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Abstract

We investigate a novel approach for image restoration by

reinforcement learning. Unlike existing studies that mostly

train a single large network for a specialized task, we pre-

pare a toolbox consisting of small-scale convolutional net-

works of different complexities and specialized in different

tasks. Our method, RL-Restore, then learns a policy to se-

lect appropriate tools from the toolbox to progressively re-

store the quality of a corrupted image. We formulate a step-

wise reward function proportional to how well the image is

restored at each step to learn the action policy. We also

devise a joint learning scheme to train the agent and tools

for better performance in handling uncertainty. In compar-

ison to conventional human-designed networks, RL-Restore

is capable of restoring images corrupted with complex and

unknown distortions in a more parameter-efficient manner

using the dynamically formed toolchain1.

1. Introduction

Deep convolutional neural network (CNN) has achieved

immense success, not only in high-level vision tasks, but

also low-level vision tasks such as deblurring [31, 35, 42],

denoising [6, 24], JPEG artifacts reduction [7, 9, 41] and

super-resolution [8, 19, 17, 37, 39]. In particular, good per-

formance and fast testing speed are demonstrated over con-

ventional model-based optimization methods.

Owing to the discriminative nature of CNN, most of

these models are trained to handle a specialized low-level

vision task. In JPEG artifacts reduction [7], for instance,

different networks for different compression qualities have

been designed to achieve satisfactory restoration. In the

case of super-resolution [8], it is common to have differ-

ent networks to handle different scaling factors. Some re-

cent studies [10, 37] have shown the possibility of handling

multiple distortion types or coping with different levels of

degradation at once using CNN. Nevertheless, this usually

1Codes and data are available at http://mmlab.ie.cuhk.edu.

hk/projects/RL-Restore/

comes with the expenses of using much deeper networks.

In addition, such networks process all images with the same

structure, despite some of which are inherently less difficult

and can be restored in a cheaper way.

In this paper, we explore the possibility of having

some smaller-scale but specialized CNNs to solve a harder

restoration task collaboratively. Our idea departs from the

current philosophy that one would need a large-capacity

CNN to solve a complex restoration task. Instead, we

wish to have a set of tools (based on small CNNs) and

learn to use them adaptively for solving the task at hand.

The aforementioned idea could provide new insights how

CNN can be used for solving real-world restoration tasks,

of which images are potentially contaminated with a mix of

distortions, e.g., blurring, noise and blockiness after several

stages of processing. Moreover, the new approach may lead

to parameter-efficient restoration in comparison to existing

CNN-based models. In particular, tools of different com-

plexities can be selected based on the severity of distortion.

Towards this goal, we present a framework that treats

image restoration as a decision making process by which

an agent would adaptively select a sequence of tools to pro-

gressively refine an image, and the agent may choose to stop

if the restored quality is deemed satisfactory. In our frame-

work, we prepare a number of light-weight CNNs with dif-

ferent complexities. They are task-specific aiming to handle

different types of restoration assignments including deblur-

ring, denoising, or JPEG artifacts reduction. Choosing the

order of tools is formulated in a reinforcement learning (RL)

framework. An agent learns to decide the next best tool to

select by analyzing the content of the restored image in the

current step and observing the last action chosen. Rewards

are accumulated when the agent improves the quality of the

input image.

We refer to the proposed framework as RL-Restore. We

summarize our contributions as follows:

1) We present a new attempt to address image restoration in

a reinforcement learning framework. Unlike existing meth-

ods that deploy a single and potentially large network struc-

ture, RL-Restore enjoys the flexibility of using tools of dif-
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Figure 1. (a) shows images corrupted by complex distortions. (b-c)

depict some chosen steps of the decision process to restore an im-

age by RL-Restore. At each step, a specific tool is selected by the

agent to improve the image quality. (d-e) are CNN-based results,

where (d) has comparable parameters to RL-Restore while (e) has

twice more. PSNR values are presented for better comparison.

ferent capacities to achieve the desired restoration.

2) We propose a joint learning scheme to train the agent

and tools simultaneously so that the framework possesses

better capability in coping with new and unknown artifacts

emerged in the mid of processing.

