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Abstract

In this paper, we propose a method to solve the image

restoration problem, which tries to restore the details of a

corrupted image, especially due to the loss caused by JPEG

compression. We have treated an image in the frequency

domain to explicitly restore the frequency components lost

during image compression. In doing so, the distribution in

the frequency domain is learned using the cross entropy

loss. Unlike recent approaches, we have reconstructed the

details of an image without using the scheme of adversarial

training. Rather, the image restoration problem is treated as

a classification problem to determine the frequency coeffi-

cient for each frequency band in an image patch. In this pa-

per, we show that the proposed method effectively restores a

JPEG-compressed image with more detailed high frequency

components, making the restored image more vivid.

1. Introduction

As multimedia and the Internet have become indispens-

able in our ordinary life, low quality compressed images are

used more often because the quality of images and the con-

sumption of data resource are highly correlated. In this envi-

ronment, tasks such as compression artifact removal that re-

moves artifact from a lossy-compressed image and restora-

tion of a high quality image have recently become important

areas of computer vision.

Among various image formats, JPEG is the most com-

monly used lossy image compression format. A lossy com-

pression like this reduces the volume of data by perma-

nently removing some of its information. Thus, the reverse

process of restoration of an image is basically a problem of

generating information that the input image does not have,

and is therefore an ill-posed problem. In most cases, there

are several possible output images corresponding to a given

input image and the problem can be seen as a task of select-
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Figure 1: From top to bottom, the first image is a JPEG

compressed image with quality factor 10, the second is a

restored result by our baseline method that uses a typical

encoder-decoder model whose loss function is pixel-wise

MSE. The third is a restored result of our method, which

utilizes the classifier network, trained to predict frequency

distribution of possible outputs. Our result has more detail

than that of the baseline.

ing the most proper one from all the possible outputs. That

is, the image restoration problem can be formulated as the

problem of estimating the distribution conditioned on the

input image.

Since convolutional neural networks (CNNs) have been

actively applied in the field of computer vision, there have

been many attempts to recover the lost information of an im-

age due to compression, using CNN. These methods mainly

approximate the mapping function from the input image to

the output image using CNNs in a supervised manner. In
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most cases, the mean squared error (MSE) or the mean ab-

solute error (MAE) between the output and the target im-

age is minimized. These approaches generally achieve good

performances in commonly used metrics like PSNR (peak

signal to noise ratio) and SSIM (structural similarity) [25],

but the output images are blurry for human eyes with ab-

sence of high frequency details as can be seen in the second

image of Figure 1. The reason can be attributed to the fact

that the learning method tries to minimize a loss function

like MSE and MAE, which is based on the pixel distance

between the output and the target, forcing the model to con-

verge to the mean or the median of all the possible solu-

tions [2, 24, 26, 1].

In recent years, many studies have shown good results

by applying generative adversarial networks (GAN) [7] to

the problems of lossy compression artifact removal [9, 5].

However, since training a GAN actually requires to find a

Nash equilibrium between the generator and the discrimi-

nator, the learning is unstable and difficult, thus still it is

very hard to reproduce the good results reported in the orig-

inal papers [6].

In this work, instead of using a generative model, we

treat the image restoration problem as a classification task.

The frequency distribution of the target image is directly

estimated from the input image using the cross-entropy loss

function. By using this information together with the exist-

ing encoder-decoder neural network model, the output im-

age can be brought closer to a natural image. Our method,

as shown in the third row of Figure 1, can generate more

sharp output images with realistic details. The contribution

of this paper is threefold:

1. The image restoration problem is reformulated as a

task of recovering original frequency components, thus

the viewpoint of an image is changed from the pixel

domain to the frequency domain to explicitly recover

the lost high frequency information.

2. Unlike previous works that tackle the image restora-

tion problem by solving a regression problem or by

using a generative model, we estimated the distribution

of the lost information of an image by treating this task

as a classification problem in the frequency domain.

3. Especially, the proposed method is applied to the tasks

of JPEG compression artifact removal and the results

show that our work restores high frequency compo-

nents well and produces visually satisfactory outputs.

