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Abstract

Let us consider a case where all of the elements in some

continuous slices are missing in tensor data. In this case,

the nuclear-norm and total variation regularization meth-

ods usually fail to recover the missing elements. The key

problem is capturing some delay/shift-invariant structure.

In this study, we consider a low-rank model in an embedded

space of a tensor. For this purpose, we extend a delay em-

bedding for a time series to a “multi-way delay-embedding

transform” for a tensor, which takes a given incomplete

tensor as the input and outputs a higher-order incomplete

Hankel tensor. The higher-order tensor is then recovered

by Tucker-based low-rank tensor factorization. Finally, an

estimated tensor can be obtained by using the inverse multi-

way delay embedding transform of the recovered higher-

order tensor. Our experiments showed that the proposed

method successfully recovered missing slices for some color

images and functional magnetic resonance images.

1. Introduction

Matrix/tensor completion is a technique for recovering

the missing elements in incomplete data and it has become

a very important method in recent years [2, 3, 1, 9, 16,

21, 4, 31, 30]. In general, completion is an ill-posed prob-

lem without any assumptions. However, if we have useful

prior knowledge or assumptions regarding the data struc-

ture, completion can be treated as a well-posed optimization

problem, such as convex optimization. The assumption of

the structure is also referred to as a “model.”

The methods for modeling matrices/tensors can be cate-

gorized into two classes. In the first class, the methods di-

rectly represent data with the matrices/tensors themselves

and some structures of the matrices/tensors are assumed,

such as low-rank [2, 3, 1, 9, 16] and smooth properties

[32, 11].

This work was supported in part by JSPS Grant-in-Aid for Sci-

entific Research on Innovative Areas (Multidisciplinary Computational

Anatomy): JSPS KAKENHI Grant Number 26108003 and 15K16067.

By contrast, the methods in the second class “embed”

the data into a high-dimensional feature space and it is as-

sumed that the data can be represented by low-rank or a

smooth manifold in the embedded space [17, 25, 6, 18] (see

Figure 1). Typically, a time series is represented by a “Han-

kel matrix” (see Section 2.1.1) and its low-rank property has

been employed widely for modeling a linear time-invariant

system of signals [25, 18]. For example, Li et al. [15] pro-

posed a method for modeling damped sinusoidal signals

based on a low-rank Hankel approximation. Ding et al. [6]

proposed the use of rank minimization of a Hankel matrix

for the video inpainting problem by assuming an autore-

gressive moving average model. Figure 2 shows an example

of occlusion recovery for a noisy time series, which indi-

cates that total variation (TV) and quadratic variation (QV)

regularization methods reconstruct a flat estimator, whereas

minimization of the Hankel matrix (our proposed method)

successfully reconstructs the signal.

In the proposed method, the incomplete input data are

not represented as a Hankel matrix, but instead they are

represented as a “higher order Hankel tensor” via multi-

way embedding with delay/shift along the time/space axes,

and we solve the low-rank tensor completion problem in

the embedded space. The minimization of the rank of a

matrix/tensor is NP-hard [10] and the problem is often re-

laxed to nuclear-norm minimization [20]. A disadvantage

of the relaxation to nuclear norm minimization is that it de-

creases the rank of the resultant matrix/tensor as well as the

total component values in the matrix/tensor. In particular,

nuclear norm minimization often obtains “dark” signals in

denoising tasks. Thus, we employ Tucker decomposition

for low-rank modeling of the higher order Hankel tensor

completion.

The Tucker-based tensor completion is a non-convex op-

timization problem, and the existing methods usually have

difficulty for selecting the step-size parameter. In this study,

we propose to use an auxiliary function-based approach,

where it improves the convergence characteristics of the op-

timization process. Moreover, we propose a rank increment

scheme for determining the appropriate multi-linear tensor
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Figure 1: Lorentz system and its delay embedded space:

A time series signal x(t) can be embedded into a three-

dimensional space with individual axes of x(t), x(t + 1),
and x(t + 2). Clearly, most of the points are located on

some hyper-plane (i.e., low-rank) in the embedded space.
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Figure 2: Recovering a dynamical signal using the proposed

method (τ = 50), TV regularization, and QV regulariza-

tion.

ranks. According to our extensive experiments, the pro-

posed method is highly suitable for tensor completion (e.g.

recovery of “Lena” from only 1% of the randomly sampled

voxels) and it outperforms state-of-the-art tensor comple-

tion methods.