3) We show that the dynamically formed toolchain per-

forms competitively against strong human-designed net-

works with less computational complexity. Our approach

can cope with unseen distortions to certain extent. Interest-

ingly, our approach is more transparent than existing meth-

ods as it can reveal how complicated distortions could be

removed step by step using different tools.

Figure 1(b-c) illustrate a learned policy to restore an im-

age corrupted by multiple distortions, where image quality

is refined step-by-step. The results of two baseline CNN

models are depicted in Figure 1(d-e), where (d) has similar

number of parameters as ours (agent + tools applied), while

(e) has twice more. As we will further present in the exper-

imental section, RL-Restore is superior to CNN approaches

given similar complexity and it requires 82.2% fewer com-

putations to achieve the same performance as a single large

CNN.

2. Related Work

CNN for Image Restoration. Image restoration is

an extensively studied topic that aims at estimating the

clear/original image from a corrupted/noisy observation.

Convolutional neural networks (CNN) based methods have

demonstrated outstanding performance in various image

restoration tasks. Most of these studies train a single net-

work specializing on the task at hand, e.g., deblurring

[31, 35, 42], denoising [6, 24], JPEG artifacts reduction

[7, 9, 41] and super-resolution [8, 17, 19, 20, 22, 36, 37, 39].

Our work offers an alternative that is more parameter effi-

cient yet adaptive to the form of distortions.

There are several pioneering studies that deal with multi-

ple degradations simultaneously. By developing a 20-layer

deep CNN, Kim et al. [19] use a single model to handle

multi-scale image super-resolution. Guo et al. [10] build a

one-to-many network that can handle images with different

levels of compression artifacts. Zhang et al. [44] propose

a 20-layer deep CNN to address multiple restoration tasks

simultaneously, including image denoising, JPEG artifacts

reduction and super-resolution. None of these studies con-

siders mixed distortion, where a single image is affected

by multiple distortions. Different from the aforementioned

works, we are interested to explore if smaller-scale CNNs

of 3 to 8 layers could be used to jointly restore images that

are contaminated with mixed distortions.

There exist approaches [5, 11, 14] that can be used to

compress a large network to a smaller one for computational

efficiency. In the domain of image restoration, recursive

neural networks [20, 36, 37] are investigated to reduce net-

work parameters. However, the computational cost is still

high due to the large number of recursions. The objective

of our work is orthogonal to the aforementioned studies –

our framework saves parameters and computation through

learning a policy to make decision in selecting appropriate

CNNs for a task rather than compressing an existing one.

Deep Reinforcement Learning. Reinforcement learning

is a powerful tool for learning an agent making sequen-

tial decisions to maximize accumulative rewards. Early

works of RL mainly focus on robotic control [27, 38]. Re-

cently traditional RL algorithms are incorporated in deep

learning frameworks and are successfully applied in var-

ious domains such as game agents [26, 30, 33, 34] and

neural network architecture design [3, 45]. Attention is

also drawn to deep RL in the field of computer vision

[2, 4, 13, 16, 25, 28, 29, 32, 43]. For instance, Huang et

al. [16] use RL to learn an early decision policy for speeding

up object tracking by CNN. Cao et al. [4] explore deep RL

algorithms in low-level vision and apply attention mecha-

nism [29] to face hallucination. In this study, we investigate

restoration tool selection in a RL framework. The problem

is new in the literature.

3. Learning a Restoration Toolchain

Problem Definition. Given a distorted image Idis, our goal

is to restore a clear image Ires that is close to the ground

truth image Igt. The distortion process can be formulated
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Figure 2. Different toolchains for image restoration. We per-

form a preliminary test here. Given two distorted images and the

corresponding appropriate toolchains as (c) and (d), we construct

other toolchains by rearranging the order (represented by shape) or

adjusting the level (represented by color) of the selected tools. The

restored results indicate that such minor changes of a toolchain

could lead to very different performance.

as:

Idis = D(Igt); D = Dn ◦ · · · ◦ D1, (1)

where ◦ denotes function composition and each of

D1, . . . , Dn represents a specific type of distortion. In con-

trast to existing methods [6, 8, 31, 37, 41] that concentrate

on a single type of distortion, we intend to handle a mix of

multiple distortions (i.e., n > 1). For example, the final

output image may be sequentially affected by out-of-focus

blur, exposure noise and JPEG compression. In such a case,

the number of distortions n is 3, and D1, D2, D3 represent

blur, noise and compression, respectively. To address mixed

distortions, we propose to restore the corrupted image step

by step with a sequence of restoration tools.

