads to better performance for

recognition tasks. However, there are two limitations for

visual sentiment classification. On the one hand, the in-

creased annotation cost prevents it from widespread use, e-

specially for such a subjective task; on the other hand, dif-

ferent regions contribute differently to the viewer’s evoked

sentiment, while crisp proposal boxes only tend to find the

foreground objects in an image.

To address these problems, we propose a weakly su-

pervised coupled framework (WSCNet) for joint sentimen-

t detection and classification with two branches. The first
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branch is designed to generate region proposals evoking

sentiment. Instead of extracting multiple crisp proposal

boxes, we use a soft sentiment map to represent the proba-

bility of evoking the sentiment for each receptive field. In

detail, we make use of a Fully Convolutional Network (FC-

N) followed by the proposed cross-spatial pooling strate-

gy to preserve the spatial information of the convolutional

feature maps. Based on this, the sentiment map is generat-

ed and utilized to highlight the regions of interest that are

informative for classification. The second branch captures

the localized representation by coupling the sentiment map

with the deep features, which is then combined with the

holistic representation to provide a more semantic vector.

During the end-to-end training process, our approach only

requires image-level sentiment labeling, which significantly

reduces the annotation burden.

Our contributions are summarized as follows: First, we

present a weakly supervised coupled network to integrate

visual sentiment classification and detection into a unified

CNN framework, which learns the discriminative represen-

tation for visual sentiment analysis in an end-to-end manner.

Second, we exploit the sentiment map to provide image-

specific localized information with only the image-level la-

bel, with which both holistic and localized representations

are fused for robust sentiment classification. Our proposed

framework performs favorably against the state-of-the-art

methods and off-the-shelf CNN classifiers on six bench-

mark datasets for visual sentiment analysis.

2. Related Work

In this section, we review methods for image sentimen-

t prediction [27, 33] and weakly supervised detection [37]

that are closely related to our work.

2.1. Visual Sentiment Prediction

Most existing approaches to visual sentiment prediction

are developed based on hand-engineered features [28] and

deep learning frameworks [24]. In the early years, numer-

ous methods have been used to design different groups of

hand-crafted features inspired by psychology theory and

principles of art. Machajdik et al. [17] define a combination

of low-level features that represent the emotional content,

e.g. color, texture, composition, while more robust features

according to art principles are investigated in [34]. Zhao et

al. [35,36] further propose the multi-task hypergraph learn-

ing to predict personalized emotion perceptions and release

the IESN dataset, which is the pioneering work towards the

emotion subjectivity challenge. Different factors that may

influence emotion perceptions are jointly considered, i.e. vi-

sual content, social context, temporal evolution and loca-

tion influence. More recently, several approaches exploit

deep models for learning sentiment representations. The

DeepSentiBank [7] constructs a visual sentiment concep-

Table 1. Statistics of the available affective datasets. Most datasets

developed in this field contain no more than one thousand samples,

mainly due to the subjective and labor intensive labeling process.

As the last column shows, none of these datasets except Emotion-

ROI provide ground truth regions that evoke sentiments.

Dataset #Images #Classes Regions

IAPSa [17] 395 8 N

Abstract [17] 228 8 N

ArtPhoto [17] 806 8 N

Twitter I [30] 1,269 2 N

Twitter II [3] 603 2 N

EmotionROI [21] 1,980 6 Y

Flickr&Instagram [31] 23,308 8 N

Flickr [14] 60,745 2 N

Instagram [14] 42,856 2 N

t in terms of classification on adjective-noun pairs (ANP)

for detecting sentiment depicted in images. Due to the ex-

pensive manual annotation of sentiment labels, the existing

affective datasets mostly contain less than one thousand im-

ages as summarized in Table 1. To cope with limited train-

ing data, most approaches incorporate the CNN weights

learned from a large-scale general dataset [9] and fine-tune

the model for sentiment prediction [4,5,30]. To utilize sen-

timent ambiguity, Yang et al. [25] propose to learn a deep

representation in a multi-task CNN, which jointly optimizes

the classification and distribution learning.

