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Abstract

Despite recent emergence of video caption methods, how

to generate fine-grained video descriptions (i.e., long and

detailed commentary about individual movements of mul-

tiple subjects as well as their frequent interactions) is far

from being solved, which however has great applications

such as automatic sports narrative. To this end, this work

makes the following contributions. First, to facilitate this

novel research of fine-grained video caption, we collected a

novel dataset called Fine-grained Sports Narrative dataset

(FSN) that contains 2K sports videos with ground-truth nar-

ratives from YouTube.com. Second, we develop a novel per-

formance evaluation metric named Fine-grained Caption-

ing Evaluation (FCE) to cope with this novel task. Consid-

ered as an extension of the widely used METEOR, it mea-

sures not only the linguistic performance but also whether

the action details and their temporal orders are correctly

described. Third, we propose a new framework for fine-

grained sports narrative task. This network features three

branches: 1) a spatio-temporal entity localization and role

discovering sub-network; 2) a fine-grained action modeling

sub-network for local skeleton motion description; and 3)

a group relationship modeling sub-network to model inter-

actions between players. We further fuse the features and

decode them into long narratives by a hierarchically recur-

rent structure. Extensive experiments on the FSN dataset

demonstrates the validity of the proposed framework for

fine-grained video caption.

1. Introduction

In spite of recent development of video captioning [37,

38, 42, 18, 30], how to automatically give a fine-grained

video description is seldom investigated. One good ex-

∗Authors contributed equally to this work.
†Corresponding Author.

Ordinary captioning :
A small group of men are seen running around a basketball 
court playing a game of basketball.

Our fine-grained captioning :
A man passes the ball to his teammate. The ball handler makes 
a three-point shot but fails. His teammate gets the rebound 
and makes a slam dunk. The defender tries to block the ball 
but does not success. 

Figure 1: Fine-grained video captioning task versus con-

ventional video captioning task. Fine-grained video caption

generates sentences with rich action details and interaction

relationships.

ample of fine-grained video description is Sports Narrative

(i.e., especially those team sports such as basketball, soc-

cer, volleyball etc.) Figure 1 shows the difference between

conventional video captioning task and fine-grained video

description. Note that a caption model can only describe

the video from a macroscopic perspective (e.g., a group of

people who are playing basketball in the video). In contrast,

fine-grained video description is keen on a much more de-

tailed comment about all subjects’ individual actions as well

as their mutual interactions in the video (e.g., a man passes

the ball to his teammate, and his teammate dribbles the ball

pass the defenders and gives a slam dunk).

For a video involves multiple interacting persons (e.g.,

team sports), the key task of fine-grained video descrip-

tion is essentially to map multiple spatio-temporal events

within the video volume, onto multiple inter-related sen-

tences. In sports video such as basketball game, however,

this renders two challenges. First, team sports usually in-

volves a large number of active subjects with complex re-

lationships (e.g., teammates, opponents, defenders) as well

as rapid changes of offensive and defensive situation and
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Figure 2: The illustration of our fine-grained video captioning model. The action modeling sub-network utilizes skeletons and

optical flows to encode the fine-grained motion details, while the relationship modeling sub-network tackles the interaction

analysis among groups. The features from two branch are fused and decoded into narratives via a hierarchically recurrent

structure.

attended location, therefore to precisely localize to the im-

portant spatio-temporal entities and discover the roles in

the activity is difficult. Several recent works attempted

to describe the video in multiple sentences [18, 43], how-

ever, in these applications video shot boundaries are notice-

able (e.g., in TACoS-MultiLevel [29], in Acticity Net Cap-

tions [18]), making it easy to generate temporal segments,

so as to generate description sentences one-by-one accord-

ingly. Also, only one subject is involved [43], which makes

it trivial to localize/attend to important movement. Second,

important actions/interactions in sports video are very lo-

cal and fine-grained (i.e., articulated movements), therefore

detailed modeling of human macro movements (i.e., trajec-

tories) as well as local skeleton motion and their mutual in-

teractions are required. Unfortunately, most of the previous

works [38, 42, 18] only extracts very coarse CNN features

for video representation.

To explicitly address these issues and pursue a practical

fine-grained sports (i.e., basketball) auto-narrative system,

this work introduces a hierarchically grouped recurrent ar-

chitecture to jointly perform spatio-temporal entities local-

ization and fine-grained motion and interaction modeling.

