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Figure 1: Example inpainting results of our method on images of natural scene, face and texture. Missing regions are shown

in white. In each pair, the left is input image and right is the direct output of our trained generative neural networks without

any post-processing.

Abstract

Recent deep learning based approaches have shown

promising results for the challenging task of inpainting

large missing regions in an image. These methods can

generate visually plausible image structures and textures,

but often create distorted structures or blurry textures in-

consistent with surrounding areas. This is mainly due to

ineffectiveness of convolutional neural networks in explic-

itly borrowing or copying information from distant spa-

tial locations. On the other hand, traditional texture and

patch synthesis approaches are particularly suitable when

it needs to borrow textures from the surrounding regions.

Motivated by these observations, we propose a new deep

generative model-based approach which can not only syn-

thesize novel image structures but also explicitly utilize

surrounding image features as references during network

training to make better predictions. The model is a feed-

forward, fully convolutional neural network which can pro-

cess images with multiple holes at arbitrary locations and

with variable sizes during the test time. Experiments on

multiple datasets including faces (CelebA, CelebA-HQ),

textures (DTD) and natural images (ImageNet, Places2)

demonstrate that our proposed approach generates higher-

quality inpainting results than existing ones. Code, demo

and models are available at: https://github.com/

JiahuiYu/generative_inpainting.

1. Introduction

Filling missing pixels of an image, often referred as

image inpainting or completion, is an important task in

computer vision. It has many applications in photo edit-

ing, image-based rendering and computational photogra-

phy [3, 23, 28, 29, 34, 39]. The core challenge of image

inpainting lies in synthesizing visually realistic and seman-

tically plausible pixels for the missing regions that are co-

herent with existing ones.

Early works [3, 13] attempted to solve the problem us-

ing ideas similar to texture synthesis [9, 10], i.e. by match-

ing and copying background patches into holes starting

from low-resolution to high-resolution or propagating from

hole boundaries. These approaches work well especially

in background inpainting tasks, and are widely deployed in

practical applications [3]. However, as they assume miss-

ing patches can be found somewhere in background regions,

they cannot hallucinate novel image contents for challeng-

ing cases where inpainting regions involve complex, non-

repetitive structures (e.g. faces, objects). Moreover, these

methods are not able to capture high-level semantics.

Rapid progress in deep convolutional neural networks

(CNN) and generative adversarial networks (GAN) [11]

inspired recent works [15, 25, 30, 39] to formulate in-

painting as a conditional image generation problem where

high-level recognition and low-level pixel synthesis are

formulated into a convolutional encoder-decoder network,
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jointly trained with adversarial networks to encourage the

coherency between generated and existing pixels. These

works are shown to generate plausible new contents in

highly structured images, such as faces, objects and scenes.

Unfortunately, these CNN-based methods often create

boundary artifacts, distorted structures and blurry textures

inconsistent with surrounding areas. We found that this is

likely due to ineffectiveness of convolutional neural net-

works in modeling long-term correlations between distant

contextual information and the hole regions. For example,

to allow a pixel being influenced by the content of 64 pix-

els away, it requires at least 6 layers of 3 × 3 convolutions

with dilation factor 2 or equivalent [15, 40]. Nevertheless,

a dilated convolution samples features from a regular and

symmetric grid and thus may not be able to weigh the fea-

tures of interest over the others. Note that a recent work [38]

attempts to address the appearance discrepancy by optimiz-

ing texture similarities between generated patches and the

matched patches in known regions. Although improving the

visual quality, this method is being dragged by hundreds of

gradient descent iterations and costs minutes to process an

image with resolution 512× 512 on GPUs.