While most CNN-based methods for sentiment classifi-

cation extract deep features from the entire image, signifi-

cantly less attention has been paid to utilize the local regions

information for sentiment prediction. Li et al. [16] propose

a context-aware classification model taking both the glob-

al and global-local context into account. Sun et al. [23, 26]

discover affective regions based on an object proposal algo-

rithm and combine deep features for classification. Howev-

er, such methods are sub-optimal since the objectness algo-

rithm is separate from the prediction method, and regions

that are not object-like may be excluded at the very begin-

ning. In [29], a method based on an attention model is de-

veloped in which local visual regions induced by sentiment

related visual attributes are considered. Different from ex-

isting methods in the literature, we propose a joint model

that trains two tasks simultaneously in an end-to-end net-

work. We show that the proposed framework is able to learn

a discriminative sentiment representation, and performs fa-

vorably against the state-of-the-art methods for visual sen-

timent analysis.

2.2. Weakly Supervised Detection

With the recent success of deep learning on large-scale

object recognition [15], several weakly supervised CNNs

have been proposed for the object detection task using mul-
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Figure 2. Illustration of the proposed WSCNet for visual sentiment analysis. The input image is first fed into the convolutional layers of

FCN ResNet-101, and the response feature maps with good spatial resolution are then delivered into two branches. The detection branch

employs the cross-spatial pooling strategy to summarize all the information contained in the feature maps for each class. The end-to-end

training results in the sentiment map, which is then coupled with the conv feature maps in the classification branch capturing the localized

information. Finally, both holistic and localized representations are fused as a semantic vector for sentiment classification.

tiple instance learning (MIL) algorithms [2]. MIL defines

images as a bag of regions, and assumes that images la-

beled as positive contain at least one object instance of a

certain category and images labeled as negative do not con-

tain an object from the category of interest. One of the most

common approaches [8] consists of generating object pro-

posals and extracting features from the proposals in multi-

ple stages, and employs MIL on the features to determine

the box labels from the weak bag labels. However, since

sentiment is more subjective, assuming that an instance on-

ly appears in a single category is suboptimal for sentiment

detection. In addition, methods have also been proposed to

use a unified network framework to perform both localiza-

tion and classification, which takes the convolutional filters

as detectors to activate locations on the deep feature map-

s [10, 37, 38]. Zhou et al. [37] utilize the global average

pooling layer behind the top convolutional layer to aggre-

gate class-specific activation, while Durand et al. [10] pro-

pose the WILDCAT method to learn multiple localized fea-

tures related to different class modalities (e.g. object parts).

Considering the object evidence, Zhu et al. [38] propose the

soft proposal network (SPN) to generate soft proposals and

aggregate image-specific patterns by coupling the proposal

and feature maps, which tends to distinguish the foreground

objects from the surroundings with a graph propagation al-

gorithm.

To our knowledge, there is little work focusing on sen-

timent detection. Peng et al. [21] train a supervised net-

work FCNEL to predict the emotion stimuli map (ES-

M) with manually labeled pixel-level ground truth, which

would be extremely labor intensive if it were extended to

large-scale datasets. We are the first to integrate sentiment-

related proposals into CNNs for detection, and to jointly

optimize the detection and classification tasks under weak

supervision. Different from the existing weakly supervised

methods, this work proposes to detect a unified sentimen-

t map considering both the salient foreground as well as

the sentiment-related areas, instead of using class-specific

activation [10, 37] for each category. Moreover, the detect-

ed regions are utilized as localized information to boost the

sentiment classification.

3. Weakly Supervised Coupled Network

Our weakly supervised coupled network is illustrated in

Figure 2. The goal is to learn a discriminative model from

images with regions that evoke sentiment where the only

manual supervision required is image-level labels. Specifi-

cally, the proposed WSCNet learns both detection and clas-

sification tasks jointly with two network branches. We use

the detection branch to generate a sentiment map providing

the localized information, which is then fed into the classi-

fication branch to fuse the holistic as well as the localized

representations together.