Challenges. The task of tool selection is non-trivial and

presents unique challenges to RL. First, the choice of the

restoration type, level and the processing order all influ-

ence the final performance. An example is shown in Fig-

ure 2, where the images are corrupted by two different com-

binations of distortions. With an appropriate toolchain, as

in Figure 2 (c, d), the image quality and the Peak Signal-

to-Noise Ratio (PSNR) values are improved sequentially.

Then we slightly re-arrange the tools order as in Figure 2(b,

e) or adjust the restoration level of the tools as in Figure 2(a,

f). The results indicate that minor changes in a toolchain can

severely impact the restoration performance. Specifically,

using improper tools may lead to unnatural outputs, such as

over-sharpening in Figure 2(a) and blurring in Figure 2(f).

Even the tools are well chosen, an inappropriate order could

decrease the performance (Figure 2(b, e)). Since the se-

quence of toolchain dramatically influences the results, se-

lecting which tool to use at each step becomes crucial.

When the tools are trained on specific tasks, we en-

counter another problem that none of the tools can perfectly

handle the ‘middle state’, which refers to the intermediate

result after several steps of processing. As most distortions

are irreversible, the restoration of their mixture is not a sim-

ple composition of the corresponding restorers. New arti-

facts could be introduced in the middle states. For exam-

ple, the deblurring operation will also enhance the noises,

causing the following denoisers fail in removing the newly

introduced artifacts. The challenge is unique to our task.

To address the first challenge, we treat the sequential tool

selection problem as a Markov Decision Process (MDP) and

solve it in a deep reinforcement learning manner. To ad-

dress the second challenge, we propose a training scheme

to refine the agent and tools jointly so that the tools are

more well-informed with the middle states observable by

the agent. We first provide an overview of the proposed

framework as follows.

Overview of RL-Restore. The proposed framework aims at

discovering a toolchain given a corrupted input image. As

shown in Figure 3, RL-Restore consists of two components:

1) a toolbox that contains various tools for image restoration

and 2) an agent with a recurrent structure that dynamically

chooses a tool at each step or an early stopping action. We

cast the tool selection process as a reinforcement learning

procedure – a sequence of decision on tool selection is made

to maximize a reward proportional to the quality of the re-

stored image. Next, we first describe a plausible setting of

toolbox and then explain the details of the agent.

3.1. Toolbox

The toolbox contains a set of tools that might be applied

to the corrupted image. Our goal is to design a powerful

and light-weight toolbox, we thus restrict each tool to be

proficient in a specific task. That is, each tool is trained

only on a narrow range of distortions. To further reduce

the overall complexity, we use smaller networks for eas-

ier tasks. For the purpose of our research, we prepare 12

tools as shown in Table 1, where each tool is assigned to

address a certain level of Gaussian blur, Gaussian noise or

JPEG compression. We apply a three-layer CNN (as in [8])

for slight distortions and a deeper eight-layer CNN for se-

vere distortions. Note that the tools need not be restricted to

solve the aforementioned distortions. We made these selec-

tions since they are typically considered in the literature of

image restoration. In practice, one could design their tools

with appropriate complexity based on the task at hand.

As discussed at the beginning of Sec. 3, a finite set of

tools is not perfect to handle new artifacts emerged in mid-

dle states. To address this issue, we propose two strategies :
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Figure 3. Illustration of our RL-Restore framework. At each step t, the agent fag observes the current state St, including the current

restored image It and input value vector ṽt, which is the output of the agent at the previous step. Note that I1 represents the input image

and ṽ1 is a zero vector. Based on the maximum value of the agent’s output vt, an action at is selected and the corresponding tool is used

to restore the current image. After restoration process fr , with the newly restored image It+1 and value vector ṽt+1 = vt, RL-Restore

conducts another step of restoration iteratively until the stopping action is selected.