We present a unified feed-forward generative network

with a novel contextual attention layer for image inpaint-

ing. Our proposed network consists of two stages. The first

stage is a simple dilated convolutional network trained with

reconstruction loss to rough out the missing contents. The

contextual attention is integrated in the second stage. The

core idea of contextual attention is to use the features of

known patches as convolutional filters to process the gener-

ated patches. It is designed and implemented with convolu-

tion for matching generated patches with known contextual

patches, channel-wise softmax to weigh relevant patches

and deconvolution to reconstruct the generated patches with

contextual patches. The contextual attention module also

has spatial propagation layer to encourage spatial coherency

of attention. In order to allow the network to hallucinate

novel contents, we have another convolutional pathway in

parallel with the contextual attention pathway. The two

pathways are aggregated and fed into single decoder to ob-

tain the final output. The whole network is trained end to

end with reconstruction losses and two Wasserstein GAN

losses [1, 12], where one critic looks at the global image

while the other looks at the local patch of the missing re-

gion.

Experiments on multiple datasets including faces, tex-

tures and natural images demonstrate that the proposed ap-

proach generates higher-quality inpainting results than ex-

isting ones. Example results are shown in Figure 1.

Our contributions are summarized as follows:

• We propose a novel contextual attention layer to ex-

plicitly attend on related feature patches at distant spa-

tial locations.

• We introduce several techniques including inpainting

network enhancements, global and local WGANs [12]

and spatially discounted reconstruction loss to improve

the training stability and speed based on the current

the state-of-the-art generative image inpainting net-

work [15]. As a result, we are able to train the network

in a week instead of two months.

• Our unified feed-forward generative network achieves

high-quality inpainting results on a variety of chal-

lenging datasets including CelebA faces [26], CelebA-

HQ faces [20], DTD textures [6], ImageNet [32] and

Places2 [41].

2. Related Work

2.1. Image Inpainting

Existing works for image inpainting can be mainly di-

vided into two groups. The first group represents traditional

diffusion-based or patch-based methods with low-level fea-

tures. The second group attempts to solve the inpainting

problem by a learning-based approach, e.g. training deep

convolutional neural networks to predict pixels for the miss-

ing regions.

Traditional diffusion or patch-based approaches such

as [2, 4, 9, 10] typically use variational algorithms or patch

similarity to propagate information from the background re-

gions to the holes. These methods work well for station-

ary textures but are limited for non-stationary data such as

natural images. Simakov et al. [34] propose a bidirec-

tional patch similarity-based scheme to better model non-

stationary visual data for re-targeting and inpainting ap-

plications. However, dense computation of patch similar-

ity [34] is a very expensive operation, which prohibits prac-

tical applications of such method. In order to address the

challenge, a fast nearest neighbor field algorithm called

PatchMatch [3] has been proposed which has shown sig-

nificant practical values for image editing applications in-

cluding inpainting.

Recently, deep learning and GAN-based approaches

have emerged as a promising paradigm for image inpaint-

ing. Initial efforts [21, 37] train convolutional neural net-

works for denoising and inpainting of small regions. Con-

text Encoders [30] firstly train deep neural networks for in-

painting large holes. It is trained to complete center region

of 64 × 64 in a 128 × 128 image, with both ℓ2 pixel-wise

reconstruction loss and generative adversarial loss as the ob-

jective function. More recently, Iizuka et al. [15] improve

it by introducing both global and local discriminators as ad-

versarial losses. The global discriminator assesses if com-

pleted image is coherent as a whole, while the local dis-

criminator focus on a small area centered at the generated

region to enforce the local consistency. In addition, Iizuka

et al. [15] use dilated convolutions in inpainting network to
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replace channel-wise fully connected layer adopted in Con-

text Encoders, both techinics are proposed for increasing

receptive fields of output neurons. Meanwhile, there have

been several studies focusing on generative face inpainting.

Yeh et al. [39] search for the closest encoding in latent space

of the corrupted image and decode to get completed image.

Li et al. [25] introduce additional face parsing loss for face

completion. However, these methods typically require post

processing steps such as image blending operation to en-

force color coherency near the hole boundaries.

Several works [35, 38] follow ideas from image styliza-

tion [5, 24] to formulate the inpainting as an optimization

problem. For example, Yang et al. [38] propose a multi-

scale neural patch synthesis approach based on joint opti-

mization of image content and texture constraints, which

not only preserves contextual structures but also produces

high-frequency details by matching and adapting patches

with the most similar mid-layer feature correlations of a

deep classification network. This approach shows promis-

ing visual results but is very slow due to the optimization

process.