3.1. Sentiment Map Detection Branch

While attention and salience works aim to find salient

objects in images, a sentiment image is defined as a per-

son’s disposition to respond to visual inputs, which may

contain not only salient objects but other areas related to

emotion [21]. As stated in Section 2.2, there are only a few

end-to-end CNN frameworks for weakly supervised object

detection that do not use additional localization informa-
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tion. In order to infer the sentiment map directly in the C-

NN, the convolutional filters are viewed as the detector that

produces the feature maps as the response. Our framework

is based on the recently introduced FCN ResNet-101 [12]

that naturally preserves spatial information throughout the

network.

Cross-spatial pooling strategy. Let {(��, ��)}��=1 be a col-

lection of � affective training examples, where �� is an af-

fective image, and �� ∈ {1, ⋅ ⋅ ⋅ , �} is the corresponding

sentiment label. For each instance, let � ∈ ℝ
�×ℎ×� be the

feature maps of the conv5 in ResNet-101, where � and ℎ

are the spatial size (width and height) of the feature map-

s, respectively, and � is the number of channels. We first

add a 1 × 1 convolutional layer to capture multiple infor-

mation (e.g. views) for each sentiment category, which has

high response to certain discriminative regions. Suppose

� detectors are applied to each sentiment class, we obtain

feature maps � ′ with the dimension of � × ℎ × ��. We

propose to summarize all the information as a single image-

level score for each of the sentiment classes independently

regardless of the input size, which is achieved by the cross-

spatial pooling strategy:

�� =
1

�

�
∑

�=1

����(��,�), � ∈ {1, ⋅ ⋅ ⋅ , �}, (1)

where ��,� represents the �-th feature map for the �-th la-

bel from � ′, and ����(⋅) denotes the Global Max Pooling

(GMP). Here, GMP is employed to identify just one dis-

criminative part for each feature map in the same sentiment

class inspired by [37], which results in a 1× 1× �� vector.

Then � responses for each label are unified with the average

pooling operation, where the value can be maximized by

finding all discriminative regions of the specific sentimen-

t, as all low activations reduce the output of the particular

map. The pooled vector v ∈ ℝ
� is then fed into a �-class

softmax layer as the sentiment detection loss:

���� = − 1

�

�
∑

�=1

�
∑

�=1

1(�� = �) log ��, (2)

where 1(�) = 1 if the condition � is true, and 0 otherwise.

Thus, the filter weights can be updated during the training

process, which yields the discriminative location in the fea-

ture maps for each class. We use the cross-spatial pooling

strategy to represent the GMP layer followed by a class-

specific average pooling as a convenient term.

Generating Sentiment Map. Different from object loca-

tions [18] or ‘class activation’ maps [37], the activation fea-

ture maps for different sentiments are dependent due to the

ambiguity existing in the sentiment labels [25]. Thus, this

paper proposes to capture the regions evoking sentiment by

considering all the class activation maps.

Sentiment map

Cross Spatial 
Pooling 2v

C
v

1v

softmaxK feature maps

Image-level
label

1v 2v C
v

M

v

Avg Pool Avg Pool Avg Pool 
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Figure 3. Overview of the sentiment map generation. The predict-

ed class scores of the input image are mapped back to the classifi-

cation branch to generate the sentiment map, which can highlight

comprehensive sentiment regions.

We first obtain a single map from the � feature maps for

each sentiment by the average pooling operation. We then

combine all the � class-wise feature maps with correspond-

ing weights to capture the comprehensive localized infor-

mation, instead of using the feature maps with the largest

response from a specific class. Thus, our sentiment map

� ∈ ℝ
�×ℎ is generated using �� as the weight of the re-

sponse map of class �:

� =

�
∑

�=1

��

(

1

�

�
∑

�=1

��,�

)

. (3)

Intuitively, based on prior methods [32], we expect that each

unit is activated by some visual patterns within its receptive

field. The sentiment map is a weighted linear sum of the p-

resence of these visual patterns at different spatial locations.

By simply up-sampling the activation map to the size of the

input image, we can identify the regions most relevant to

the evoked sentiment, as shown in Figure 3.