2. Related works

Since deep neural networks (DNN) have attracted re-

searchers’ interests, many studies have been conducted to

remove the lossy compression artifacts with DNN, most of

which focused on enhancing the quality of JPEG images.

Many have attempted to solve this problem by forwarding

a lossy compressed image to a DNN to obtain a restored

image directly from the output. The work in [2] is an early

study of applying the DNN to the artifact removal, in which

a relatively light neural network was used with pairs of a

lossy compressed image and the corresponding lossless im-

age. Better results were obtained in [24] by adding a loss

function that emphasizes the edges using the Sobel filter.

Some attempts have been made to remove artifacts from

lossy compression using discrete cosine transform (DCT),

which is highly utilized in image compression algorithms

such as JPEG and MJPEG. In lossy compression, it is used

to remove high frequency components with low energy us-

ing the fact that frequency components are well separated

by frequency bands. In the case of [14, 8, 26], the compres-

sion artifact removal problem was approached from both

pixel domain and DCT domain using a neural network.

Most works in this line of research cast the image

restoration problem in the framework of regression and tried

to minimize the loss function defined as a distance in the

pixel domain, which has the disadvantage that the resul-

tant images are blurred because the neural network takes

pixel-wise average [12, 23]. Some studies have attempted

to solve this problem by using a classification framework

directly or indirectly. Zhang et al. [28] showed good per-

formances in colorization by directly classifying color pix-

els from grayscale pixels. Iizuka et al. [10] also dealt with

colorization and mitigated the disadvantages of minimizing

distance loss by mixing high level features learned in clas-

sification as prior knowledge.

GAN [7] is another way to solve this problem of artifact

removal and image quality enhancement. The work [9] ap-

plied a GAN to remove lossy compression artifacts, which

obtained better results using the GAN loss, in combination

with the perceptual loss [11] and JPEG-related loss. Galteri

et al. [5] also tackled the problem of artifact removal us-

ing the GAN. Ledig et al. [12] suggested SRGAN, a way to

create a super resolution image using a GAN, and showed

that the GAN generates more realistic images compared to

the conventional methods. However, training a GAN is very

difficult and unstable. Mescheder et al. [17] pinpoints the

difficulties of convergence of GAN with the recent training

algorithms and proposed a new methods.

Unlike the previous studies which apply GAN to solve

the problems caused by dealing with the image restora-

tion as a regression problem in the pixel domain, we utilize

not only spatial representations but also frequency repre-

sentations for the problem. More specifically, a classifica-

tion method is used for estimating the frequency distribu-

tion, which is further utilized in a regressional framework

whose loss function is based on pixel-wise distance. Also,

we propose a new architecture and training scheme to do

this efficiently.
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Figure 2: The overview of the proposed image restoration process. The proposed network is composed of an encoder (E),

a decoder (D) and a classifier (C). E outputs a feature map (blue) which are considered to have low frequency information,

while C outputs estimated frequency components for each image patch (orange). Taking the concatenation of the two as an

input, D outputs a reconstructed image. The solid line represents the forward path and the dashed line represents the loss

calculation path.

3. Estimating Frequency Distribution for Im-

age Restoration

3.1. Problem formulation

The neural network approaches to the existing artifact

removal problem mainly try to minimize the pixel-wise dis-

tance between the ground truth IG and the restored output

IR for the JPEG-compressed input IJ in the sense of MSE

[2, 24] or MAE [13]. The output images obtained with this

distance-based loss are good in the sense of MSE-based

metrics such as PSNR and SSIM, but they are blurry for

human eyes because they are learned by taking the average

of various possible solutions for IG.

This approach can be an efficient method under the as-

sumption that the true distribution p(IG|IJ) of the loss-

less image IG corresponding to the lossy-compressed im-

age IJ is unimodal. However, p(IG|IJ) is ambiguous, be-

cause the mapping from the IJ to the IR is one-to-many

function which involves in quantization in each of the fre-

quency channel.