2.2. Attention Modeling

There have been many studies on learning spatial atten-

tion in deep convolutional neural networks. Here, we select

to review a few representative ones related to the proposed

contextual attention model. Jaderberg et al. [17] firstly pro-

pose a parametric spatial attention module called spatial

transformer network (STN) for object classification tasks.

The model has a localization module to predict parameters

of global affine transformation to warp features. However,

this model assumes a global transformation so is not suit-

able for modeling patch-wise attention. Zhou et al. [42]

introduce an appearance flow to predict offset vectors spec-

ifying which pixels in the input view should be moved to

reconstruct the target view for novel view synthesis. This

method is shown to be effective for matching related views

of the same objects but is not effective in predicting a flow

field from the background region to the hole, according to

our experiments. Recently, Dai et al. [8] and Jeon et al. [18]

propose to learn spatially attentive or active convolutional

kernels. These methods can potentially better leverage in-

formation to deform the convolutional kernel shape during

training but may still be limited when we need to borrow

exact features from the background.

3. Improved Generative Inpainting Network

We first construct our baseline generative image inpaint-

ing network by reproducing and making several improve-

ments to the recent state-of-the-art inpainting model [15]

which has shown promising visual results for inpainting im-

ages of faces, building facades and natural images.

Coarse-to-fine network architecture The network ar-

chitecture of our improved model is shown in Figure 2. We

follow the same input and output configurations as in [15]

for training and inference, i.e. the generator network takes

an image with white pixels filled in the holes and a binary

mask indicating the hole regions as input pairs, and out-

puts the final completed image. We pair the input with a

corresponding binary mask to handle holes with variable

sizes, shapes and locations. The input to the network is a

256 × 256 image with a rectangle missing region sampled

randomly during training, and the trained model can take an

image of different sizes with multiple holes in it.

In image inpainting tasks, the size of the receptive fields

should be sufficiently large, and Iizuka et al. [15] adopt di-

lated convolution for that purpose. To further enlarge the

receptive fields and stabilize training, we introduce a two-

stage coarse-to-fine network architecture where the first net-

work makes an initial coarse prediction, and the second net-

work takes the coarse prediction as inputs and predict re-

fined results. The coarse network is trained with the re-

construction loss explicitly, while the refinement network is

trained with the reconstruction as well as GAN losses. Intu-

itively, the refinement network sees a more complete scene

than the original image with missing regions, so its encoder

can learn better feature representation than the coarse net-

work. This two-stage network architecture is similar in spir-

its to residual learning [14] or deep supervision [22].

Also, our inpainting network is designed in a thin and

deep scheme for efficiency purpose and has fewer param-

eters than the one in [15]. In terms of layer implementa-

tions, we use mirror padding for all convolution layers and

remove batch normalization layers [16] (which we found

deteriorates color coherence). Also, we use ELUs [7] as

activation functions instead of ReLU in [15], and clip the

output filter values instead of using tanh or sigmoid func-

tions. In addition, we found separating global and local fea-

ture representations for GAN training works better than fea-

ture concatenation in [15]. More details can be found in the

supplementary materials.

Global and local Wasserstein GANs Different from

previous generative inpainting networks [15, 25, 30] which

rely on DCGAN [31] for adversarial supervision, we pro-

pose to use a modified version of WGAN-GP [1, 12]. We

attach the WGAN-GP loss to both global and local outputs

of the second-stage refinement network to enforce global

and local consistency, inspired by [15]. WGAN-GP loss is

well-known to outperform existing GAN losses for image

generation tasks, and it works well when combined with ℓ1
reconstruction loss as they both use the ℓ1 distance metric.