1.1. Notations

A vector is denoted by a bold small letter a ∈ R
I . A ma-

trix is denoted by a bold capital letter A ∈ R
I×J . A higher-

order (N ≥ 3) tensor is denoted by a bold calligraphic letter

A ∈ R
I1×I2×···×IN . The ith entry of a vector a ∈ R

I is de-

noted by ai, and the (i, j)th entry of a matrix A ∈ R
I×J is

denoted by aij . The (i1, i2, ..., iN )th entry of an N th-order

tensor A is denoted by ai1i2···iN , where in ∈ {1, 2, ..., In}
and n ∈ {1, 2, ..., N}. The Frobenius norm of an N th-order

tensor is defined by ||X ||F :=
√∑

i1,i2,...,iN
x2
i1i2···iN

.

A mode-k unfolding (matricization) of a tensor X is

denoted as X(k) ∈ R
Ik×Πn 6=kIn . A mode-k multipli-

cation between a tensor X ∈ R
I1×I2×···×IN and a ma-

trix/vector A ∈ R
R×Ik is denoted by Y = X ×k A ∈

R
I1×···×Ik−1×R×Ik+1×···×IN , where the entries are given

by yi1···ik−1rik+1···iN =
∑

ik
xi1···ik−1ikik+1···iNarik , and

we have Y (k) = AX(k).

If we consider N matrices U
(n) ∈ R

In×Rn and an N -

th order tensor G ∈ R
R1×R2×···×RN , then the multi-linear

tensor product is defined as

G × {U} := G ×1 U
(1) ×2 U

(2) · · · ×N U
(N). (1)

Moreover, a multi-linear tensor product excluding the n-th

mode is defined as

G ×−n {U} := G ×1 U
(1) · · · ×n−1 U

(n−1)

×n+1 U
(n+1) · · · ×N U

(N). (2)

When we consider Tucker decomposition, G and U
(n) in

Eq. (1) are referred to as the core tensor and factor matrices,

respectively.

2. Proposed method

In this study, we assume a low-rank structure of a higher

order Hankel tensor given by the MDT, which is defined in

Section 2.1. We denote this byH(·). The proposed method

is conceptually quite simple where it comprises three steps:

(1) MDT, (2) low-rank tensor approximation, and (3) in-

verse MDT.

Let T ∈ R
I1×···×IN and Q ∈ {0, 1}I1×···×IN be the

input incomplete tensor and its mask tensor, respectively,

and the first step is given by

T H = H(T ) ∈ R
J1×···×JM , (3)

QH = H(Q) ∈ {0, 1}J1×···×JM , (4)

where M ≥ N .

In the second step, we obtain a low-rank approximation

of T H based on the Tucker decomposition model. For ex-

ample, we first consider the following optimization prob-

lem:

minimize
G,{U(m)}M

m=1

||QH ⊛ (T H − G × {U})||2F , (5)

s.t. G ∈ R
R1×···×RM ,U (m) ∈ R

Jm×Rm(∀m),

where Rm ≤ Jm(∀m).
Finally, the resultant tensor can be obtained by the in-

verse MDT of Tucker decomposition:

X̂ = H−1(G × {U}). (6)

2.1. MDT

2.1.1 Standard delay embedding transform

In this section, we explain the delay embedding opera-

tion. For simplicity, we first define a standard delay em-

bedding transform for a vector, which can be interpreted
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as a time-series signal. Let us consider a vector v =
(v1, v2, ..., vL)

T ∈ R
L, a standard delay embedding trans-

form of v with τ is given by

Hτ (v) :=




v1 v2 · · · vL−τ+1

v2 v3 · · · vL−τ+2

...
...

. . .
...

vτ vτ+1 · · · vL


 ∈ R

τ×(L−τ+1).

(7)

Thus, a standard delay embedding transform produces a du-

plicated matrix from a vector, where this is also referred

to as “Hankelization” since Hτ (v) is a Hankel matrix. If

S ∈ {0, 1}τ(L−τ+1)×L is a duplication matrix that satisfies

vec(Hτ (v)) = Sv, (8)

then the standard delay embedding transform can be ob-

tained by

Hτ (v) = fold(L,τ)(Sv), (9)

where fold(L,τ) : Rτ(L−τ+1) → R
τ×(L−τ+1) is a folding

operator from a vector to a matrix.