Table 1. Tools in the toolbox. We consider three types of distortion

and various degradation levels. Each tool is either a 3-layer CNN

or an 8-layer CNN according to the distortion it targets to solve.

Distortion Type
Distortion Level Interval

CNN

(Parameters) Depth

Gaussian Blur (σ)
[0, 1.25], [1.25, 2.5] 3

[2.5, 3.75], [3.75, 5] 8

Gaussian Noise (σ)
[0, 12.5], [12.5, 25] 3

[25, 37.5], [37.5, 50] 8

JPEG Compression (Q)
[60, 100], [35, 60] 3

[20, 35], [10, 20] 8

1) To increase robustness of the tools, we add slight Gaus-

sian noises and JPEG compression to all the training data.

2) After training the agent, all tools are jointly fine-tuned on

the basis of the well-trained toolchains. Then the tools will

be more adaptive to the agent task, and be able to deal with

middle states more robustly. We discuss the training steps

in Sec. 3.3. Experiments in Sec. 4 validate the effectiveness

of the proposed strategies.

3.2. Agent

The processing pipeline of RL-Restore is shown in Fig-

ure 3. Given an input image, the agent first selects a tool

from the toolbox and uses it to restore the image, then the

agent chooses another tool according to the previous result

and repeats the restoration process until it decides to stop.

We will first clarify some terminologies such as action, state

and reward, and then go into the details of the agent struc-

ture and restoration procedure.

Action. The action space, denoted as A, is a set of all pos-

sible actions that the agent could take. At each step t, an

action at is selected and applied to the current input im-

age. Each action represents a tool in the toolbox and there

is one additional action that represents stopping. If there

are N tools in the toolbox, then the cardinality of A is

N + 1. Hence, the output, vt, of the agent is an (N + 1)-

dimensional vector that implicates the value of each action.

Once the stopping action is chosen, the restoration proce-

dure will be terminated and the current input image will be-

come the final result.

State. The state contains information that the agent could

observe. In our formulation, the state is formulated as

St = {It, ṽt}, where It is the current input image, and ṽt

is the past historical action vector. At step 1, I1 is the input

image and ṽ1 is a zero vector. The state provides rich con-

textual knowledge to the agent. 1) The current input image

It is essential because the selected action will be directly ap-

plied to this image to derive a better restored result. 2) the

information of previous action vector ṽt, which is the out-

put value vector of the agent at t − 1 step, i.e., ṽt = vt−1,

is important too. The knowledge of the previous decision

could help the action selection at the current step. This is

found to work better empirically than using It only.

Reward. The reward drives the training of the agent as it

learns to maximize the cumulative reward. The agent is sup-

posed to learn a good policy so that the final restored image

is satisfactory. We wish to ensure that the image quality is

enhanced at each step, therefore a stepwise reward is de-

signed as follows:

rt = Pt+1 − Pt, (2)

where rt is the reward function at step t, Pt+1 denotes

the PSNR between It+1 and the reference image Igt at the

end of the t-th step restoration, and Pt represents the input

PSNR at step t. The cumulative reward can be written as

R =
∑T

t=1
rt = PT+1 − P1, which is the overall PSNR

gain during the restoration procedure, and it is maximized

to achieve optimal enhancement. Note that it is flexible to

use other image quality metrics (e.g., perceptual loss [18],

GAN loss [23]) as the reward in our framework. The inves-

tigation is beyond the focus of this paper.

Structure. At each step t, the agent assesses the value of

each action given the input state St, which can be formu-
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lated as follows:

vt = fag(St;Wag), (3)

where fag indicates the agent network and Wag denotes

its parameters. The vector vt represents the value of ac-

tions. The action with the maximum value is selected as at,

i.e., at = argmaxavt,a, where vt,a indicates the element of

value vector vt corresponding to action a.