Specifically, WGAN uses the Earth-Mover distance

(a.k.a. Wasserstein-1) distance W (Pr,Pg) for comparing

the generated and real data distributions. Its objective func-

tion is constructed by applying the Kantorovich-Rubinstein
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Figure 2: Overview of our improved generative inpainting framework. The coarse network is trained with reconstruction loss

explicitly, while the refinement network is trained with reconstruction loss, global and local WGAN-GP adversarial loss.

duality:

min
G

max
D∈D

Ex∼Pr
[D(x)]− Ex̃∼Pg

[D(x̃)],

where D is the set of 1-Lipschitz functions and Pg is the

model distribution implicitly defined by x̃ = G(z). z is the

input to the generator.

Gulrajani et al. [12] proposed an improved version of

WGAN with a gradient penalty term

λEx̂∼P
x̂
(‖∇x̂D(x̂)‖2 − 1)2,

where x̂ is sampled from the straight line between points

sampled from distribution Pg and Pr. The reason is that

the gradient of D∗ at all points x̂ = (1 − t)x + tx̃ on the

straight line should point directly towards current sample x̃,

meaning ∇x̂D
∗(x̂) = x̃−x̂

‖x̃−x̂‖ .

For image inpainting, we only try to predict hole regions,

thus the gradient penalty should be applied only to pixels in-

side the holes. This can be implemented with multiplication

of gradients and input mask m as follows:

λEx̂∼P
x̂
(‖∇x̂D(x̂)⊙ (1−m)‖2 − 1)2,

where the mask value is 0 for missing pixels and 1 for else-

where. λ is set to 10 in all experiments.

We use a weighted sum of pixel-wise ℓ1 loss (instead

of mean-square-error as in [15]) and WGAN adversarial

losses. Note that in primal space, Wasserstein-1 distance

in WGAN is based on ℓ1 ground distance:

W (Pr,Pg) = inf
γ∈

∏
(Pr,Pg)

E(x,y)∼γ [‖x− y‖],

where
∏
(Pr,Pg) denotes the set of all joint distributions

γ(x,y) whose marginals are respectively Pr and Pg . Intu-

itively, the pixel-wise reconstruction loss directly regresses

holes to the current ground truth image, while WGANs im-

plicitly learn to match potentially correct images and train

the generator with adversarial gradients. As both losses

measure pixel-wise ℓ1 distances, the combined loss is easier

to train and makes the optimization process stabler.

Spatially discounted reconstruction loss Inpainting

problems involve hallucination of pixels, so it could have

many plausible solutions for any given context. In challeng-

ing cases, a plausible completed image can have patches or

pixels that are very different from those in the original im-

age. As we use the original image as the only ground truth

to compute a reconstruction loss, strong enforcement of re-

construction loss in those pixels may mislead the training

process of convolutional network.

Intuitively, missing pixels near the hole boundaries have

much less ambiguity than those pixels closer to the center of

the hole. This is similar to the issue observed in reinforce-

ment learning. When long-term rewards have large varia-

tions during sampling, people use temporal discounted re-

wards over sampled trajectories [36]. Inspired by this, we

introduce spatially discounted reconstruction loss using a

weight mask M. The weight of each pixel in the mask is

computed as γl, where l is the distance of the pixel to the

nearest known pixel. γ is set to 0.99 in all experiments.

Similar weighting ideas are also explored in [30, 39].

Importance weighted context loss, proposed in [39], is spa-

tially weighted by the ratio of uncorrupted pixels within a

fixed window (e.g. 7×7). Pathak et al. [30] predict a slightly

larger patch with higher loss weighting (×10) in the border

area. For inpainting large hole, the proposed discounted loss

is more effective for improving the visual quality. We use

discounted ℓ1 reconstruction loss in our implementation.

With all the above improvements, our baseline genera-

tive inpainting model converges much faster than [15] and

result in more accurate inpainting results. For Places2 [41],

we reduce the training time from 11,520 GPU-hours (K80)

reported by [15] to 120 GPU-hours (GTX 1080) which is

almost 100× speedup. Moreover, the post-processing step

(image blending) [15] is no longer necessary.

4. Image Inpainting with Contextual Attention

Convolutional neural networks process image features

with local convolutional kernel layer by layer thus are not

5508



Figure 3: Illustration of the contextual attention layer.