This network features three branches: 1) a spatio-temporal

entity localization and role discovering sub-network per-

forms team partition (role discovery) and player localiza-

tion; 2) a fine-grained action modeling sub-network en-

dowed with an enhanced human skeleton motion descrip-

tion module (i.e., with respect to previous pose recogni-

tion techniques [4]) to cope with the task of rapid moving

skeleton detection and local motion description; and 3) a

group relationship modeling sub-network for modeling in-

teractions among players. We further fuse the features and

decode them into narrative languages using a hierarchically

recurrent structure.

To kick-off sharable research in this novel area, we intro-

duce a new database, Fine-grained Sports Narrative (FSN),

which contains 2,000 NBA basketball HD videos from

YouTube website, each of which are annotated with both

timestamps and detailed descriptive paragraph. We choose

basketball video because basketball video is one of the most

challenging videos among all the sports videos, i.e., it in-

volves multiple people, interactions of different teams, de-

tails of motions, and even outside interference. In the mean-

time, we propose a novel performance evaluation metric

named Fine-grained Captioning Evaluation (FCE), which

considers not only the linguistic scores of the sentence (i.e.,

as used by previous coarse-grained video caption tasks) but

also whether the key motion and the order of the movement

is correctly judged (i.e., since these are of great importance

in sports video narration). Extensive experiments demon-

strate that the proposed novel metric better cope with the

fine-grained video captioning task.

2. Related Work

Early video captioning methods mainly consider label-

ing video with metadata [2] clustering videos and describ-

ing sentences in order to solve retrieval task. Several pre-

vious works [34, 12, 19] generate captions through a lan-

guage template. Some researchers utilize the recurrent neu-

ral networks and LSTM models as sequence decoder on

6007



image [39, 15] and video captioning. Later works [38, 9]

use CNN features to represent the whole content of the

video. [31] detect people in movies to refer to them in

their descriptions and to generate correct co-references.

Venugopalan et al. [37] proposed a new network using a

stack of LSTMs to decode the sequence of video frames

to generate the corresponding sentence, but all of these

works [42, 25, 36, 30] merely focus on single sentence de-

scription of the video, which in many cases can not narrate

the rich content of the team sports video.

To generate paragraph caption of videos, Yu et al. [43]

proposed the hierarchical recurrent neural networks (e.g.,

Hierarchical RNN), which consists of sentence generator

and paragraph generator. However, it still has some lim-

itations. First, sentences are not located in the videos

in the time domain. Second, the generated sentences are

highly correlated to the objects occurring in the scene [29].

To tackle the event localization and overlapping problem,

dense video captioning is proposed in [18, 32] inspired by

the success of dense image captioning [15, 14, 17]. Kris-

han et al. [18] apply DAPs [10] to generate event proposals

on the basis of H-RNN [43]. While this work and [3, 11, 23]

achieve good results, we notice that the caption of the video

is far from detailed (i.e., fine-grained). Their model can

only describe the video from a macroscopic perspective

(e.g., A group of people who are playing basketball in the

video), and can not describe the detailed movement occurs

in the video. We address this problem by proposing a new

fine-grained video captioning network and introducing a

new dataset FSN, which contains a detailed sports descrip-

tion.

Different from previous methods, which are not appro-

priate for handling fine-grained video captioning tasks, our

method tackles fine-grained action modeling as well as

group relationship modeling simultaneously, which enables

a new research pipeline for detailed sports video narrative

tasks.

3. Fine-grained Video Captioning Model

Our goal is to design a fine-grained video captioning

module which can narrate the details in sports video with

natural language. The main challenges in this task are: first,

detect multiple events which may occur simultaneously and

localize the discriminative regions on the field; second, rec-

ognize the articulate subtle actions of each individual; third,

learn complex relationships and complicated interactions

among the group of players.

To tackle these problems, we propose a hierarchically

grouped recurrent architecture. This network consists of

three branch: (1) a spatial-temporal event localization sub-

network generates temporal proposals for event-to-sentence

mapping and spatial associative regions for team partition

and ball localization; (2) a fine-grained action modeling

sub-network endowed with an enhanced human skeleton de-

tection module (i.e., with respect to previous pose recog-

nition techniques [4]) to cope with the task of rapid mov-

ing skeleton detection and local motion description; (3) an

group relationship modeling sub-network to model the rela-

tionship between players. Finally, we use two LSTM to fuse

the features from each branch, and a bi-directional encoder

decoder to generate natural language based on the encoded

latent feature vectors. We will describe each module in de-

tails in the following sections.