The agent is composed of three modules as depicted in

Figure 3. The first module, named feature extractor, is a

four-layer CNN followed by a fully-connected (fc) layer

that outputs a 32-dimensional feature. The second module

is a one-hot encoder with N + 1 dimensional input and N

dimensional output, preserving the information of the pre-

vious chosen action. Note that the output is one dimension

lower than the input, because the stopping action cannot be

adopted at the previous step, and thus we simply drop the

last dimension. The outputs of the first two modules are

concatenated into the input of the third module, which is

a Long Short-Term Memory (LSTM) [15]. The LSTM not

only observes the input state, but also stores historical states

in its memory, which offers contextual information of his-

torical restored images and actions. Finally, with another fc

layer following LSTM, a value vector vt is derived for tool

selection.

Restoration. Once an action at is obtained based on the

maximum value in vt, the corresponding tool will be ap-

plied to the input image It to get a new restored image:

It+1 = fr(It, at;Wr), (4)

where fr denotes the restoration fucntion and Wr indicates

the parameters of a tool in the toolbox. If a stopping action

is selected, fr represents an identity mapping. By denoting

Idis and Ires as the input distorted image and final restored

output respectively, the overall procedure of restoration can

be expressed as:











I1 = Idis

It+1 = f(It;W ) 1 ≤ t ≤ T

Ires = IT+1,

(5)

where f = [fag; fr] and W = [Wag;Wr]. T is the step

when the stopping action is chosen. We also set a maximum

step Tmax to prevent excessive restoration. When t = Tmax

and the stopping action is not selected, we will terminate the

restoration process after the current step. In other words, we

add a constraint that T ≤ Tmax.

3.3. Training

The training of tools follows a standard setting in [19],

where a mean square error (MSE) 1

2
‖y − h(x)‖22 is mini-

mized. The ground truth image, input image and the tool

are denoted as y,x and h, respectively. As for the agent,

the training is addressed by deep Q-learning [30] since we

do not have a priori knowledge about the correct action to

choose. In the proposed framework, each element of vt is

an action value as defined in [30], so the loss function can

be written as L = (yt − vt,at
)2 where

yt =

{

rt + γmaxa′ vt+1,a′ 1 ≤ t < T

rT t = T,
(6)

and γ = 0.99 is a discount factor. We also employ a target

network f ′

ag to stabilize training, which is a clone of fag and

updates its parameters every C steps while training. In the

above formula, vt+1,a′ is derived from f ′

ag and vt,at
is from

fag . While training, episodes are randomly selected from

a replay memory, and there are two updating strategies as

proposed in [12], where ‘random updates’ refer to updating

from a random point of each episode and proceeding a fixed

number of steps, and ‘sequential updates’ indicate that all

the updates begin at the beginning of the episode and pro-

ceed to its endpoint. In [12], it is claimed that both updating

strategies have similar performance. Since our toolchain is

not too long, we simply adopt ‘sequential updates’ where

each training sequence contains an entire toolchain.

Joint Training. As discussed in Section 3.1, none of the

tools can perfectly handle the middle state, where new and

complex artifacts may be introduced in the previous steps

of restoration. In order to address this issue, we propose a

joint training algorithm, as shown in Algorithm 1, to train

the tools in an end-to-end manner so that all the tools can

learn to deal with the middle state. Specifically, for each

toolchain in a batch, the distorted image I1 is forwarded to

get a restored result IT+1. Given a final MSE loss, the gra-

dients then pass backward along the same toolchain. Mean-

while, the gradients of each tool are accumulated within a

batch, and finally an average of gradient is used to update

the corresponding tool. The above updating process is re-

peatedly conducted for a few iterations.

Implementation Details. In our implementation, the train-

ing of tools is similar to [19], where all experiments run

over 80 epochs (3.2 × 105 iterations) with a batch size of

64. The initial learning rate is 0.1 and it decreases by a

factor of 0.1 every 20 epochs. For joint training, we set

M = 64, α = 0.0001 in Algorithm 1, denoting the batch

size and learning rate respectively. The joint training runs

over 2 × 105 iterations. While training the agent, we use

Adam [21] optimizer and a batch size of 32. The maxi-

mum step Tmax is set to be 3 empirically and the size of

replay memory is chosen as 5 × 105. The updating fre-

quency C = 2, 500 so that the target network f ′

ag is copied

from the latest agent network fag every 2, 500 iterations.