3.2. Coupled Sentiment Classification Branch

From the perspective of image representation, the senti-

ment map highlights the image-specific discriminative re-

gions that are informative for image classification. The o-

riginal convolutional feature � is viewed as the holistic rep-

resentation, and the sentiment map is utilized to produce the

local representation by coupling with the convolutional fea-

tures. Inspired by [38], the Hadamard product is employed

to couple each feature map from � with � . Thus, we ob-

tain the coupled feature maps � = [�1, �2, ⋅ ⋅ ⋅ , ��], where

the element �� = � ∘ ��, and ∘ denotes the element-wise

multiplication. Then the coupled feature maps and the origi-

nal feature maps can be encoded to form a more informative

semantic feature d ∈ ℝ
2� by:

d = ����(� ⊎ �), (4)
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where ⊎ denotes the concatenation of different convolution-

al features. In the above equation, ����(⋅) is the global av-

erage pooling (GAP) operation, which outputs the average

value of each feature map.

To classify an image, it is necessary to compute the pre-

dicted scores of the input image for different classes. We

use those as features for a fully-connected layer and the sen-

timent scores �(�� = �∣d,w�) is defined as

�(�� = �∣d,w�) =
exp(w⊤

� d)
∑�

�′=1
exp(w⊤

�′d)
, (5)

where W = {w�}��=1 is the set of model parameters. Thus,

the classification is carried out by minimizing the following

log likelihood function:

���� = − 1

�

�
∑

�=1

�
∑

�=1

1(�� = �) log �(�� = �∣d,w�). (6)

In this network, the �-way classification layer is determined

by the affective dataset with an arbitrary number of classes.

3.3. Joint Training Process

As shown in Figure 2 and referred to above, our WSC-

Net will produce two outputs for sentiment detection and

sentiment classification tasks. Given the training set, we ex-

plicitly train the proposed deep model to optimize the joint

loss function:

� = ����(�, �) + ����(�, �). (7)

Since derivatives w.r.t. all the parameters can be derived, we

can conduct an effective end-to-end representation learned

using stochastic gradient descent (SGD) to minimize the

joint loss function. With this scheme, we can detect the sen-

timent map using weakly supervised learning, and utilize

the localized information for discriminative classification.

4. Experiments

In this section, we evaluate our method against the state-

of-the-art algorithms to demonstrate the effectiveness of

WSCNet for sentiment classification and detection.

4.1. Datasets

We evaluate our framework on six public datasets in-

cluding the Flickr and Instagram (FI) [31], Flickr, Insta-

gram [14], Twitter I [30], Twitter II [3] and Emotion-

ROI [21] datasets. FI is collected by querying with eight

sentiment categories (i.e. anger, amusement, awe, content-

ment, disgust, excitement, fear, sadness) as keywords from

social websites. A group of 225 Amazon Mechanical Turk

(AMT) participants was asked to label the images, produc-

ing 23,308 images receiving at least three agreements. The

Flickr and Instagram datasets contain 60,745 and 42,856

images from Flickr and Instagram, and provide sentimen-

t polarity (i.e. positive, negative) labels by crowd-sourcing

based human annotation. We also evaluate the proposed

method on three small-scale datasets. The Twitter I and

Twitter II datasets are collected from the social websites and

labeled with sentiment polarity categories by AMT partici-

pants, which consist of 1,269 and 603 images, respectively.

The EmotionROI dataset is created for a sentiment predic-

tion benchmark, which is assembled from Flickr resulting in

1980 images with six sentiment categories (i.e. anger, dis-

gust, fear, joy, sadness, surprise). Besides, each image is

also annotated with 15 regions that evoke sentiments, which

are normalized to range between 0 and 1 as ESM.

4.2. Implementation Details

Our framework is based on the state-of-the-art CNN ar-

chitecture ResNet-101 [12]. We first initialize our frame-

work with the weights from the pre-trained model on the

large-scale visual recognition [9]. In addition, we apply ran-

dom horizontal flips and crop a random 448×448 patch as a

form of data augmentation to reduce overfitting. We replace

the last layers (global average pooling and fully connected

layer) with the proposed two branches. We use a weight

decay of 0.0005 with a momentum of 0.9, and fine-tune al-

l layers with SGD. The learning rates of the convolutional

layers and the last fully-connected layer on the classifica-

tion branch are initialized as 0.001, 0.01 respectively, and

drops by a factor of 10 every 10 epochs. The total number

of iterations is 30 epochs. The FI datasets are split random-

ly into 80% training, 5% validation and 15% testing sets.