3.1. SpatialTemporal Entity Localization and Role
Discovering

For fine-grained video captioning task, the first thing is

to localize important spatio-temporal entities(i.e. the play-

ers and balls in the sports game). For localizing important

events in a video, we use DAPs [10], an off-the-shell algo-

rithm for accurately detecting events in videos, which pro-

vides us with a set of temporal proposals.

Before the model discovers the relationship between

players (i.e., to generate the caption ”A person breaks the

opponent’s defense and passes the ball to his teammate”,

the network must form the concept of ”teammate” and

”defender”), it is worthwhile localizing important seman-

tic entities, such as ball, team labels of each player. This

is similar to previous works on socially aware image/video

analysis [27, 8, 7], which solve the problem based on prob-

abilistic graph models. However, their situations only con-

tain simple interactions, the relationship is also defined ob-

scurely, while our task require more accurate partitions.

To achieve this goal, we first pre-train a fully convo-

lutional network to jointly segment out the players and

the basketball from the background. Inspired by [24], we

use the original cross-entropy loss (Lcross) combined with

a grouping loss (Lgroup) to optimize the network. Let

P = {p1,1,1, ..., pH,W,K} be the output probability map for

an input frame and pi,j,k is the predicted probability of class

k for pixel (i, j), H and W denote the spatial dimension

and K denotes the number of classes (i.e., in our case, K

= 4 where class 0 indicates background, class 1 and 2 de-

note the two team, and 3 refers to the ball, respectively).

Let y∗i,j ∈ {1, ...,K} be the target class label of pixel (i, j),
then the cross-entropy loss (Lcross) can be write as:

Lcross = −

∑H

i=1

∑W

j=1 1[y
∗
i,j = 0]logpi,j,0

∑H

i=1

∑W

j=1 1[y
∗
i,j = 0]

−

∑H

i=1

∑W

j=1 1[yy∗

i,j
6= 0]log (1− pi,j,0)

∑H

i=1

∑W

j=1 1[yy∗

i,j
6= 0]

,

(1)

where 1[·] = 1 iff the condition inside the brackets holds.

This cross-entropy loss encourages the network to predict

the correct label for each pixel so as to segment out the play-

ers from the background. To make the network group the
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players into two teams, we design another grouping loss.

Let Sn = {y1, ..., y|Sn|}, n ∈ {1, 2} be the locations of

annotated pixels which are sampled from team n, pyi,c de-

notes the inferred probability of pixel yi belonging to team

c, the grouping loss (Lgroup) is thus defined as following:

Lgroup =

2
∑

c=1

2
∑

n=1

1

|Sn|

∑

yi∈Sn

|pyi,c − ⌊
1

|Sn|

∑

yi∈Sn

pyi,c +
1

2
⌋|

+

2
∑

c=1

cos |
1

|S1|

∑

yi∈S1

pyi,c −
1

|S2|

∑

yj∈S2

pyj ,c|

(2)

the first term minimizes the variance of the predicted classes

which should be the same, while the second term maxi-

mizes the distance between different classes. The total loss

(Ltotal) is composed by the weighted sum of both loss. In

this network we weight the contribution of the cross-entropy

loss with λ1 = 1.0 and the grouping loss with λ2 = 0.1:

Ltotal = λ1Lcross + λ2Lgroup (3)

By minimizing the total loss, we obtain semantic label

for each pixel.

3.2. FineGrained Action Modeling

To make the generated sentences cover more fine details

about individual actions and more diversified, we must pro-

vide more useful information (e.g., fine-grained feature),

thus we propose an action modeling sub-network for ex-

ploring individual action information. We observe that ac-

tion details are highly correlated to player’s posture, and the

movement of the joints can be used to discern different ac-

tions. We use [4] to extract the keypoints for every player.

Skeleton Grouping To this end, our task is to encode each

extracted skeleton with rich semantic (e.g., team label) and

motion information (e.g., optical flow of each joint). In the

meantime, we need to remove the irrelevant features such

as the skeletons of the audiences. With the probability map

computed in Section 3.1, it is easy to group the skeletons

into two teams as well as remove the irrelevant background.