The learning rate is decayed exponentially from 2.5× 10−4

to 2.5× 10−5 within 5× 105 iterations.
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Algorithm 1 Joint training algorithm (1 iteration)

Initialize counters c1, c2, . . . , cN = 0
Initialize gradients G1, G2, . . . , GN = 0
for m = 1,M do ⊲ For each toolchain

I1 ← Input image

for t = 1, T do ⊲ Forward paths

at ← fag(St)
It+1 ← fr(It, at)

end for

L← 1

2
‖Igt − IT+1‖

2
2

for t = T to 1 step −1 do ⊲ Backward paths

cat
← cat

+ 1
Gat
← Gat

+ ∂L/∂Wat

L← It · ∂L/∂It
end for

end for

for i = 1, N do ⊲ Update tools

if ci > 0 then

Wi ←Wi − αGi/ci
end if

end for

4. Experiments

Datasets and Evaluation Metrics. We perform experi-

ments on the DIV2K dataset [1], which is the most recent

large-scale and high-quality dataset for image restoration.

The 800 DIV2K training images are divided into two parts:

1) the first 750 images for training and 2) the rest 50 images

for testing. The DIV2K validation images are used for val-

idation. Training images are augmented by down-scaling

with factors of 2, 3 and 4. The images are then cropped into

63×63 sub-images, forming our training set and testing set

with 249,344 and 3,584 sub-images, respectively.

We employ mixed distortions for agent training and test-

ing. Specifically, a sequence of Gaussian blur, Gaussian

noise and JPEG compression is added to the training im-

ages with random levels. The standard deviations of Gaus-

sian blur and Gaussian noise are uniformly distributed in

[0, 5] and [0, 50], respectively, while the quality of JPEG

compression is subjected to a uniform distribution in [10,

100]. All mixed distortions are categorized into five groups,

as shown in Figure 4, from extremely mild to extremely

severe. We discard two extreme cases that are either too

easy or too hard for restoration. Training and testing are

performed on the moderate group. To further test the gener-

alization ablity, we also perform testing on mild and severe

groups that are not included in the training data.

Comparisons. We compare RL-Restore with DnCNN [44]

and VDSR [19], which are the state-of-the-art models for

image restoration and super-resolution, and both of them

are capable of handling multiple degradations. DnCNN and

VDSR share similar structure with 20 convolutional layers

while batch normalization is adopted in DnCNN. Their pa-

eǆtreŵelǇ ŵild ŵild ŵoderate severe eǆtreŵelǇ severe

TestTraiŶ

Figure 4. Different levels of distortions.

Table 2. Complexity of baselines and RL-Restore.

Model DnCNN VDSR VDSR-s RL-Restore

Parameters (×10
5) 6.69 6.67 2.09 1.96

Computations (×10
9) 2.66 2.65 0.828 0.474

Table 3. Quantitative results on DIV2K test sets.
Test Set Mild (unseen) Moderate Severe (unseen)

Metric PSNR SSIM PSNR SSIM PSNR SSIM

DnCNN 28.03 0.6503 26.42 0.5554 24.99 0.4658

VDSR 28.04 0.6496 26.40 0.5544 24.90 0.4629

VDSR-s 27.69 0.6383 25.99 0.5399 24.50 0.4505

RL-Restore 28.04 0.6498 26.45 0.5587 25.20 0.4777

rameters are over 0.6 million (shown in Table 2). In con-

trast, the complexity of RL-Restore (including the agent and

the selected tools2) is only about a third of those for DnCNN

and VDSR, with 0.19 million parameters in total. A much

larger gap can be observed on computations when we re-

fer to the number of multiplications on a 63 × 63 input

image. For a fair comparison with RL-Restore, we shrink

VDSR from 20 to 15 layers (42 filters in each layer) to form

a new baseline, named VDSR-s, which bares similar com-

plexity as RL-Restore. Following the same training strategy

in [19, 44], we first train the baselines with the agent train-

ing set. Then we fine-tune the models with both the agent

and tools training sets till convergence.