For the Flickr and Instagram datasets, we randomly sam-

ple the same number of images for each class following the

same configuration in [14], which are split randomly into

90% training, 10% testing sets. The small-scale datasets

are split into 80% training and 20% testing sets randomly

except those with specified training/testing splits [3,21]. At

test time, our prediction takes the output of the classifica-

tion branch in the framework for classification evaluation.

The sentiment map is extracted from the detection branch

in Eq. 3 as the probability of regions evoking sentiment for

detection evaluation. Our framework is implemented using

PyTorch [19]. All of our experiments are performed on an

NVIDIA GTX Titan X GPU with 32 GB on-board memory.

4.3. Evaluation Settings

To demonstrate the effectiveness of our framework for

visual sentiment classification and detection, we evaluate

the proposed WSCNet against the several baseline method-

s including methods using traditional features, CNN-based

methods and weakly-supervised frameworks. For the tradi-

tional methods, we extract the principle-of-art features [34]

from the affective images. We use a simplified version pro-

7588



Table 2. Classification accuracy (%) on the testing set of FI, Flickr, Instagram, Twitter I, Twitter II, EmotionROI datasets. We evaluate

the proposed WSCNet against several baseline methods including the traditional features, CNN-based methods and weakly-supervised

frameworks. Note that Sun et al.’s method and Yang et al.’s method are proposed for binary classification and multi-class classification,

respectively, and thus datasets with incompatible class numbers cannot be evaluated, denoted as ‘–’.

Method FI Flickr Instagram EmotionROI Twitter I Twitter II

Zhao et al. [34] 46.13 66.61 64.17 34.84 67.92 67.51

SentiBank [3] 49.23 69.26 66.53 35.24 66.63 65.93

DeepSentiBank [7] 51.54 70.16 67.13 42.53 71.25 70.23

ImageNet-AlexNet [15] 38.26 69.05 56.69 34.26 65.80 67.88

ImageNet-VGG16 [22] 41.22 69.88 63.44 37.26 67.49 68.79

ImageNet-Res101 [12] 50.01 72.26 67.28 40.79 72.55 70.42

Fine-tuned AlexNet 58.13 73.11 69.95 41.41 73.24 75.66

Fine-tuned VGG16 63.75 78.14 77.41 45.46 76.75 76.99

Fine-tuned Res101 66.16 80.03 79.33 51.60 78.13 78.23

Sun et al. [23] – 79.85 78.67 – 81.06 80.84

Yang et al. [25] 66.79 – – 52.40 – –

WILDCAT [10] 67.03 80.67 80.31 55.05 79.53 78.81

SPN [38] 66.57 79.71 79.53 52.70 81.67 77.96

WSCNet 70.07 81.36 81.81 58.25 84.25 81.35

Table 3. Classification accuracy (%) of WSCNet using different

numbers of feature maps on the test set of three large-scale dataset-

s, i.e. FI, Flickr, Instagram.

Dataset � = 1 � = 2 � = 4 � = 8 � = 16
FI 68.23 69.36 70.07 68.80 67.19

Flickr 81.46 81.87 81.36 81.15 81.98

Instagram 79.67 79.24 81.80 79.60 78.53

vided by the author to extract 27 dimension features and use

LIBSVM [6] for classification. We use 1,200 dimension-

al mid-level representation with the ANP detector of Sen-

tiBank and apply the pre-trained DeepSentiBank to extrac-

t 2,089 dimensional features. For the basic CNN models,

we report the results of using three classical deep learning

methods pre-trained on ImageNet and fine-tuned on the af-

fective datasets: AlexNet [15], VGGNet [22] with 16 lay-

ers and ResNet101 [12]. We also show the results of fully-

connected features extracted from the ImageNet CNN with

LIBSVM. We also report the results from three state-of-the-

art deep methods for sentiment classification. For the binary

datasets, we use Sun’s method [23] to select top-1 region-

s and combine the holistic feature with the region feature

from the fine-tuned VGGNet. For the multi-class dataset-

s, we employ Yang’s method [25] to transform the single

label to a sentiment distribution and report the classifica-

tion performance of ResNet. Moreover, we also evaluate

our method against the state-of-the-art weakly supervised

frameworks, i.e. the WILDCAT and SPN methods, which

are based on ResNet-101 with the input size of 448 × 448
the same as our method.