Let Jl = {(xl,1, yl,1) , ..., (xl,n, yl,n)} be the detected lth

skeleton joint set where (xl,i, yl,i) is the location of the ith

joint, zl ∈ Z is the assigned tags for the lth skeleton points.

Using this notation, we can then formulate our grouping ob-

jective as:

Z = argmax
z

∑

l

3
∑

k=0

δ(zl − k)
∑

i

pxl,i,yl,i,k (4)

δ[·] is the unit pulse function. We obtain the predicted tags

for each skeleton by maximizing the assigned probability.

Skeleton Motion Encoding We use optical flow to en-

code the motion of individuals, the objective is to measure

in detail the movement of each joint of players. However,

as the camera is not fixed, the computed flow fields con-

tain many noises, which are not suitable for representing

the movements of the players. To alleviate the influence

of relative motion of the camera, we compensate the cal-

culated optical flow field by subtract the estimated cam-

era velocity on x, y direction. To get the corrected optical

flow F
′ = {u′,v′}, we assume the movement of camera

only contains translation for simplifying the problem. Let

F = {u,v} denotes the original optical flow field calcu-

lated by [13], S = {s1, ..., sn} denotes the points which

belong to the background predicted in Section 3.1, (ū, v̄)
denotes the estimated velocity of the camera, then the cor-

rected optical flow
(

u′
j , v

′
j

)

for every point is re-computed

as:

ū =
1

|S|

∑

si∈S

usi v̄ =
1

|S|

∑

si∈S

vsi

u′
j = uj − ū, ∀uj ∈ u

v′j = vj − v̄, ∀vj ∈ v

(5)

With the computed skeleton joints and their associated

motion flow, we design the following individual human

skeleton movement descriptor, as inspired by [6]. Formally,

the descriptor for every joint contains 10 values, where x

and y denotes the position of the joint, cx and cy denotes

the arithmetic mean of all the joints belong to the person,

dx and dy denotes the optical flow values, bx and by de-

notes the ball location obtained by the method described

in Section 3.1, p is the confidence of the detected joint, f

∈ {−1, 1} is the team flag. The skeleton motion descriptor

is depicted in Figure 2. We sort skeletons according to the

player’s distance from the location of the basketball. For the

missing player in the scene, we use zero padding to fix the

length of the descriptor. This is analogous to dropout [33],

a simple way to resist overfitting.

The underlying design principle of the descriptor is in-

troduced as follows. Center point of the detected skeleton

can be used to computed the relative offset of each body

part, which makes the posture irrelevant to the location of

the player. Optical flow values express the motion of every

joint, and thus represent the movement (e.g., velocity and

direction) of the player, which is very essential for discern-

ing subtle actions such as ”standing” and ”walking”. Ball

location indicates how the nearby player handles the ball

(e.g., passes it to teammates or shoots it). In addition, team

flag separates the points comes from different teams, which

makes the network easier to model the interactions among

groups of players.

We reconstruct the features using a multi-layer percep-

tron network (MLP). The network contains 3 layers with

2048, 1024, 512 hidden units in each layer respectively.

To fuse the features across temporal dimension, we use a

LSTM (with 1024 hidden units), which demonstrates strong
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ability to capture long-term dependencies as well as short-

term patterns. The LSTM outputs an encoded vector at ev-

ery step, ready for input to the language generator, which

will be introduced in Section 3.3.

3.3. Group Relationship Modeling

The action modeling sub-network described above only

handles the action details of individual player, but dose not

analyze the relationships among players on interactive level.

This is insufficient for generating logical sentences that ex-

pressing the relationships among players, thus we add an-

other branch called relationship modeling sub-network for

player interation modeling. Previous works tackle this prob-

lem by building graph models [21, 41], or using hierar-

chy RNNs for high order context modeling [40]. Inspired

by [21], we use a simple yet effective way to model the re-

lationship among players.

To analyze the relationship among players, we first local-

ize all the players using [28]. Then the bounding boxes with

low confidence according to the probability map in (Sec-

tion 3.1) are discarded as we only keep 10 of them. To build

the scene graph for analyzing the relationships among all

the players, we group the 10 atomic bounding boxes (con-

tain only one player) into pairs, and merge them into larger

bounding boxes, this will generate 45 extra unique regions.