Next, we consider an inverse transform of standard de-

lay embedding. The forward transform can be decomposed

into duplication and folding, so the inverse transform can

also be decomposed into the individual corresponding in-

verse transforms: a vectorization operation and the Moore–

Penrose pseudo-inverse S
† := (ST

S)−1S
T . Thus, the in-

verse delay embedding transform for a Hankel matrix V H

can be given by

H−1
τ (V H) = S

†vec(V H). (10)

Figure 3 shows an example of the delay embedding trans-

form for a vector, duplication matrix, and its inverse trans-

form. We can see that the duplication matrix comprises

multiple identity matrices. It should be noted that the di-

agonal elements of (ST
S) comprise the numbers of dupli-

cations for individual elements, which are usually τ , but low

for marginal elements.

2.1.2 Tensor extension

We now define the MDT for an N -th order tensor X ∈
R

I1×I2×···×IN . The MDT of X with τ ∈ N
N is defined by

Hτ (X ) = fold(I,τ )(X ×1 S1 · · · ×N SN ), (11)

where fold(I,τ ) : R
τ1(I1−τ1+1)×···×τN (IN−τN+1) →

R
τ1×(I1−τ1+1)×···×τN×(IN−τN+1) constructs a 2N -th or-

der tensor from the input N -th order tensor. In a similar

manner to how the vector delay-embedding is a combina-

tion of linear duplication and folding operations, the MDT

(a) Delay embedding transform (b) Duplication matrix

(c) Inverse transform

Figure 3: A delay embedding transform for a vector.

(a) Single-way delay embedding (the first mode)

(b) Multi-way delay embedding

- Duplication step - - Folding step -

- Duplication step - - Folding step -

Figure 4: Multi-way delay embedding transform for a ma-

trix. Single-way and multi-way delay embedding trans-

forms convert a matrix into third and fourth order tensors,

respectively.

is also a combination of multi-linear duplication and multi-

way folding operations. Figure 4 shows flowcharts to il-

lustrate single-way and multi-way delay embedding for a

matrix. Finally, the inverse MDT for a Hankel tensor XH

is given by

H−1
τ

(XH) = unfold(I,τ )(XH)×1 S
†
1 · · · ×N S

†
N , (12)

where unfold(I,τ ) = fold−1
(I,τ ).

2.2. Tucker decomposition algorithms

In this section, we explain the algorithm for solving

Problem (5). It should be noted that Problem (5) is not con-

vex, its solution is not unique, and it is not easy to obtain its

global solution [13]. In the case of Tucker decomposition

without missing elements, it is known that the alternating

least squares (ALS) [5] can efficiently obtain its stationary

point. In the case with missing elements, algorithms for ob-

taining solutions have been proposed that use the gradient

descent method [8] and manifold optimization [14, 12] in

recent years. Gradient descent is usually slow to converge
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and manifold optimization can accelerate it by correcting its

update direction on the manifold. However, a common issue

with both methods is step-size parameter selection because

the convergence time is sensitive to the step-size parameter.

We also propose to use an “auxiliary function” based ap-

proach to perform Tucker decomposition with missing ele-

ments. The proposed algorithm is very simple but efficient

because the ALS can be incorporated and it has no adjusting

parameters. First, we define the original cost function and

auxiliary function by

f(θ) := ||QH ⊛ (T H −X θ)||
2
F , (13)

h(θ|θ′) := ||QH ⊛ (T H −X θ)||
2
F

+ ||QH ⊛ (X θ′ −X θ)||
2
F , (14)

where θ = {G,U (1), ...,U (M)} is a set of parameters,

QH = 1 −QH represents a complement set of QH , and

X θ = G × {U} is a Tucker decomposition. Clearly, we

have

h(θ|θ) = f(θ), and h(θ|θ′) ≥ f(θ) (θ 6= θ′). (15)

Let us consider the following algorithm

θk+1 = argmin
θ

h(θ|θk), (16)

where the cost function is monotonically non-increasing

since we have

f(θk) = h(θk|θk) ≥ h(θk+1|θk) ≥ f(θk+1). (17)

It should be noted that θk+1 only has to satisfy h(θk|θk) ≥
h(θk+1|θk) to have a non-increasing property. Furthermore,

the auxiliary function can be transformed by

h(θ|θk) = ||QH ⊛ (T H −X θ)||
2
F

+ ||QH ⊛ (X θk −X θ)||
2
F

= ||(QH ⊛ T H +QH ⊛X θk)

− (QH +QH)⊛X θ||
2
F

= ||T̃
k

H −X θ||
2
F , (18)

where T̃
k

H = QH⊛T H+QH⊛X θk . Thus, the minimiza-

tion of the auxiliary function itself can be regarded as the

standard Tucker decomposition without missing elements,

which can be solved efficiently using the ALS.