Table 4. Ablation study on the FI dataset. The baseline is the

WSCNet (� = 1) without the coupling operation, denoted as Base.

Note that SM denotes using the sentiment map as the guidance,

Local denotes that only the coupled feature map (with localized

information) is used for classification, and Coupling denotes cap-

turing both the holistic and localized information in Eq. 4.

Base � = 4 SM Local Coupling FI√
66.57√ √
67.96√ √ √
67.69√ √ √
68.23√ √ √ √
70.07

4.4. Classification Performance

We first evaluate the classification performance on six

affective datasets. We set the hyper-parameter � = 4 in

the proposed WSCNet. Table 2 shows that the deep repre-

sentations outperform the hand-crafted features, while the

fine-tuned CNNs have the capability to recognize sentiment

from images. Our proposed method consistently performs

favorably against the state-of-the-art methods for sentiment

classification, e.g. about 3.3% improvement on FI and 5.8%

on EmotionROI datasets, which illustrates that WSCNet

can learn more discriminative representation for this task.

In addition, the weakly supervised frameworks improve the

performance of Fine-tuned Res101 utilizing the regional in-

formation. Our WSCNet further improves the classifica-

tion performance by 3% on Twitter I and II datasets, which

shows the effectiveness of combining the sentiment-specific

localized representation.
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Figure 4. Sentiment detection performance on the test set of Emo-

tionROI dataset by the baseline methods, objectness detection al-

gorithm, weakly supervised frameworks and the supervised mod-

el. Note that ‘*’ denotes that the method is supervised, using the

bounding box annotation for training.

4.4.1 Hyperparameter Analysis

We now analyze the effect of the only hyper-parameter � of

our framework in Eq. 1, which is the number of the response

feature maps for each sentiment category. We report the

classification accuracy of WSCNet with different � in the

detection branch on three large-scale datasets, i.e. FI, Flick-

r, Instagram. Table 3 shows that with an increasing number

of feature maps, our method is able to achieve better per-

formance compared with the standard classification strate-

gy in the CNN (i.e. � = 1), which captures multiple views

for each sentiment category. However, over-amplifying the

feature maps results in suboptimal performance mainly due

to overfitting, which is similar to the finding reported in

WILDCAT [10]. For the FI and Instagram datasets, our

method achieves the best performance with � = 4, and

for the Instagram dataset, the best performance is achieved

with � = 16, although the performance is fairly stable with

changing �. Therefore, we set � = 4 in our framework for

a trade-off between efficiency and effectiveness.

4.4.2 Further Analysis

We perform an ablation study to illustrate the effect of each

contribution. Our baseline is the WSCNet with � = 1
and without the coupling operation, where the classification

branch is the original classification layer in the CNN (i.e.

global pooling and fully connected layer). As reported in

Table 4, we can draw the following conclusions: First, using

both multiple feature maps (� = 4) and the sentiment map

coupled representation improve classification accuracy by

about 1% on FI, while combining the holistic and localized

representations further improves the performance. Second,

we achieve the best accuracy by utilizing the components to

Fear

(a) Input (c) Sentiment map(b) Ground truth

MAE = 0.21   Precision = 0.45   Recall = 0.94

(d) Average class activation map

Figure 5. Detected sentiment map of the proposed WSCNet on the

EmotionROI. Given the input (a) with ground truth (b), the detec-

tion result and the metrics are shown in (c). The class activation

maps and the corresponding predicted scores are given in (d).

train our model in an end-to-end manner, which shows the

complementarity of both these contributions.