To obtain the vector representation of each region,

we fetch the last stage convolutional feature maps com-

puted by [28], and perform ROI-pooling on the feature

maps in each bounding box, the vectors are denoted as

H = {hi,j}, i, j ∈ {1, ..., 10}, where hi,j(i = j) represent

the vector from atomic bounding box only contains one

player, and hi,j(i 6= j) represent the vector from merged

bounding boxes contain more than one player. As directly

concatenating all feature vectors is computational burden-

some, we merge the feature vectors by a gate function,

which determines the weight for each vector. The merged

feature vector h̄ is computed as follows:

h̄ =
1

‖H‖

10
∑

i=1





∑

j 6=i

σ〈i,j〉 (hi,i, hi,j)hi,j + hi,i



 (6)

σ〈i,j〉 denotes the gate function, which can be unrolled as:

σ〈i,j〉 (hi,i, hi,j) = sigmoid (ω · [hi,i, hi,j ]) , (7)

where [·] denotes concatenating, ω denotes the transforma-

tion matrix, which can be optimized using standard back-

propagation algorithm. The designed gate function learns to

assign weight for different merged regions according to the

interaction pattern inside bounding box, and controls how

much the region contributes to the final averaged feature

vector. If the region does not contain any interactions or

the interactive relationship is not required to be modeling

during captioning, the gate function will out a low value,

reduce its effect for subsequent feature calculating.

To pass the useful interactive information along temporal

dimension, we use a LSTM with 1024 hidden units. This

LSTM do not share weight with the LSTM in Section 3.2,

as the features comes from different levels with different

granularities (e.g., the skeletons depict the articulated action

details, while the interaction features contain more about

group relationships).

3.4. Narrative Generation

Once we obtain the individual action feature vectors and

relationship feature vectors by above methods, the next

stage of our pipeline is to generate natural language de-

scription. Different from sentence generation, paragraph

generation must take care of the relative contexts and the

relationships between generated sentences.

The natural language generation module of our pipeline

uses an encode-decoder architecture. The encoder is a two-

layer bi-directional LSTM, which fuses the action features

and relationship features cross all frames in a video and en-

codes them into a latent space. The decoder contain a sen-

tence LSTM and a paragraph LSTM (i.e., the former gener-

ates current word according to the sentence state while the

latter provides semantic context about previous generated

sentences), See Figure 2 for illustration. During decoding,

the decoder decodes the latent vector and reasons about the

current word according to sentence context cues and para-

graph context cues. The decoder outputs a distribution P

about all words in vocabulary set at every time step:

P
(

wn
t |c1:n−1, w

n
t−1, ht−1

)

, (8)

where ht−1 denotes the hidden state from time step t − 1,

c1:n−1 denote the output of the paragraph LSTM, wn
t is the

tth word in sentence n, respectively. We train the language

generation module by minimizing the caption loss (Lcap),
which is defined as:

Lcap =−

N
∑

n=1

Tn
∑

t=1

logP
(

wn
t |c1:n−1, w

n
t−1, ht−1

)

/ N
∑

n=1

Tn,

(9)

where Tn is the number of words in the sentence n.

3.5. Training and Optimization

For training the segmentation model in Section 3.1, we

initialize the model using a Gaussian distribution with stan-

dard deviation of 0.05. Then the model is optimized by

Stochastic Gradient Descent (SGD) algorithm, with batch

size of 8. We set momentum to 0.9, and weight decay to

0.0005. The initial learning rate is set to 0.0016 and we

linearly reduce it to 0 in the following 100 epochs.

For training the action modeling sub-network, the rela-

tionship modeling sub-network and the language generation
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module, we initialize the model using a Gaussian distribu-

tion with standard deviation of 0.01, the batch size is re-

duced to 1. The initial learning rate is 0.001 and we use

Adam [16] and use default configurations to optimize it in

the following 300 epochs.We train our models on two GTX

TITAN X, it takes about 70 hours for the model to converge.