Our goal is to create non-blurry IR, which has sharp

edges with vivid details. The proposed network tackles the

problem in the frequency domain as the problem of esti-

mating DCT coefficients q of the IG. Furthermore, instead

of using the conventional MSE loss to directly estimate a

single point q in the space of DCT coefficients, a network

is trained to estimate the distribution p(q|IJ) of q by mini-

mizing the KL-divergence;

θ = argmin
θ

DKL(p(q|I
J)‖p̂θ(q|I

J)). (1)

Here, p̂θ is the estimated distribution by the network for the

input IJ with the parameter vector θ.

The problem formulation of image restoration using KL-

divergence has an advantage over that using MSE as fol-

lows: Consider two images IG1 and IG2 result in the same

JPEG image IJ . If a network is trained to directly estimate

the target using two training samples (IJ , IG1 ) and (IJ , IG2 ),
the network never learns because only a single point IR is

outputted by the network. In this case, IR will be different

from both targets IG1 and IG2 . On the other hand, if a dis-

tribution is trained with the same samples, the network can

learn the bimodal distribution which has two peaks at IG1
and IG2 . If we take the maximal point of the distribution,

one of the peaks will be selected and a perfect restoration is

possible.

In what follows, we treat p(q|IJ) as the ground truth dis-

crete distribution of the DCT coefficient classes in each fre-

quency channel, and restore the image by using the infor-

mation on the estimated distribution p̂(q|IJ) as the input to

the traditional encoder-decoder neural network architecture.

3.2. Overview of the proposed method

Figure 2 shows the structure of the proposed method

for image restoration. As can be seen in the figure, our

compressed image restoration framework consists of three

networks: a classifier, an encoder and a decoder. Through

classification, classifier C outputs a discrete distribution p̂

which contains probability of per-patch frequency coeffi-

cient class for each frequency channel. Then the class with

maximum probability is written in ŷ. From now on, p̂ and

ŷ will be referred to as the class distribution map and esti-

mated class map, respectively. Mathematically, it becomes

p̂ = C(IJ) and ŷ = argmaxk p̂(k). By a simple mapping
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M , the estimated class map ŷ is further mapped to a map of

real frequency coefficients q̂, i.e. q̂ = M(ŷ).
The encoder E takes IJ to generate a feature map and

the decoder D produces an output image IR, which receives

the detailed frequency information from the coefficients q̂

estimated by the classifier as well as the output feature maps

from the encoder:

IR = D(E(IJ), q̂). (2)

Instead of using the adversarial training scheme, the pro-

posed method learns the network through typical supervised

learning in the frequency domain. The cross entropy loss is

used to train the classifier and the MSE loss is used to train

the encoder and the decoder, thus the learning process is

simple.

For practical reason, we define q as DCT coefficient from

Laplacian image IL of IG, not from IG. this preprocessing

can highlight the details of an image. In our method, the

wider the range of the DCT coefficient, the larger becomes

the quantization error. Using IL that has a smaller DCT co-

efficient range than IG, we can reduce the quantization error

and also can focus on detailed texture.

3.3. Classifier

As shown in Figure 3, the overall classifier network con-

sists of a feature extractor F and a multi-stage part com-

posed of T stage blocks.

The feature extractor part F creates a feature map f ∈
R

nw×nh×nf that contains spatial information of an input

image IJ ∈ R
w×h×c. The parameters nw and nh are com-

puted by nw = w
wb

and nh = h
hb

, respectively, where wb

and hb are the width and height of an image patch, w and h

are the width and height of an input image, c is the number

of input channels which is typically 1 (gray) or 3 (RGB).

Each stage block St, t = 1, · · · , T, receives the fea-

ture map f from the feature extractor. The first stage

block S1 generates a discrete class probability map p̂
(1)
ch ∈

R
nw×nh× ncl of the frequency coefficient corresponding to

each frequency channel ch of a local patch, where ncl is the

number of frequency coefficient classes per channel 1. Stage

blocks St, t = 2, · · · , T, concatenate the output p̂(t−1)of

the previous block St−1 and the feature map f from the

feature extractor as an input:

(t = 1) : p̂
(1)
ch = S1

ch(f)

(t > 1) : p̂
(t)
ch = St

ch(f, p̂
(t−1)).