4.5. Sentiment Detection

We evaluate the performance of sentiment map detec-

tion using the proposed WSCNet against different methods.

Three baseline methods are employed to generate regions of

interest for affective images. We crop the images randomly

or from the center as the regions evoking sentiment, and al-

so compare with the object regions from the objectness de-

tection method [1]. For the weakly supervised methods, we

directly extract CAM (class activation maps) from the fine-

tuned ResNet-101 following [37], and the final feature maps

from the WILDCAT and SPN methods are also compared.

In addition, we test the supervised fully convolutional net-

work with Euclidean Loss (FCNEL) [21] for predicting the

ESM from the EmotionROI training images.

We employ the same evaluation metrics as [21], i.e. the

mean absolute error (MAE), precision, recall, and �1 score.

All the detected regions/maps and ground truth are first nor-

malized to 0 to 1. MAE corresponds to the mean abso-

lute pixel-wise error between the predicted proposals and

ground truth. Before computing precision and recall, we

binarize each predicted map adaptively using Otsu thresh-

olding. Thus, precision and recall represent the percentages

of detected emotionally involved pixels out of all the pixel-

s identified in the predicted region or the ground truth. �1

score, defined as 2��
�+�

, measures the harmonic mean of pre-

cision � and recall �.

4.5.1 Detection Results

Figure 4 shows that our WSCNet performs favorably a-

gainst the baselines and weakly supervised methods, which
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(c) CAM (d) SPN (e) WSCNet(a) Input (b) Ground truth

Joy

Fear

Anger

Sadness

Figure 6. Weakly supervised detection results using different methods on the EmotionROI testing set. The input images and the ground

truth are given in (a) and (b). The detected regions and metrics of weakly-supervised methods (i.e. CAM, SPN, ours) are shown in the last

three columns. By activating the sentiment-related areas, our method is more accurate to the ground truth.

achieves comparable performance with the supervised FC-

NEL on most evaluation metrics. We notice that FCNEL

benefits from supervised training with bounding box anno-

tation, and has significantly better recall than other meth-

ods. The reason is that the regions evoking sentiments

contain both the primary objects and additional contextu-

al background, while Objectness [1] only focuses on the

foreground objects and thus achieves a reasonable preci-

sion. Compared with the weakly supervised methods, our

method improves the recall to 0.60, which illustrates the ef-

fectiveness of taking the sentiment characteristic into con-

sideration for generating the sentiment map.

4.5.2 Visualization

Figure 5 shows the detected sentiment map for a fear im-

age from the EmotionROI, and the activation map for each

sentiment from the detection branch. Note that the senti-

ment scores are also from the detection branch correspond-

ing with the pooled vector � illustrated in Section 3.1. Al-

though the ground-truth class prediction (i.e. fear) is not al-

ways the highest, the high scores are from related classes

(e.g. other negative sentiments like sadness and anger) pro-

viding the complementary information, which is reasonable

since the detection branch achieves sub-optimal classifica-

tion performance. Thus, the weighted combination is able

to generate more reliable sentiment maps. In Figure 6, we

show more detection results using different weakly super-

vised methods. Compared with the ground truth, the WSC-

Net is able to detect the relevant regions that influence the

evoked sentiment, while the CAM and SPN may only focus

on the salient objects leading to a reasonable precision. For

example, on the third row, SPN only responds to the fore-

ground objects, which leads to 0.96 precision but only 0.51

recall. In contrast, our detected sentiment map extends the

object regions into the sentiment related background, which

achieves the recall of 0.83.

5. Conclusions

This paper addresses the problem of visual sentiment

analysis based on convolutional neural networks, where the

sentiments are predicted using multiple affective cues. We

present WSCNet, an end-to-end weakly supervised deep ar-

chitecture, which consists of two branches for discrimina-

tive representations learning. The detection branch is de-

signed to automatically exploit the sentiment map, which

can provide the localized information of the affective im-

ages. Then the classification branch leveraging both holis-

tic and localized representations can predict the sentiments.

Experimental results show the effectiveness of our method

against the state-of-the-art on six benchmark datasets.
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