In practice, the proposed algorithm comprises the fol-

lowing two steps: (1) calculate the auxiliary tensor by

Z ←QH ⊛ T H +QH ⊛X θk ; (19)

and (2) update G and {U (m)}Mm=1 using the ALS [5] to

optimize

minimize
G,{U(m)}M

m=1

||Z − G × {U}||2F ,

s.t. U
(m)T

U
(m) = IRm

(∀m). (20)

Algorithm 1 Tucker-based tensor completion

1: input: T ∈ R
J1×···×JM , Q ∈ {0, 1}J1×···×JM , and

(R1, ..., RM ).

2: initialize: G ∈ R
R1×···×RM , and {U (m) ∈

R
Jm×Rm}Mm=1, randomly.

3: repeat

4: X ← G × {U};
5: Z ←Q⊛ T +Q⊛X ;

6: for m = 1, ...,M do

7: Y ← Z ×−m {U
T };

8: U
(m) ← Rm leading singular vectors of Y (m);

9: end for

10: G ← Z × {UT };
11: until convergence

12: output: G,U (1), ...,U (M);

The orthogonality constraint for each U
(m) supports the

uniqueness of the solution for Tucker decomposition and it

does not change the reconstructed tensor from the original

optimization problem. Finally, the proposed Tucker-based

tensor completion is summarized in Algorithm 1. Algo-

rithm 1 updates U (m) and G for only one cycle of the ALS,

and it does not achieve a strict minimization of the auxiliary

function. However, it is guaranteed to decrease the auxiliary

function because each update obtains the global minimum

of the sub-optimization problem of (20) with respect to the

corresponding parameter. Thus, Algorithm 1 still has the

monotonic convergence property.

2.3. Tucker decomposition with rank increment

A difficult and important issue with the Tucker-based

tensor completion method is determining an appropriate

rank setting (R1, ..., RM ). If we aim to obtain the lowest

rank setting for sufficient approximation, the rank estima-

tion problem can be considered as

minimize
(R1,...,RM )

∑

m

Rm,

s.t. ||QH ⊛ (T H −X )||2F ≤ ǫ, (21)

rank(X ) = (R1, ..., RM ),

where ǫ is a noise threshold parameter. However, we do

not know the existence of the unique solution (R∗
1, ..., R

∗
M )

for Problem (21) and it will be dependent on ǫ. Further-

more, even if the best rank setting is unique, the resultant

low-rank tensor X ∗ is not unique. To address this issue,

we propose the use of a very important strategy called the

“rank increment” method. Figure 5 provides a flowchart to

illustrate the concept of Tucker decomposition with/without

rank increment. The rank increment strategy has been dis-

cussed in several studies of matrix and tensor completion

[19, 7, 22, 24, 27, 30], but the present study is its first
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Figure 5: Conceptual illustrations of the proposed methods.

application to Tucker-based completion to the best of our

knowledge. The main reason for using the rank increment

method is the non-uniqueness of the solution for the tensor

X . Thus, the resultant tensor depends on its initialization.

The main feature of the rank increment method is that the

tensor should be initialized by a lower rank approximation

than its target rank. Based on this strategy, the proposed

algorithm can be described as follows.

• Step 1: Set initial Rm = 1 for all m.

• Step 2: Obtain G and {U (m)}Mm=1 with (R1, ..., RM )
using Algorithm 1 and obtain X = G × {U}.

• Step 3: Check the noise condition ||QH ⊛ (T H −
X )||2F ≤ ǫ, where the algorithm is terminated if it is

satisfied; otherwise, go to the next step.

• Step 4: Choose the incremental mode m′ and incre-

ment Rm′ , and then go back to step 2.