(3)

Here, St
ch denotes the softmax output of the stage block St

for the frequency channel ch ∈ {1, · · · , nch} and the cor-

1If we use a 4 × 4 patch as a base block (wb = hb = 4), there are

16 frequency channels. In our implementation, we set ncl = 7, thus the

output dimension of each stage is 112 (= 16× 7) per an image patch.
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Figure 3: The architecture of the classifier. (a) is an il-

lustration of the feature extractor F and the multi stage

block St
ch. In F there are two stride 2 blocks because our

wb and hb are set to 4.(b) represents per-channel operation

of softmax, argmax, cross-entropy drawn as white box in

(a). These operations are performed separately channel by

channel.

responding p̂
(t)
ch can be interpreted as a probabilistic estima-

tion of the target class label ych.

We design the multi-stage part to consider correla-

tions between frequency channels and spatial blocks more

deeply. Table 1 is the accuracy comparison of various levels

of the stage blocks in the multi-stage classifier. As shown

in the table, the stage 2 block shows a better result than the

stage 1, but after the stage 2, the improvement is relatively

low, so we decide to use only two stages (T = 2).

The classification result ŷch ∈ R
nw×nh is obtained by
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stage 1 stage 2 stage 3

accuracy 0.3094 0.3169 0.3178

Table 1: Classification accuracy of each stage evaluated on a

three-stage classifier, trained on 96 × 96 luminance images.

taking the index of the maximum element of the p̂
(T )
ch along

the class axis as follows:

ŷch = argmax
k

(p̂
(T )
ch (k)), k ∈ {1, · · · , ncl}. (4)

The class ŷch estimated by the classifier is converted back

to the final DCT coefficient value q̂ch = Mch(ŷch) to rep-

resent the real information. Here, Mch(ŷch) is our class-to-

coefficient mapping.

We use the cross entropy loss to train the classifier. The

classification loss at each stage L
(t)
c , t = 1, · · · , T, is first

calculated as the average of the cross entropy losses in all

the spatial blocks and frequency channels using the class

distribution map p̂t and the ground truth class map y. Then,

these are averaged to define the final classification loss:

Lc =
1

T

T∑

t=1

L(t)
c . (5)

The cross entropy loss is closely related to the KL-

divergence and plays a very important role in our method in

that it matches the predicted distribution p̂ with the ground

truth frequency coefficient class y.

3.4. Encoder and Decoder

Like the classifier, our encoder-decoder architecture con-

sists of several residual blocks and convolution layers. The

structure of the encoder is exactly same as the feature

extractor(F ) of the classifier, and that of the decoder is ex-

actly symmetric with the encoder except that there is no

activation function after the output convolution layer. In

the decoder, upsampling (convolution - pixel shuffle [22] -

leaky ReLU [15]), instead of downsampling, is conducted.

The encoder E in Fig. 2 produces a feature map of an input

image, while the decoder D takes the output of the encoder

E and the result of the classifier C together as an input to

produce an output image.

The output of the classifier q̂ has frequency information

that can concatenate to the feature maps induced by the in-

put image IJ . In order for q̂ to be used appropriately to

produce the output image, the decoder needs to learn the

mapping from the frequency domain to the pixel domain.

If we use estimated q̂ in the training of D with the general

pixel-wise distance loss, the decoder has a tendency to ig-

nore q̂ and mostly rely on the feature map induced by the

input image IJ . This is due from the fact that q̂ does not

Figure 4: The effect of using ground truth q instead of clas-

sifier output q̂ for training the encoder-decoder. Both im-

ages are using the same classifier, but the encoder-decoder

is trained by different loss. The image on the right is the

output of the network trained by equation (6) using q, while

the left one is the result of the network trained by q̂ instead

of q in equation (6). In test time, both images are gener-

ated using q̂. The right one has more vivid detail and lively

edges.

have a perfect information on the target image IG because

of the classification error in C and this small but incorrect

error in the frequency domain can cause large errors in each

pixel value for the entire patch.