4.1. Quantitative Evaluation on Synthetic Dataset

We present quantitative results of RL-Restore and base-

lines on different test sets in Table 3. The results on mild

and moderate sets show that our approach is apparently su-

perior to VDSR-s while comparable to DnCNN and VDSR,

demonstrating that the proposed RL-Restore could achieve

the same performance as a deep CNN with much lower

complexity. It is worth noting that on severe test set RL-

Restore surpasses DnCNN and VDSR by 0.2 dB and 0.3

dB, respectively, where the distortions are not observed in

the training data. It indicates that our RL-based approach

is more flexible in handling unseen distortions, while it is

more difficult for a fixed CNN to generalize towards unseen

cases. Visual results are shown in Figure 5.

To examine the internal behaviors of RL-Restore , we

analyze the frequency of the tool selection at each step. Re-

sults are shown in Figure 6, where 0–12 on x-axis represent

the 12 tools in Table 1 and 13 is the stopping action. As can

2The complexity of toolchain is calculated under the assumption that

each tool is chosen with equal probabilities and the stopping action is ig-

nored. We do not adopt batch normalization in any model.
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Input

ϭst step
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VDSR‐s

VDSR

Mild Moderate Severe

Figure 5. Qualitative comparisons with baselines on synthetic dataset.

Figure 6. The chosen ratio of tool selection at each step.

be observed on the three charts, the tool selection is diverse,

and all tools are utilized in a different ratio. Specifically,

deblurring and denoising tools are preferred at the first step,

while denoising and de-JPEG tools are frequently chosen

at the second step. The last step tends to stop the agent

with a large probablity – 47%. Interestingly, when testing

on unseen data, the ratios of stopping action at the last step

are 60% and 38% on mild and severe test sets, respectively,

which indicates that more severe and complex distortions

require a longer toolchain to restore.

4.2. Qualitative Evaluation on RealWorld Images

In real-world cases, images are always distorted by a

variety of complex and mixed distortions with unknown

degradation kernels, making restoration tasks extremely dif-

ficult for current methods. The proposed RL-based method

may shed some light on possible solutions. When real-

world distortions (e.g., slight out-of-focus blur, exposure

noise and JPEG artifacts) are close to the training data,

the proposed RL-Restore can be easily generalized to these

problems and performs better than a single CNN model.

Input ϭst step Ϯnd step ϯrd step VDSR

;aͿ

;ďͿ

;ĐͿ

;dͿ

;eͿ

STOP

STOP

STOP

Figure 7. Results of real-world images.

Examples are shown in Figure 7, where the input images,

combined with different distortions (e.g., blurring, noise,

compression), are captured by smart phones. We directly

apply the well-trained RL-Restore and VDSR on those real-

world images, without further fine-tuning on the test data.

It is obvious that our approach, benefiting from flexible

toolchains, is more effective for restoring real-world im-

ages. Specifically, Figure 7(a, c) show that RL-Restore can

successfully deal with severe artifacts caused by exposure

and compression, while Figure 7(b, d, e) demonstrate that

our approach is able to restore a mix of blur and complex

noise. It is also worth noting that the stopping action is
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Table 4. Ablation study on toolbox’s size and toolchain’s length.
Test Set Mild (unseen) Moderate Severe (unseen)

Metric PSNR SSIM PSNR SSIM PSNR SSIM

Size

6 27.57 0.6241 25.72 0.5142 24.27 0.4291

12 27.78 0.6372 26.20 0.5441 24.97 0.4643

18 27.77 0.6361 26.17 0.5417 24.93 0.4650

Length

2 27.74 0.6264 25.99 0.5233 24.63 0.4444

3 27.78 0.6372 26.20 0.5441 24.97 0.4643

4 27.73 0.6368 26.20 0.5450 24.98 0.4663

selected by the agent when it is confident in the restored

quality (Figure 7(c, d, e)). We believe that the proposed

framework has the potential to deal with more complex real

distortions with more powerful restoration tools.

4.3. Ablation Studies

In this section, we investigate different settings of the

proposed RL-Restore, and give some insights on the choice

of hyper-parameters. To better distinguish the effectiveness

of each factor, we exclude the joint training strategy on all

the experiments below.