The problem is how to choose m′ and how to increase the

rank Rm′ . We propose choosing m′ using the “m-th mode

residual” of the cost function, which is defined as a residual

on the multi-linear subspace spanned by all the factor matri-

ces excluding the m-th mode factor. This is mathematically

formulated as:

m′ = argmax
m

||(QH ⊛ (T H −X ))×−m {U
T }||2F .

(22)

We can interpret this as meaning that the selected m′-th

mode has a high expectation of cost reduction when Rm′

increases while the other-mode ranks remain fixed.

For the rank increment process, we consider the rank se-

quences for individual modes. For example, the rank se-

quence for the m-th mode is set as Lm = [1, 2, 4, 8, ..., Jm]
because the contribution rates of the singular vectors usually

decrease exponentially. Thus, a small rank increment is im-

portant for the phase of a low-rank approximation, whereas

a small rank increment is not effective for the phase of a rel-

atively high-rank approximation. Large rank steps for the

high-rank phase help to accelerate the algorithm, but they

should be selected carefully because excessively large rank

steps may lead to problems with non-unique solutions. The

Algorithm 2 Tucker-based tensor completion with rank in-

crement

1: input: T ∈ R
J1×···×JM , Q ∈ {0, 1}J1×···×JM ,

{L1, ...,LM}, ǫ, tol.

2: initialize: km ← 1, Rm ← Lm(km) (∀m), G ∈

R
R1×···×RM , and {U (m) ∈ R

Jm×Rm}Mm=1;

3: X ← G × {U};
4: f1 ← ||Q⊛ (T −X )||2F ;

5: repeat

6: Do lines 5-10 in Algorithm 1;

7: X ← G × {U};
8: f2 ← ||Q⊛ (T −X )||2F ;

9: if |f2 − f1| ≤ tol then

10: X̃ ←Q⊛ (T −X );

11: m′ ← argmaxm ||X̃ ×−m {U
T }||2F ;

12: km′ ← km′ + 1, and Rm′ ← Lm′(km′);
13: else

14: f1 ← f2;

15: end if

16: until f2 ≤ ǫ

17: output: G,U (1), ...,U (M);

proposed method for Tucker-based tensor completion with

rank increment is summarized in Algorithm 2.

3. Experiments

3.1. Verification of the proposed method using a
typical color image

First, in our experiments, we tried to fill the missing

slices in a typical color image by using MDT and fixed

rank Tucker decomposition. The input image is depicted

in Figure 5. We set τ = (32, 32, 1) and a (256, 256, 3)
color image was converted into a (32, 225, 32, 225, 1, 3)
tensor. The fifth mode can be ignored so this Hankel

tensor was regarded as a fifth-order tensor with a size of

(32, 225, 32, 225, 3). Figure 6 shows the images obtained

with various settings for the rank parameter. Clearly, low-

rank Tucker decomposition with the Hankel tensor success-

fully filled the missing area. However, an important is-

sue is how to treat the difference between the meanings

of (R1, R3) and (R2, R4). The fundamental difference be-

tween (R1, R3) and (R2, R4) is due to the window sizes of

32 and 225. Thus, it should be noted that a lower (R1, R3)
may contribute to the representation of the local structure

(e.g., smoothness), whereas a lower (R2, R4) may con-

tribute to the representation of the global structure (e.g., re-

cursive textures) of the image. In Figure 6, when we com-

pare two flows from the bottom right to the top right, and

from the bottom right to the bottom left, the low-rankness

of (R2, R4) is clearly more important than that of (R1, R3)
for recovering the missing area.
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Figure 6: Results obtained by fixed rank MDT Tucker de-

composition with τ = (32, 32, 1) for various rank settings.

(1,1,1,1,3) (1,2,2,2,3) (4,8,4,8,3) (8,32,4,16,3) (32,225,32,225,3)Missing

Figure 7: Results obtained by rank increment MDT Tucker

decomposition with τ = (32, 32, 1).

Next, we tried to fill missing color images using MDT

and Tucker decomposition with the rank increment method.

The rank sequences for the proposed method were set

as L1 = L3 = (1, 2, 4, 8, 16, 24, 32), L2 = L4 =
(1, 2, 4, 8, 16, 32, 64, 96, 128, 160, 192, 225), and L5 = 3.