4. Fine-grained Sports Narrative Dataset and

New Evaluation Metrics

Fine-grained Sports Narrative Dataset (FSN) is a muti-

person sports video captioning dataset. Each video is an-

notated with a paragraph of detailed description consisting

of several sentences. Distinguished from the previous video

captioning datasets, which all describe the motion from a

macro perspective, this dataset focuses more on the detailed

motion of the subjects. Each sentence covers an unique seg-

ment of the video. We allow the segments to overlap in

time domain. Next, we introduce the collection process of

the dataset and present detailed statistical analysis on this

dataset. After these, we gives a detailed description of the

new evaluation metric FCE.

4.1. Dataset collection

We collect 50 original NBA HD game video on Youtube

website and split them to 6000 segments. We then remove

the videos that are too short and of poor visual quality and

select 2000 videos with detailed and diverse motions as the

final annotation videos. All the videos are of high quality

and have audio channel. Our annotation task includes two

steps. First, we make a description of the events occur in the

video according to the way used in basketball commentary

that each sentence describes one movement of the moving

subject. Second, we mark the starting and ending times of

each statement described. Since the players in basketball

videos always move very quickly, we use a dedicated anno-

tation tool to slow down the speed five times (i.e., 1/30 s per

frame) to ensure annotation accuracy.

4.2. Dataset statistics

Our dataset contains 2K videos, with an average of 3.16

labeled sentences per video, for a total of 6520 sentences.

Each video has an average of 29.7 description words. On

average, each sentence describes 1.8s in video and 29.7%

of the entire video. The whole paragraph for each video

on average describes the 93.8% of the entire video, which

demonstrate that our annotations basically covers the main

events in the video.

We make a parts of speech analysis on our dataset com-

pared with ActivityNet Captions. As is shown in Figure 3,

the FSN dataset has more verbs, which demonstrate this

fine-grained dataset pay more attention to the motion of

the subject. In Table 1, the comparison of our dataset

3%

-8%

-1%

2%-2%
9%

-2%

-1%

noun

adjective

adverb

article

preposition

verb

pronoun

conjunction

图表标题

Figure 3: The parts of speech distribution of FSN dataset

compared with ActivityNet Captions. All the values in this

figure are the differences between these two datasets in the

percentage form. There are more verbs in FSN dataset, as

this is a fine-grained captioning dataset focusing more on

detailed actions.

with MSR-VTT, M-VAD and ActivityNet Captions further

demonstrates the fine-grained details of our captioning an-

notations. FSN dataset has the most sentences per second of

0.556, while the other dataset are all below 0.1, this reflects

that our dataset are of more detailed descriptions. Further-

more, we find that our dataset has 1.67 verbs in a sentence

on average, comparing to 1.41 for ActivityNet Captioning

and 1.37 for MSR-VTT respectively. Similarly, the verb ra-

tion of our dataset which is computed by dividing verbs-per-

sentence by words-per-sentence is also much higher than

other three datasets. This demonstrates that our dataset pay

more attention to the motion of the subjects, which is con-

sistent with our objective, i.e., fine-grained video descrip-

tion.

Dataset
Sentences

per Second

Verbs per

Sentence

Verb

Ratio

MSR-VTT 0.067 1.37 14.8%

YouCook 0.056 1.33 12.5%

ActivityNet Captions 0.028 1.41 10.4%

FSN (ours) 0.556 1.67 18.3%

Table 1: Comparisons of different video caption datasets.

4.3. Evaluation Metrics

Observing the fact that previous metrics can not evalu-

ate the captions of fine-grained sports video appropriately,

we introduce Fine-grained Captioning Evaluation (FCE)

metric. To focus on motions and their temporal order, we

compute a motion penalty for a given pair of the candidate

sentence and the reference sentence. We label all the verbs

or derivation of verbs in the training dictionary and iden-

tify all the word by (cv, cn) in the candidate sentences and

(rv, rn) in the reference sentences, where we use v, n to

denote verbs and non-verbs respectively. We match the un-

igrams by the same mapping criterion used in [20]. We use

mi(cv) to represent the number of the verb unigrams that

is covered in each matcher mi and ncv for the total number

of the verbs in this translation. First, the verb precision is
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computed as the ratio of the number of the verb unigrams

in the candidate sentence that is mapped to the total number

of the verb unigrams:

Pv−m =

∑

i mi (cv)

ncv

(10)

Second, we compute the order precision which penalize the

score if the order of the verb is incorrect. We consider a

wrong order has occurred if and only if the following for-

mula is evaluates to a negative number:

[p (mi (cv))− p (mj (cv))] · [p (mi (rv))− p (mj (rv))] ,
(11)

where p(mi(cv)) denote the position of the matched uni-
gram mi(cv) in the candidate sentences and p(mi(rv)) de-
note the position of the matched unigram mi(rv) in the ref-
erence sentences. When the resulting value of the above
formula is negative, we assign Ei,j to 1. Then we sum all
the Ei,j to get the total number of the order error. We divide

the order error by
(

2
m(cv)

)

to get the ratio of order error and

then we use its complement to denote the order accuracy.
The final accuracy of the verb consists of the verb precision
and the order accuracy:

Pv−acc=

(
∑

i mi(cv)
∑

cv

)1/2

·

(

1−

∑m(cv)
i=1

∑m(cv)
j=1 Ei,j

(

2
m(cv)

)

)1/2

Ei,j =











1 if [p (mi (cv))− p (mj (cv))]

· [p (mi (rv))− p (mj (rv))] < 0

0 otherwise

(12)

We calculate the linguistic score Flin of the captioning sentence

using the method in METEOR since it has shown better correla-

tion with human subjects. Finally, the FCE Score for the given

sentence is computed as follows:

Score = Flin · Pv−acc (13)

We report scores of FCE and other traditional evaluation met-

rics such as Bleu, METEOR, Rouge-L and CIDEr-D in the fol-

lowings. We also conduct a comparison between FCE and other

traditional metrics. More details can be viewed in our supplemen-

taries. We will release our dataset as well as the evaluation tools.

5. Experiments

In this section we first evaluate our model on its ability of

generating fine-detailed descriptions. We conduct experiments on

FSN dataset, which is built specifically for this task. Next, we an-

alyze each component of our full model and, this ablation study is

very useful for identifying the effect of each module in our whole

pipeline, and find out the most important part for improving fine-

grained video captioning tasks.

5.1. Captioning Results

To evaluate the generated results, we first employ four different

traditional metrics: Bleu (B) [26], METEOR (M) [20], CIDEr-D

(C) [35], SPICE (S) [1] and Rouge-L (R) [22], we calculate the

metrics using COCO evaluation tools [5]. We compare our full

model with some state of art methods on traditional video caption-

ing task: S2VT [37], LSTM-YT [38], H-RNN [43] and DenseCap-

event [18]. The quantitative results are illustrated in Table 2, FCE

is short as F. Human evaluation is also used to make the result

more convincing and the evaluation details are in Supplementary.

We find LSTM-YT performs worse than other models as it en-

codes whole video sequences into vectors by mean pooling. This

will loss important information which are necessary for discern-

ing articulate actions. We notice although H-RNN and DenseCap-

event are able to generate fluent sentences as they take context

into account, the generated sentences contain inaccurate action de-

tails of the players. Different from previous methods, our model

generates more detailed sentences, which accurately describe fine

grained actions of the player and interactions among the group.

In addition, we also measure the generated results with

the introduced FCE metric. Comparing to METEOR, we

find a variance drop on scores among all the method

(marked with blue). While LSTM-YT drops the most
(

0.1304−0.2211
0.2211

= −41%
)

, our full model drops less severe than

other method
(

0.1944−0.2757
0.2757

= −29%
)

as it is able to generate

more accurate action details, i.e., the new metric focus more on

fine-grained actions.
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Figure 4: Visualizations of the relationships between the

number of used skeletons and the evaluation metrics. Best

viewed in colors.

5.2. Ablation Study

To analyze the effect of the incorporated skeletons, we conduct

detailed experiments on the action modeling branch. We evaluate

the captioning results of the model trained with different number

of skeletons, see Figure 4 for more details. We find that utilizing

skeleton features can greatly improve the caption results as it pro-

vides the model with more fine-detailed information. In addition,

the first few skeletons contribute the most improvement. This is

reasonable because most of our ground-truth paragraphs describe

2-3 players, which is in line with the actual narrative situation.