However, if we use the exact frequency information of

the target image, the decoder can learn the mapping from

the frequency to the pixel domain correctly. Therefore, in

the training phase, instead of using the imperfect frequency

information q̂, we use q, the actual frequency information

obtained from the target image IG, in the reconstruction

loss, as follows:

Lr =
1

wh

w∑

x=1

h∑

y=1

‖D(E (IJ), q)x,y − IGx,y‖
2, (6)

where the subscript x, y indicates the pixel location. The re-

construction loss Lr is back-propagated to the encoder and

decoder and does not affect the classifier.

As shown in the Figure 4, the image reconstructed by

the network trained with ground truth q has more vivid and

natural detail. We have calculated the mean absolute values

of convolution filters in the first layer of the decoder for both

cases of using q and q̂ in the training. Then, the elements

corresponding to the feature vector f from the encoder and

the ones corresponding to the DCT coefficients q or q̂ from

the classifier are summed to yield wf and wq , respectively.

In both networks, wf is bigger than wq , but the difference

of this value wf − wq of using q̂ is about 1.74 time bigger

than that using q. Therefore, we can assume that the decoder

trained using q̂ ignores the features from the classifier much.

Since q contains DCT coefficients of the target image

IG, it is used only for training. In the test phase, the output

image IR is generated by using the estimated q̂.
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Figure 5: Comparison of restored result according to loss function used in learning. The first and second rows are image

extracted on RGB channel. The third low is result on Y channel. The QF in jpeg images means the quality factor. In every

samples, while the others’ results look blurred, ours are most clear with high frequency details and edges being the closest to

the ground truths.

4. Experiments

4.1. Experiment setting

For all the experiments in this section, our baseline (ED)

uses the encoder(E) and the decoder(D) networks without

the classifier, trained using only the corresponding recon-

struction loss. The proposed method, CED-GT, is trained

and tested with the classifier (C) and the reconstruction loss.

In this case, the ground truth DCT coefficient map q is used

for the training of E and D. For comparison, we also trained

E and D using the estimated DCT coefficient map q̂ and

name this model as CED-EST. For the classifier, the num-

ber of stage modules (T ) is set to two.

For our training data, the test set of ILSVRC 2015 [19]

which contains 105 images was chosen. For data augmen-

tation, these images were horizontally flipped and total

2 × 105 images were used for training. For test data, and

the validation sets of BSDS500 [16] and LIVE1 [20] were

used. For fair comparison with previous works, we used

MATLAB JPEG encoder as others did. Depending on the

experiment, the quality factor of 10 or 20 was used.

At the training phase, the training images were resized

to 96× 96 or 128× 128 depending on the dimension of the

network. In the test phase, full-sized images were directly

restored using the fully convolutional property of the net-

work.

To generate a label for the training of the classifier net-

work, we first extracted the luminance channel Y from the

YCbCr format of the target image and then took the Lapla-

cian to highlight the image detail. Then, the image was

divided into 4 × 4 patches. By performing DCT on each

patch, 16 channels of DCT coefficients were obtained, and

then each of the 16 coefficients was labeled to one of the 7

classes. To prohibit class imbalance problem, the DCT co-

efficient spaces are evenly separated such that each class bin

has the same number of training samples.

4.2. Qualitative result

Figure 5 is the results of the proposed method. The pro-

posed method, CED-GT, is compared with the baseline ED
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Figure 6: The distribution of some DCT coefficients of laplacian images, obtained through 2D-DCT of 8x8 image patches in

LIVE1 dataset. The 1-1 means first row, first column in frequency table. we compare the ground truth, JPEG (quality factor

10) and restored image (using baseline ED and our methods CED-GT). The distributions of our method are more similar to

the ground truths, yet baseline method ED is similar to the JPEG.

and SA-DCT [4]. The grayscale model of AR-CNN [2] by

the author, which is publicly available is also used for com-

parison. Compared to the source image JPEG-10, the output

of ED is closer to the ground truth image, but the details still

look burred. The proposed CED-GT shows the best result,

hardly distinguishable from the ground truth with bare eyes.