Firstly we use convolution to compute matching score of

foreground patches with background patches (as convolu-

tional filters). Then we apply softmax to compare and get

attention score for each pixel. Finally we reconstruct fore-

ground patches with background patches by performing de-

convolution on attention score. The contextual attention

layer is differentiable and fully-convolutional.

effective for borrowing features from distant spatial loca-

tions. To overcome the limitation, we consider attention

mechanism and introduce a novel contextual attention layer

in the deep generative network. In this section, we first dis-

cuss details of the contextual attention layer, and then ad-

dress how we integrate it into our unified inpainting net-

work.

4.1. Contextual Attention

The contextual attention layer learns where to borrow or

copy feature information from known background patches

to generate missing patches. It is differentiable, thus can

be trained in deep models, and fully-convolutional, which

allows testing on arbitrary resolutions.

Match and attend We consider the problem where we

want to match features of missing pixels (foreground) to

surroundings (background). As shown in Figure 3, we first

extract patches (3 × 3) in background and reshape them as

convolutional filters. To match foreground patches {fx,y}
with backgrounds ones {bx′,y′}, we measure with normal-

ized inner product (cosine similarity)

sx,y,x′,y′ = 〈
fx,y

||fx,y||
,

bx′,y′

||bx′,y′ ||
〉,

where sx,y,x′,y′ represents similarity of patch centered

in background (x′, y′) and foreground (x, y). Then we

weigh the similarity with scaled softmax along x′y′-

dimension to get attention score for each pixel s∗x,y,x′,y′ =
softmaxx′,y′(λsx,y,x′,y′), where λ is a constant value. This

is efficiently implemented as convolution and channel-wise

softmax. Finally, we reuse extracted patches {bx′,y′} as de-

convolutional filters to reconstruct foregrounds. Values of

overlapped pixels are averaged.

Figure 4: Based on coarse result from the first encoder-

decoder network, two parallel encoders are introduced and

then merged to single decoder to get inpainting result. For

visualization of attention map, color indicates relative loca-

tion of the most interested background patch for each pixel

in foreground. For examples, white (center of color coding

map) means the pixel attends on itself, pink on bottom-left,

green means on top-right.

Attention propagation We further encourage coherency

of attention by propagation (fusion). The idea of coherency

is that a shift in foreground patch is likely corresponding to

an equal shift in background patch for attention. For exam-

ple, s∗x,y,x′,y′ usually have close value with s∗x+1,y,x′+1,y′ .

To model and encourage coherency of attention maps, we

do a left-right propagation followed by a top-down propa-

gation with kernel size of k. Take left-right propagation as

an example, we get new attention score with:

ŝx,y,x′,y′ =
∑

i∈{−k,...,k}

s∗x+i,y,x′+i,y′ .

The propagation is efficiently implemented as convolution

with identity matrix as kernels. Attention propagation sig-

nificantly improves inpainting results in testing and enriches

gradients in training.

Memory efficiency Assuming that a 64 × 64 region is

missing in a 128 × 128 feature map, then the number of

convolutional filters extracted from backgrounds is 12,288.

This may cause memory overhead for GPUs. To overcome

this issue, we introduce two options: 1) extracting back-

ground patches with strides to reduce the number of filters

and 2) downscaling resolution of foreground inputs before

convolution and upscaling attention map after propagation.

4.2. Unified Inpainting Network

To integrate attention module, we introduce two parallel

encoders as shown in Figure 4 based on Figure 2. The bot-

tom encoder specifically focuses on hallucinating contents

with layer-by-layer (dilated) convolution, while the top one

tries to attend on background features of interest. Output

features from two encoders are aggregated and fed into a

5509



single decoder to obtain the final output. To interpret con-

textual attention, we visualize it in a way shown in Figure 4.

We use color to indicate the relative location of the most in-

terested background patch for each foreground pixel. For

examples, white (center of color coding map) means the

pixel attends on itself, pink on bottom-left, green on top-

right. The offset value is scaled differently for different im-

ages to best visualize the most interesting range.