In addition, we also measure the effort of using optical flow
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C B@4 B@3 B@2 B@1 R M S F Human

LSTM-YT [38] 1.88 0.2663 0.2891 0.3512 0.4551 0.4508 0.2211 0.331 0.1304 (-41%) 3.207

S2VT [37] 2.10 0.2804 0.3101 0.3712 0.4762 0.4729 0.2394 0.346 0.1512 (-38%) 3.536

H-RNN [43] 2.09 0.2767 0.3043 0.3671 0.4632 0.4661 0.2331 0.342 0.1508 (-34%) 3.374

DenseCap-event [18] 2.23 0.2962 0.3327 0.3997 0.4912 0.4893 0.2522 0.358 0.1617 (-36%) 3.913

only relation (ours) 2.11 0.2817 0.3197 0.3812 0.4812 0.4822 0.2475 0.351 0.1587 (-36%) 3.211

only action (ours) 2.28 0.3070 0.3518 0.4200 0.5180 0.4933 0.2589 0.363 0.1708 (-35%) 3.854

full model (ours) 2.61 0.3445 0.3921 0.4612 0.5580 0.5350 0.2757 0.391 0.1944 (-29%) 4.224

Table 2: We report our CIDEr-D (C), METEOR (M), Bleu (B), Rouge-L (R), SPICE(S) and FCE (F) scores comparing with

other state-of-the-art methods. The drop percentage using FCE comparing with METEOR is marked in the brackets.

Reference
The ball  handler dribbles 

the ball forward and faces 

the defend of the defenders.

He raises his hands and 

passes the ball to his 

teammate.

The teammate makes a 

three-point shot and scores.

Full Model
The ball handler dribbles the 

ball forward and faces the 

defend of the opponents. 

He raises his hands and 

passes the ball to his 

teammate.

The teammate makes  a 

jump shot and scores.

Without OF
The ball handler dribbles the 

ball forward and faces the 

defenders.

The defender fails to block 

him.

The teammate makes a jump 

shot without any defense.

Reference
A man dribbles the ball the 

defenders and then passes 

the ball to his teammate.

The teammate tries to shoot 

the ball but is blocked by the 

defender

The defender gets the ball 

and passes the ball to his 

teammate.

Without TF
The ball handler dribbles the 

ball forward. 

A person raises his hands 

and passes the ball to his 

teammate.

A person shoots the ball and 

makes the basket.

Full Model
A man dribbles the ball and 

the defenders and passes 

the ball to his teammate.

The teammate tries to shoot 

the ball but the ball is 

blocked by the defender.

The defender gets the ball 

and passes it  to his 

teammate.

Without OF
A man dribbles the ball and  

passes the ball to his 

teammate.

The teammate tries to pass 

the ball but is blocked by the 

defender.

The defender gets the ball 

and dribbles the ball.

Without TF
A man dribbles the ball and 

passes the ball to another 

person.

The person tries to shoot the 

ball but is blocked by the 

defender.

The person gets the ball and 

passes the ball to teammate.

Full Model
The ball holder passes the 

ball to his teammate.

The teammate dribbles the 

ball but the ball is stolen by a 

defender.

The defender passes the ball 
to his  teammate and his 

teammate shoots the ball.

Reference
A man holds the ball and 

passes the ball to his 

teammate.

The teammate dribbles the 

ball but the ball is stolen by 

the defender.

The defender passes the ball

to his  teammate and the ball 

handler makes a jump shot.

Without OF
A man holds the ball and 

passes the ball to his 

teammate.

The teammate dribbles the 

ball forward.

The defender passes the ball

to his  teammate and the 

ball handler drives to the 

hoop.

Without TF
A man holds the ball and 

passes the ball to another 

person.

a man dribbles the ball and 

the ball is stolen by the 

defender.

A man passes the ball

to his  teammate and the 

ball handler shoots the ball.

Figure 5: Comparison of paragraphs generated by our full model with its downgraded versions (e.g., without optical flow or

team flag).

(short as OF) as well as team flag (short as TF). We find aligned

optical flow provides the model with more accurate motion infor-

mations, which are necessary for discerning articulated subtle ac-

tions, while the team flag helps the network to distinguish defend-

ers and the teammates. See Figure 5 for more qualitative results.

6. Conclusions

In this paper we propose the Fine-grained Sports Narrative

Dataset for fine-grained video captioning task. Observing the fact

that conventional evaluation metrics are not appropriate for evalu-

ating the performance, we introduce a metric named Fine-grained

Captioning Evaluation (FCE). To benchmark the dataset, we report

the performance of our method.
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