Our method removes a block boundary effects, as well as a

ringing artifacts. For the high frequency detailed surfaces,

such as feather, flowers, the results of ours have more visu-

ally plausible texture compared with those of others. Espe-

cially, the blurry edges that the ED method generates turn

to very vivid ones in ours. Our method does not make such

a texture randomly. For the low frequency region such as

flat surface, our method does not make such a rough tex-

ture. From this, we can conjecture that the network knows

where to generates the detail or not. Furthermore, the net-

work does not just sprinkle the pattern, rather it generates

visually natural edges.

4.3. Quantitative result

Frequency distribution To show our method success-

fully restores the frequency detail, the distribution of DCT

coefficients are compared between methods. To focus on

detail, we extracted DCT coefficients on Laplacian images.

Figure 6 shows the distribution of frequency coefficients for

various frequency channels. The distribution was obtained

by applying 2D-DCT on 8 × 8 image patches of LIVE1

dataset [20]. Except the DC component (1-1 channel), the

DCT coefficients of target images are widely distributed,

whereas the distribution of JPEG image is very narrow and

concentrated near zero. This tendency is strengthened with

increasing frequency. This is because the JPEG compres-

sion absolutely removes its high frequency components in

most of the time. As shown in Figure 6, the distribution of

the images that were restored by the proposed CED-GT is

more similar to that of the target image, compared to the

ED baseline. On the other hand, the distribution of the ED

is similar to that of JPEG images, especially at high fre-

quencies.

BEF and quantitative metric For quantitative com-

parison, we adopt the well-known traditional metrics

PSNR, PSNR-B [27], and SSIM [25] scores. However,

according to the previous state of the art works using GAN

[12, 9, 5], this measurement may not be perfectly related

to human vision. It is clear that the images generated by

their methods are visually better for human than the plain

MSE-based images, but their PSNR scores are generally

lower than those of the MSE-based methods. The image

restoration problem can be seen as estimating a solution

that is plausible to human eyes, not perfectly restoring an

unknown target pixel-by-pixel. Therefore, if the human

visual evaluation is satisfied, it is acceptable to have a lower

value for MSE-related measure.

For the above reason, the PSNR score does not fit for

the assessment of modern state-of-the-art image restoration

methods. Inspired by [27], we also evaluate the generated

images in the BEF metric, which is defined by the differ-

ence in MSEs between block boundary pixels (DB(I
R))

and non-block boundary pixels (DC
B(I

R))):factor

BEF(IR) = η(DB(I
R)−DC

B(I
R)), (7)

where η is a constant that depends only on the image and

block sizes. If the boundary artifact effect is zero, there is

clearly no reason that DB(I
R) is different with DC

B(I
R).

So the lower BEF indicates lower block boundary effect.

If the BEF score is normalized by MSE of an entire im-

age (BEF/MSE), it can be a good measure of how much

boundary effect is removed. However, as we do not know

the each image’s BEF of other works, we can only derive

the lower bound of mean BEF/MSE via Jensen’s inequality,

using mean PSNR and mean PSNR-B that are provided.

Table 2 shows a quantitative comparison of various algo-

rithms on LIVE1 and BSDS500 datasets. All the quantita-
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QF Method
LIVE1 BSDS500