Figure 7 shows the main flow for the processed images us-

ing the proposed method. Using the rank increment method,

we first obtained a Tucker decomposition with a very low-

rank setting (e.g., rank-one tensor) and a higher-rank de-

composition was then obtained by using the previous lower-

rank decomposition for its initialization. We repeatedly ob-

tained a higher-rank decomposition until the residual was

sufficiently small. Thus, the rank increment method auto-

matically selected an appropriate rank setting.

3.2. Comparison using color images

We compared the performance of the proposed method

with those of state-of-the-art tensor completion algorithms:

HaLRTC (nuclear-norm regularization) [16], TV regular-

ization [32], nuclear-norm and TV regularization (LR&TV)

[28], STDC (constrained Tucker decomposition) [4], and

SPCQV (constrained PARAFAC tensor decomposition)

[30]. We prepared six missing images for this experiment.

The first image had 11 continuous missing slices along the

vertical axis. Several horizontal and vertical slices and

many voxels were missing from the second image. Random

... ... ...

t=1 t=2 t=T
missing time points (1~5)

Figure 9: Missing time frames in functional magnetic reso-

nance images.

t=44

t=45

t=46

t=47

t=48

t=49

t=50

Original Missing HaLRTC TV reg. LR&TV STDC SPCQV Proposed

Figure 10: Results recovered for functional magnetic reso-

nance image slices.

vertical and horizontal slices were missing from the third

and fourth images. In addition, 95% and 99% of the ran-

dom voxels were missing from the fifth and sixth images,

respectively.

Figure 8 shows the experimental results obtained after

the completion of various incomplete images. Magnified

regions are depicted at the bottom right in the first to fourth

images. HaLRTC recovered random missing voxels for the

second image, but it failed to recover the missing slices for

all of the images. The TV regularization and LR&TV reg-

ularization methods filled the missing areas, but the recov-

ered areas were unnaturally flat. STDC failed to recover

the missing slices and SPCQV retained “shadows” of the

missing slices. By contrast, the proposed method recovered

most of the missing slices without shadows. For the image

with 95% missing voxels, the proposed method and SPCQV

obtained similar results. However, for the image with 99%

missing voxels, the result obtained by the proposed method

was much better than that by SPCQV. Table 1 shows the

peak signal-to-noise ratio (PSNR) and structural similarity

(SSIM) [26] for these comparisons, where the best PSNR

and SSIM values are emphasized in bold font. According

to this quantitative evaluation, the proposed method per-

formed better than the state-of-the-art methods in terms of

the PSNR, and the results in terms of the SSIM were very

competitive with SPCQV for some of the images.
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Missing HaLRTC TV reg. LR&TV reg. STDC Proposed methodSPCQVOriginal

Figure 8: Color images completed with various methods. Six missing color images were artificially generated comprising:

slice missing case “facade 1,” slice+voxel missing case “facade 2,” random slice missing cases “house’ and “peppers,” and

random voxel missing cases “Lena (95%)’ and “Lena (99%)’.

Table 1: Comparisons of the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) after color image completion.

(PSNR,SSIM) HaLRTC TV reg. LR&TV reg. STDC SPCQV Proposed

facade 1 (19.31,0.937) (30.08,0.964) (30.18,0.964) (24.03,0.958) (30.04,0.972) (36.52,0.988)

facade 2 (16.03,0.852) (24.28,0.838) (24.47,0.842) (17.89,0.826) (25.65,0.916) (26.96,0.916)

house (8.81,0.271) (26.75,0.909) (26.70,0.913) (20.65,0.624) (27.04,0.909) (27.50,0.908)

peppers (9.92,0.288) (25.84,0.877) (25.81,0.885) (21.61,0.662) (26.59,0.888) (27.62,0.898)

Lena (5%) (9.63,0.145) (20.86,0.626) (20.89,0.621) (22.07,0.596) (23.52,0.700) (23.57,0.738)

Lena (1%) (5.32,0.021) (15.47,0.440) (15.49,0.443) (12.75,0.089) (18.49,0.508) (19.68,0.565)

3.3. Comparison using fMRI images

In the next experiment, we tried to recover continuous

missing time frames in fMRI images. Figure 9 shows

the image prepared with missing data. There were 94

time frames of the fMRI slices and one to five continu-

ous time frames were removed. The size of the tensor was

(64 × 64 × 94). We applied the proposed method with

τ = (2, 2, 32) for the given tensor. The rank sequences

were set as L1 = L3 = (1, 2), L2 = L4 = L6 =
(1, 2, 4, 8, 16, 32, 63), and L5 = (1, 2, 4, 8, 16, 32).