Toolbox Size and Toolchain Length. The capacity of

toolbox and the number of restoring actions dominate the

restoration performance. We alternatively vary the length of

toolchain and the size of toolbox. As observed in Table 4,

RL-Restore performs well with N = 12 and Tmax = 3 un-

der the current problem settings. Fewer tools and a shorter

toolchain will decrease the performance. More tools and a

longer toolchain achieve comparable performance. We at-

tribute this phenomenon to the increased difficulty in learn-

ing more complex toolchains. It is worth pointing out that

a toolchain with a length of two has a comparable PSNR as

longer toolchains on the mild test set, indicating that slight

distortions require fewer steps to restore.

Tools Training. As discussed in Sec. 3.1, we propose two

training strategies for tools to eliminate the complex arti-

facts in middle states: 1) Add slight noise and compres-

sion in the tools training data. 2) Perform joint training

with the agent. Control experiments are conducted as in Ta-

ble 5, where the ‘Original’ setting represents the baseline,

the ‘+Noise’ adopts the first strategy and the ‘+Joint’ uses

both of them. It is obvious that adding noise to the train-

ing data successfully improves the PSNR by 0.2 dB, and

joint training further pushes another 0.2 dB on all test sets,

demonstrating the effectiveness of both training strategies.

Reward Function. We experimentally find that the choice

of reward functions can largely influence the performance.

Besides the proposed stepwise reward based on PSNR,

we also investigate other reward functions: 1) stepwise

SSIM [40] where the reward is the SSIM gain at each step;

2) final PSNR where the reward is the final PSNR gain given

at the last step; 3) final MSE as in [4] where the reward is the

negative MSE in the end. We adaptively adjust the learning

rate for different rewards. As can be seen in Table 6, the

stepwise SSIM, which performs the worst on PSNR met-

Table 5. Ablation study on tools training.
Test Set Mild (unseen) Moderate Severe (unseen)

Metric PSNR SSIM PSNR SSIM PSNR SSIM

+Joint 28.04 0.6498 26.45 0.5587 25.20 0.4777

+Noise 27.78 0.6372 26.20 0.5441 24.97 0.4643

Original 27.52 0.6027 25.91 0.5119 24.81 0.4490

Table 6. Ablation study on reward functions.
Test Set Mild (unseen) Moderate Severe (unseen)

Metric PSNR SSIM PSNR SSIM PSNR SSIM

Step. PSNR 27.78 0.6372 26.20 0.5441 24.97 0.4643

Step. SSIM 26.58 0.6341 25.20 0.5368 24.18 0.4579

Final PSNR 27.71 0.6350 26.11 0.5417 24.86 0.4656

Final MSE 27.14 0.6009 25.66 0.5166 24.55 0.4470

Table 7. Ablation study on stopping action.
Test Set Mild (unseen) Moderate Severe (unseen)

Metric PSNR SSIM PSNR SSIM PSNR SSIM

w/ Stopping 27.78 0.6372 26.20 0.5441 24.97 0.4643

w/o Stopping 27.61 0.6284 26.08 0.5351 24.85 0.4589

ric, seems not to be a good choice for reward. The final

MSE is slightly better on PSNR, but performs the worst on

SSIM. The final PSNR achieves similar performance as the

proposed stepwise PSNR reward. Nevertheless, we do not

claim that PNSR is the best reward, and other evaluation

methods are also encouraged for further comparison.

Automatic Stopping. The stopping action gives the agent

the flexibility to terminate the restoration process when it

is confident about the restored results. Thanks to this flex-

ible stopping mechanism, it can prevent the images from

over restored and save much computation. To demonstrate

its effectiveness, we compare the results with/without the

stopping action. As can be observed in Table 7, the PSNR

values drop around 0.15 dB when removing the stopping

action. It is observed that the gap on mild test set is larger

than that on other test sets. This is consistent with our ex-

perience that slight distortions are easily over restored if the

agent does not stop in time.

5. Conclusion

We have presented a novel approach for image restora-

tion based on reinforcement learning. Unlike most existing

deep learning based methods, in our approach an agent is

learned to dynamically select a toolchain to progressively

restore an image that is corrupted by complex and mixed

distortions. Extensive results on synthetic and real-world

images validate the effectiveness of the proposed approach.

With its inherent flexibility, the proposed framework can be

applied to more challenging restoration tasks or other low-

level vision problems by developing powerful tools and an

appropriate reward.
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