BEF

/MSE
> PSNR PSNR-B SSIM

BEF

/MSE
> PSNR PSNR-B SSIM

10

JPEG 0.754 27.77 25.33 0.791 0.824 27.58 24.97 0.769

*AR-CNN[2] 0.094 29.13 28.74 0.823 0.086 28.74 28.38 0.796

Galteri-MSE[5] 0.067 29.41 29.13 0.832 0.089 28.93 28.56 0.805

*Galteri-MSE[5] 0.084 29.45 29.10 0.834 0.102 29.03 28.61 0.807

*Galteri-GAN[5] 0.148 27.29 26.69 0.773 0.178 27.01 26.30 0.746

ED 0.074 29.40 29.09 0.833 0.094 28.96 28.57 0.806

CED-EST 0.076 29.40 29.08 0.832 0.094 28.95 28.56 0.805

CED-GT 0.007 26.54 26.51 0.767 0.007 26.00 25.97 0.731

20

JPEG 0.778 30.07 27.57 0.868 0.884 29.72 26.97 0.852

*AR-CNN[2] 0.178 31.40 30.69 0.890 0.180 30.80 30.08 0.868

Galteri-MSE[5] 0.122 31.70 31.20 0.896 0.180 31.09 30.37 0.876

*Galteri-MSE[5] 0.125 31.77 31.26 0.896 0.180 31.20 30.48 0.832

*Galteri-GAN[5] 0.059 28.35 28.10 0.817 0.740 28.07 27.76 0.794

ED 0.132 31.68 31.14 0.895 0.189 31.08 30.33 0.875

CED-EST 0.127 31.65 31.13 0.895 0.180 31.04 30.32 0.875

CED-GT 0.002 29.33 29.32 0.854 0.009 28.62 28.58 0.825

Table 2: The lower bound of mean BEF/MSE and other quantitative result on LIVE1 and BSDS500. All the experiments

are done with luminance images. The BEF/MSE of our CED-GT methods are quite lower than others, which means block

artifact effect is very low. For the Galteri et al. [5], the asteric (*) marked results are brought directly from their paper, and

the other ones are reproduced by ourselves. The results of AR-CNN [2] are also brought from [5]

tive experiments were done using the luminance (Y) chan-

nel of the original YCbCr images. The quality factors of

JPEG compression were 10 and 20. The proposed methods

were compared with the methods presented by Galteri et al.

[5]. The MSE version in [5] was implemented and trained

by ourselves but we could not reproduce the GAN version.

In the table, the results with ∗ mark are directly from the pa-

per [5]. Considering the MSE score we reproduce (Galteri-

MSE) is not that much different from their report (*Galteri-

MSE), we believe this comparison is plausible.

As shown in Table 2 the PSNR score of the proposed

CED-GT are lower than that of the other methods, but still

its output images are well restored and visually better than

other methods. The BEF/MSE score of CED-GT is much

lower (×5 ∼ ×10) than that of the other methods. Note that

the GAN-based method also has high BEF values which

means that block boundary effect is not treated well.

4.4. High level tasks: detection and segmentation

If the image is successfully restored, so that the image

is abundant in high frequency details, we can assume that

the image can yield better performance on high level vision

tasks, such as object detection and semantic segmentation.

We tested Faster RCNN [18] and FCN-8s [21] as a bench-

mark algorithms for object detection and semantic segmen-

tation, respectively, and compared their scores on images

generated by various methods. Note that ARCNN is tested

only on grayscale images.

Table 3 shows the result of detection and segmentation

on VOC 2007 [3]. We subsampled the VOC 2007 to collect

sample that labeled to both detection and segmentation task.

All the experiments on Table 3 is performed on this sub-

set.For both detection and segmentation tasks, the proposed

CED-GT obtained the highest scores of mAP and mIoU.

Method

Detection Segmentation

mAP

(RGB)

mAP

(Y)

mIoU

(RGB)

mIoU

(Y)

JPEG (QF 10) 0.359 0.292 0.414 0.311

SA-DCT[4] 0.485 0.426 0.456 0.363

ARCNN[2] - 0.429 - 0.375

Galteri-MSE[5] 0.519 0.438 0.462 0.378

ED 0.525 0.437 0.471 0.380

CED-EST 0.526 0.440 0.474 0.384

CED-GT 0.550 0.440 0.475 0.389

Original 0.705 0.637 0.631 0.556

Table 3: Object detection and semantic segmentation perfor-

mance measured on the subset of Pascal VOC 2007 dataset.

5. Conclusion

In this work, we proposed a new image restoration

method that is based on the estimation of the DCT coef-

ficient distribution and showed that it can solve the JPEG

artifact removal task well. The proposed architecture uses

the typical encoder-decoder model in generating restored

image by the help of the classifier output which is an esti-

mated distribution of DCT coefficients of an image patch.

The resultant images generated by the proposed method

have good visual quality with many sharp edges. Especially,

our method is very good at removing the blocking artifacts

and restoring high frequency texture information.
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