Figure 10 shows the results of this experiments. Simi-

lar to the color image experiments, the ordinary low-rank
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Table 2: SNR and mean SSIM after the completion of fMRI slices.

# of missing slices HaLRTC TV reg. LR&TV reg. STDC SPCQV Proposed

1 (20.15,0.991) (23.13,0.992) (23.16,0.993) (23.30,0.993) (24.20,0.994) (23.25,0.994)

2 (14.71,0.982) (16.20,0.982) (16.29,0.984) (17.09,0.985) (17.80,0.985) (18.45,0.987)

3 (14.02,0.973) (15.20,0.972) (15.17,0.974) (15.99,0.977) (16.58,0.976) (14.54,0.978)

4 (12.17,0.964) (12.45,0.962) (12.46,0.964) (12.43,0.966) (12.98,0.966) (14.08,0.970)

5 (11.31,0.955) (11.41,0.952) (11.59,0.956) (11.59,0.957) (12.15,0.957) (13.85,0.964)

model could not recover the missing slices. TV regular-

ization obtained flat results and LR&TV regularization pro-

duced similar results. STDC and SPCQV obtained some

improvements compared with the convex methods, but they

were still unclear. By contrast, the results obtained by the

proposed method were very clear, although their accuracy

was not high. Table 2 shows the signal-to-noise ratio (SNR)

and mean SSIM results obtained for all of the completion

methods, which demonstrates that the proposed method per-

formed better than the state-of-the-art methods in terms of

the mean SSIM measure and it was also very competitive in

terms of the SNR.

4. Discussion

4.1. Novelty and contributions

4.1.1 Low-rank model in embedded space

The idea of tensor completion using MDT and its inverse

transform is novel. Most of the existing methods for tensor

completion are based on structural assumptions in the sig-

nal space, such as nuclear-norm regularization and TV reg-

ularization. By contrast, our method considers a structural

assumption in the embedded space, which can be regarded

as a novel strategy for the tensor completion problem. Fur-

thermore, we employ delay-embedding in this approach and

it is extended it in a multi-way manner for tensors.

4.1.2 An auxiliary function-based approach for Tucker

decomposition of a tensor with missing elements

The auxiliary function-based algorithm for Tucker decom-

position is efficiently employed. The existing algorithms

used for the Tucker decomposition of a tensor with missing

elements [8, 14, 12] are based on gradient methods. How-

ever the convergence speed of the gradient method is quite

sensitive to the step-size parameter. By contrast, the pro-

posed algorithm does not have any hyper-parameters and

its monotonic convergence is guaranteed by the auxiliary

function theory.

4.1.3 Model selection and uniqueness improvement by

the rank increment method

The rank increment method for the Tucker decomposition

of incomplete tensors is firstly applied in the best of our

knowledge. Several methods for estimating multi-linear

tensor ranks have been studied only for complete tensors

[23, 29]. Methods for estimating the ranks of matrix and

PARAFAC decompositions have been proposed for incom-

plete data [22, 24, 27, 30], but these methods cannot be ap-

plied to our problem. Thus, we proposed a new method

for estimating multi-linear ranks for an incomplete tensor,

where it can also handle the issue of non-unique solutions.

4.2. Computational bottleneck

The proposed method has an issue with data volume ex-

pansion due to MDT. An N -th order tensor is converted into

a 2N -th order tensor by MDT and its data size increases

roughly
∏N

n=1 τn-fold. This issue makes it difficult to apply

the proposed method to large-scale tensors and this problem

will be addressed in future research.

5. Conclusions

In this study, we proposed a novel method and algorithm

for tensor completion problems that include missing slices.

The recovery of missing slices is recognized as a difficult

problem that ordinary tensor completion methods usually

fail to solve. To address this problem, we introduced the

concept of “delay embedding” from the study of dynami-

cal systems and extended it for our problem. We showed

that missing slices can be recovered by considering low-

rank models in embedded spaces and that MDT is a good

choice for this purpose.

At present, the proposed method is very basic but it

has many potential extensions such as using different em-

bedding transformations and constrained tensor decompo-

sitions (e.g., non-negative, sparse, and smooth). The MAT-

LAB code will be available via our website1.

1https://sites.google.com/site/yokotatsuya/

home/software
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