For training, given a raw image x, we sample a binary

image mask m at a random location. Input image z is cor-

rupted from the raw image as z = x ⊙m. Inpainting net-

work G takes concatenation of z and m as input, and output

predicted image x′ = G(z,m) with the same size as input.

Pasting the masked region of x′ to input image, we get the

inpainting output x̃ = z + x′ ⊙ (1−m). Image values of

input and output are linearly scaled to [−1, 1] in all experi-

ments. Training procedure is shown in Algorithm 1.

Algorithm 1 Training of our proposed framework.

1: while G has not converged do

2: for i = 1, ..., 5 do

3: Sample batch images x from training data;

4: Generate random masks m for x;

5: Construct inputs z← x⊙m;

6: Get predictions x̃← z+G(z,m)⊙ (1−m);
7: Sample t ∼ U [0, 1] and x̂← (1− t)x+ tx̃;

8: Update two critics with x, x̃ and x̂;

9: end for

10: Sample batch images x from training data;

11: Generate random masks m for x;

12: Update inpainting network G with spatial dis-

13: counted ℓ1 loss and two adversarial critic losses;

14: end while

5. Experiments

We evaluate the proposed inpainting model on four

datasets including Places2 [41], CelebA faces [26], CelebA-

HQ faces [20], DTD textures [6] and ImageNet [32].

Qualitative comparisons First, we show in Figure 5 that

our baseline model generates comparable inpainting results

with the previous state-of-the-art [15] by comparing our

output result and result copied from their main paper. Note

that no post-processing step is performed for our baseline

model, while image blending is applied in result of [15].

Next we use the most challenging Places2 dataset to

evaluate our full model with contextual attention by com-

paring to our baseline two-stage model which is extended

from the previous state-of-the-art [15]. For training, we

use images of resolution 256 × 256 with largest hole size

128×128 described in Section 4.2. Both methods are based

on fully-convolutional neural networks thus can fill in mul-

tiple holes on images of different resolutions. Visual com-

parisons on a variety of complex scenes from the validation

set are shown in Figure 6. Those test images are all with

size 512 × 680 for consistency of testing. All the results

reported are direct outputs from the trained models without

using any post-processing. For each example, we also visu-

alize latent attention map for our model in the last column

(color coding is explained in Section 4.2).

As shown in the figure, our full model with contextual

attention can leverage the surrounding textures and struc-

tures and consequently generates more realistic results with

much less artifacts than the baseline model. Visualizations

of attention maps reveal that our method is aware of contex-

tual image structures and can adaptively borrow information

from surrounding areas to help the synthesis and generation.

In Figure 7, we also show some example results and at-

tention maps of our full model trained on CelebA, DTD and

ImageNet. Due to space limitation, we include more results

for these datasets in the supplementary material.

Quantitative comparisons Like other image generation

tasks, image inpainting lacks good quantitative evaluation

metrics. Inception score [33] introduced for evaluating

GAN models is not a good metric for evaluating image

inpainting methods as inpainting mostly focuses on back-

ground filling (e.g. object removal case), not on its ability

to generate a variety classes of objects.

Evaluation metrics in terms of reconstruction errors are

also not perfect as there are many possible solutions differ-

ent from the original image content. Nevertheless, we report

our evaluation in terms of mean ℓ1 error, mean ℓ2 error, peak

signal-to-noise ratio (PSNR) and total variation (TV) loss

on validation set on Places2 just for reference in Table 1. As

shown in the table, learning-based methods perform better

in terms of ℓ1, ℓ2 errors and PSNR, while methods directly

copying raw image patches have lower total variation loss.

Method ℓ1 loss ℓ2 loss PSNR TV loss

PatchMatch [3] 16.1% 3.9% 16.62 25.0%

Baseline model 9.4% 2.4% 18.15 25.7%

Our method 8.6% 2.1% 18.91 25.3%

Table 1: Results of mean ℓ1 eror, mean ℓ2 error, PSNR and

TV loss on validation set on Places2 for reference.

Our full model has a total of 2.9M parameters, which is

roughly half of model proposed in [15]. Models are imple-

mented on TensorFlow v1.3, CUDNN v6.0, CUDA v8.0,

and run on hardware with CPU Intel(R) Xeon(R) CPU E5-

2697 v3 (2.60GHz) and GPU GTX 1080 Ti. Our full model

runs at 0.2 seconds per frame on GPU and 1.5 seconds per

frame on CPU for images of resolution 512× 512 on av-

erage.
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Figure 5: Comparison of our baseline model with Iizuka et al. [15]. From left to right, we show the input image, result

copied from main paper of work [15], and result of our baseline model. Note that no post-processing step is performed for

our baseline model, while image blending is applied for the result of [15]. Best viewed with zoom-in.

Figure 6: Qualitative results and comparisons to the baseline model. We show from left to right the original image, input

image, result of our baseline model, result and attention map (upscaled 4×) of our full model. Best viewed with zoom-in.
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Figure 7: Sample results of our model on CelebA faces,

DTD textures and ImageNet from top to bottom. Each row,

from left to right, shows original image, input image, result

and attention map (upscaled 4×), respectively.

5.1. Ablation study

Figure 8: We show input image, result and attention map

using three different attention modules: spatial transformer

network (left), appearance flow (middle), our contextual at-

tention (right).

Contextual attention vs. spatial transformer network

and appearance flow We investigate the effectiveness of

contextual attention comparing to other spatial attention

modules including appearance flow [42] and spatial trans-

former network [17] for image inpainting. For appearance

flow [42], we train on the same framework except that the

contextual attention layer is replaced with a convolution

layer to directly predict 2-D pixel offsets as attention. As

shown in Figure 8, for a very different test image pair, ap-

pearance flow returns very similar attention maps, meaning

that the network may stuck in a bad local minima. To im-

prove results of appearance flow, we also investigated ideas

of multiple attention aggregation and patch-based attention.

None of these ideas work well enough to improve the in-

painting results. Also, we show the results with the spatial

transformer network [17] as attention in our framework in

Figure 8. As shown in the figure, STN-based attention does

not work well for inpainting as its global affine transforma-

tion is too coarse.

Figure 9: Inpainting results of the model trained with DC-

GAN on Places2 (top) and CelebA (bottom) when modes

collapse.

Choice of the GAN loss for image inpainting Our in-

painting framework benefits greatly from the WGAN-GP

loss as validated by its learning curves and faster/stabler

convergence behaviors. The same model trained with DC-

GAN sometimes collapses to limited modes for the inpaint-

ing task, as shown in Figure 9. We also experimented with

LSGAN [27], and the results were worse.

Essential reconstruction loss We also performed testing

if we could drop out the ℓ1 reconstruction loss and purely

rely on the adversarial loss (i.e. improved WGANs) to gen-

erate good results. To draw a conclusion, we train our in-

painting model without ℓ1 reconstruction loss in the refine-

ment network. Our conclusion is that the pixel-wise recon-

struction loss, although tends to make the result blurry, is an

essential ingredient for image inpainting. The reconstruc-

tion loss is helpful in capturing content structures and serves

as a powerful regularization term for training GANs.

Perceptual loss, style loss and total variation loss We

have not found perceptual loss (reconstruction loss on VGG

features), style loss (squared Frobenius norm of Gram ma-

trix computed on the VGG features) [19] and total variation

(TV) loss bring noticeable improvements for image inpaint-

ing in our framework, thus are not used.

6. Conclusion

We proposed a coarse-to-fine generative image inpaint-

ing framework and introduced our baseline model as well

as full model with a novel contextual attention module. We

showed that the contextual attention module significantly

improves image inpainting results by learning feature repre-

sentations for explicitly matching and attending to relevant

background patches. As a future work, we plan to extend

the method to very high-resolution inpainting applications

using ideas similar to progressive growing of GANs [20].

The proposed inpainting framework and contextual atten-

tion module can also be applied on conditional image gen-

eration, image editing and computational photography tasks

including image-based rendering, image super-resolution,

guided editing and many others.
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